Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.209
Filtrar
1.
BMC Chem ; 18(1): 146, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113157

RESUMEN

In this study, two new molecules were synthesized from the reaction of 2-methyl-1H-benzo[d]imidazole with aryl halides in the presence of a strong base. The structures newly of synthesized 1,2-disubstituted benzimidazole compounds were characterized using spectroscopic techniques (FT-IR, 1HNMR, 13CNMR) and chromatographic technique (LC/MS). For discovering an effective anticancer drug, the developed heterocyclic compounds were screened against three different human cancer cell lines (A549, DLD-1, and L929). The results demonstrated that of IC50 values of compound 2a were higher as compared to cisplatin for the A549 and DLD-1 cell lines. The frontier molecular orbital (FMO), and molecular electrostatic potential map (MEP) analyses were studied by using DFT (density functional theory) calculations at B3LYP/6-31G** level of theory. The molecular docking studies of the synthesized compound with lung cancer protein, PDB ID: 1M17, and colon cancer antigen proteins, PDB ID: 2HQ6 were performed to compare with experimental and theoretical data. Compound 2a had shown the best binding affinity with -6.6 kcal/mol. It was observed that the theoretical and experimental studies carried out supported each other.

2.
Small ; : e2404364, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115351

RESUMEN

Ultrahigh-temperature Joule-heating of carbon nanostructures opens up unique opportunities for property enhancements and expanded applications. This study employs rapid electrical Joule-heating at ultrahigh temperatures (up to 3000 K within 60 s) to induce a transformation in nanocarbon aerogels, resulting in highly graphitic structures. These aerogels function as versatile platforms for synthesizing customizable metal oxide nanoparticles while significantly reducing carbon emissions compared to conventional furnace heating methods. The thermal conductivity of the aerogel, characterized by Umklapp scattering, can be precisely adjusted by tuning the heating temperature. Utilizing the aerogel's superhydrophobic properties enables its practical application in filtration systems for efficiently separating toxic halogenated solvents from water. The hierarchically porous aerogel, featuring a high surface area of 607 m2 g-1, ensures the uniform distribution and spacing of embedded metal oxide nanoparticles, offering considerable advantages for catalytic applications. These findings demonstrate exceptional catalytic performance in oxidative desulfurization, achieving a 98.9% conversion of dibenzothiophene in the model fuel. These results are corroborated by theoretical calculations, surpassing many high-performance catalysts. This work highlights the pragmatic and highly efficient use of nanocarbon structures in nanoparticle synthesis under ultrahigh temperatures, with short heating durations. Its broad implications extend to the fields of electrochemistry, energy storage, and high-temperature sensing.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39115532

RESUMEN

Chalcopyrite, the world's primary copper ore mineral, is abundant in Latin America. Copper extraction offers significant economic and social benefits due to its strategic importance across various industries. However, the hydrometallurgical route, considered more environmentally friendly for processing low-grade chalcopyrite ores, remains challenging, as does its concentration by froth flotation. This limited understanding stems from the poorly understood structure and reactivity of chalcopyrite surfaces. This study reviews recent contributions using density functional theory (DFT) calculations with periodic boundary conditions and slab models to elucidate chalcopyrite surface properties. Our analysis reveals that reconstructed surfaces preferentially expose S atoms at the topmost layer. Furthermore, some studies report the formation of disulfide groups (S22-) on pristine sulfur-terminated surfaces, accompanied by the reduction of Fe3+ to Fe2+, likely due to surface oxidation. Additionally, Fe sites are consistently identified as favourable adsorption locations for both oxygen (O2) and water (H2O) molecules. Finally, the potential of computer modelling for investigating collector-chalcopyrite surface interactions in the context of selective froth flotation is discussed, highlighting the need for further research in this area.

4.
J Photochem Photobiol B ; 258: 112996, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094239

RESUMEN

Exploring antioxidant potential of flavonoid derivatives after ESIPT process provides a theoretical basis for discovering compounds with higher antioxidant capacity. In this work, employing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods, the antioxidant potential of two citrus-derived naringenin flavonoids after ESIPT process is explored. Based on studies of ESIPT process including IMHB intensity variations, potential energy curves, and transition state, these molecules exist only in enol and keto⁎ forms due to ultra-fast ESIPT. The HOMOs are utilized to explore electron-donating capacity, demonstrating that the molecules in keto⁎ form is stronger than that in enol form. Furthermore, the atomic dipole moment corrected Hirshfeld population (ADCH) and Fukui functions indicate that the sites attacked by the electrophilic free radical of the two molecules in the keto⁎ form are O3 and O5' respectively, and both are more active than in the enol form. Overall, a comprehensive consideration of the ESIPT process and antioxidant potential of flavonoid derivatives will facilitate the exploration and design of substances with higher antioxidant capacity.

5.
J Environ Manage ; 367: 122046, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094410

RESUMEN

Rational fabrication of core-shell photocatalysts to hamper the charge recombination is extraordinarily essential to enhance photocatalytic activity. In this work, core-shell Ag@NH2-UiO-66 (Ag@NU) Schottky heterojunctions with low Ag content (1 wt%) were constructed by a two-step solvothermal method and adopted for Cr(VI) reduction under LED light. Typically, the one with the Ag: NH2-UiO-66 mass ratio (1 : 100) led to 100% Cr(VI) removal within 1 h, superior to bare NH2-UiO-66 and Ag/NH2-UiO-66 (Ag was directly decorated on NH2-UiO-66 surface). The enhanced photocatalytic activity was related to the migration of the electrons on the CB of NH2-UiO-66 to Ag NPs through a Schottky barrier, and thus the undesired charge carriers recombination was avoided. This result was also evidenced by Density functional theory (DFT) calculations. The computational simulations indicate that the introduction of Ag effectively narrowed the band gap of NH2-UiO-66, facilitating the transfer of photo-generated electrons, expanding the light absorption area, and significantly enhancing photocatalytic efficiency. Most importantly, such a core-shell structure can inhibit the formation of •O2-, letting the direct Cr(VI) reduction by photo-excited e-. In addition, this structure can also protect Ag from being oxidized by O2. Ten cyclic tests evidenced the Ag@NU had excellent chemical and structural stability. This research offers a novel strategy for regulating the Cr(VI) reduction by establishing core-shell photocatalytic materials.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39096454

RESUMEN

Air pollutants generated from volatile toxic chemicals pose significant public health concerns. Density functional theory (DFT) computations were used in this research to explore the efficiency and mechanism of harmful gas sensing over the reduced graphene oxide-polypyrrole (rGO-PPy) composite. Volatile molecule sensing was investigated for the NH3, H2CO, CH3OH, and C2H5OH gas molecules over three PPy orientations on the rGO substrate. Results showed that PPy orientation over rGO plays a crucial role in the sensing efficiency of the investigated gas molecules. The rGO-PPy composite, with PPy in a vertical orientation, demonstrated higher stability and enhanced sensing than other orientations. The results indicate that the strong hydrogen bonding of NH3 and CH3OH with both PPy and rGO significantly enhanced the sensing of these gas molecules on rGO by influencing the charge transfer with adsorption energy values of - 0.84 and - 0.92 eV, respectively. The lack of a direct hydrogen bonding with rGO and the weak hydrogen bonding with PPy caused a weak adsorption of H2CO and C2H5OH over rGO as indicated by the adsorption energy values of - 0.60 and - 0.78 eV, respectively. Selectivity analysis for the NH3 and C2H5OH gas molecules showed that NH3 can maintain hydrogen bonding with PPy in the presence of C2H5OH while C2H5OH cannot sustain this interaction. This study highlights the importance of the structural and electronic properties of the rGO-PPy composite in volatile pollutant sensing, providing insights for designing high-performance gas sensors.

7.
Mol Divers ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097550

RESUMEN

Density Functional Theory (DFT) is extensively used in theoretical and computational chemistry to study molecular and crystal properties across diverse fields, including quantum chemistry, materials physics, catalysis, biochemistry, and surface science. Despite advances in DFT hardware and software for optimized geometries, achieving consensus in molecular structure comparisons with experimental counterparts remains a challenge. This difficulty is exacerbated by the lack of automated bond length comparison tools, resulting in labor-intensive and error-prone manual processes. To address these challenges, we propose MolGC, a Molecular Geometry Comparator algorithm that automates the comparison of optimized geometries from different theoretical levels. MolGC calculates the mean absolute error (MAE) of bond lengths by integrating data from various DFT software. It provides interactive and customizable visualization of geometries, enabling users to explore different views for enhanced analysis. In addition, it saves MAE computations for further analysis and offers a comprehensive statistical summary of the results. MolGC effectively addresses complex graph labeling challenges, ensuring accurate identification and categorization of bonds in diverse chemical structures. It achieves a 98.91% average rate in correct bond label assignments on an antibiotics dataset, showcasing its effectiveness for comparing molecular bond lengths across geometries of varying complexity and size. The executable file and software resources for running MolGC can be downloaded from https://github.com/AbimaelGP/MolGC/tree/main .

8.
J Synchrotron Radiat ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088400

RESUMEN

Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment. To this end, we present Web-CONEXS, an intuitive graphical web application for democratizing electronic structure theory simulations. Web-CONEXS generates and submits simulation workflows for theoretical X-ray absorption and X-ray emission spectroscopy to a remote computing cluster. In the present form, Web-CONEXS interfaces with three software packages: ORCA, FDMNES and Quantum ESPRESSO, and an extensive materials database courtesy of the Materials Project API. These software packages have been selected to model diverse materials and properties. Web-CONEXS has been conceived with the novice user in mind; job submission is limited to a subset of simulation parameters. This ensures that much of the simulation complexity is lifted and preliminary theoretical results are generated faster. Web-CONEXS can be leveraged to support beam time proposals and serve as a platform for preliminary analysis of experimental data.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39088748

RESUMEN

The distinctive properties of 2D MXenes have garnered significant interest across various fields, including wastewater treatment and photo/electro-catalysis. The integration of inexpensive semiconductor nanostructures with 2D MXenes offers a promising strategy for applications such as wastewater treatment and photoelectrochemical hydrogen production. In this study, we employed an in situ hydrothermal method to immobilize 1D Bi2S3 nanorods and self-reduced metallic bismuth nanoparticles (Bi NPs) onto Ti3C2Tx MXene nanosheets, resulting in the formation of a Bi/Bi2S3/Ti3C2Tx (0D/1D/2D) composite catalyst, which demonstrates an outstanding efficacy in both the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and photoelectrochemical hydrogen production. Remarkably, a 4-NP reduction efficiency of 100% was achieved only in 4 min with a reduction rate of 1.14 min-1, which is outstanding, and it is ∼3.8 times faster than pristine Bi2S3 nanorods (0.3 min-1). Furthermore, the photoelectrochemical assessment reveals that the Bi/Bi2S3/Ti3C2Tx catalyst displays remarkable hydrogen evolution reaction (HER) efficiency in an alkaline electrolyte. It exhibits a significantly lower overpotential and Tafel slope of 73 mV and 84 mV/dec, respectively, compared to pristine Bi2S3 nanorods, which are found to be 129 mV and 145 mV/dec under light illumination. The superior reduction performance of 4-NP and charge transfer mechanism is further investigated through density functional theory (DFT) calculations, alongside validation using various microscopic and spectroscopic techniques. Interestingly, the DFT analysis revealed modifications in the partial density of states of Bi2S3 within the band gap region due to the successful anchoring of Ti3C2Tx nanosheets and metallic Bi NPs, facilitating efficient charge transport and separation across the local junctions. Ultraviolet photoelectron spectroscopy provided insights into band alignment and interfacial charge transfer across the Bi/Bi2S3/Ti3C2Tx junction on a microscopic scale. This work is significant for the development of MXene-based hybrid catalysts, and it provides a deeper understanding of the reduction mechanism of organic pollutants and superior charge transport in the hybrid system for photoelectrochemical hydrogen production.

10.
Comput Biol Med ; 180: 108953, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089115

RESUMEN

Natural antioxidants have become the subject of many investigations due to the role that they play in the reduction of oxidative stress. Their main scavenging mechanisms concern the direct inactivation of free radicals and the coordination of metal ions involved in Fenton-like reactions. Recently, increasing attention has been paid to non-covalent inhibition of enzymes involved in different diseases by the antioxidants. Here, a computational investigation on the primary antioxidant power of (+)-catechin against the •OOH radical has been performed in both lipid-like and aqueous environments, taking into account the relevant species present in the simulated acid-base equilibria at the physiological pH. Hydrogen Atom Transfer (HAT), Single Electron Transfer (SET), and Radical Adduct Formation (RAF) mechanisms were studied, and relative rate constants were estimated. The potential inhibitory activity of the (+)-catechin towards the most important proteases from SARS-CoV-2, 3C-like (Mpro) and papain-like (PLpro) proteases was also investigated by MD simulations to provide deeper atomistic insights on the binding sites. Based on the antioxidant and antiviral properties also unravelled by comparison with other molecules having similar chemical scaffold, our results propose that (+)-CTc satisfies can explicate a dual action as antioxidant and antiviral in particular versus Mpro from SARS-CoV-2.

11.
Chemphyschem ; : e202400655, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103302

RESUMEN

This study employs computational methods to investigate the mechanism of H2 activation by frustrated Lewis pair (FLP) species, including both intermolecular and intramolecular nitrothane/borane FLP systems. Previous studies have proposed two qualitative reactivity mechanism models to explain the facile cleavage of H2 by FLPs. The findings of this study support the electric field mechanism as the favorable pathway for H2 cleavage. Utilizing frontier molecular orbital theory and energy decomposition analysis, the study explores the electronic structure and nature of the reactions under an external electric field (EEF). Analysis using the activation strain model highlights the significant influence of geometrical deformation energies of FLPs on the activation barriers of H2 activation reactions. Computational results suggest that H2 activation by FLP molecules follows the electric field mechanism, indicating the potential of the FLP/EEF combination as an effective activator for inert molecules.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39105758

RESUMEN

Substituting electrochemically active elements such as Li and Mg in P2-type layered sodium oxide is an effective strategy for developing competitive cathode materials for sodium-ion batteries. However, the lack of atomic-level understanding regarding the distribution of substitution positions complicates the comprehension of the roles of substituting atoms and the mechanism of sodium-ion intercalation. In this study, we identified the stable configurations of Na in Na0.75Ni0.3Mn0.7O2 and Na0.75Li0.15Mg0.05Ni0.1Mn0.7O2 materials using the site exclusion method. Through simulating the complete charging process for both materials, the structure evolution of the cathodes during the cycling and the impact of the partial substitution of Ni elements by Li and Mg atoms were comprehensively elucidated. Our findings revealed that Mg atoms effectively regulate the distribution of forces within the materials, essentially serving as supportive pillars within the cathode. Meanwhile, Li atoms efficiently mitigated electron localization, consequently diminishing volume fluctuations during the charging process. More importantly, the substitution with Li and Mg atoms could synergistically reduce the interaction between transition metals and sodium ions, thereby reducing the diffusion energy barrier of Na ions. This study not only enhances the comprehension of substituted metal atoms in P2 layered oxides but also offers new insights for the development of sodium-ion cathode materials.

13.
Data Brief ; 55: 110724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100774

RESUMEN

In this work, the biochemical activities of seven cyclic peptides were investigated using the insilico approach. The materials used in this work were Spartan 14 for quantum chemical analysis, molecular operating environment software for molecular docking and ADMETSAR 2.0 for pharmacokinetic investigation. The calculated features obtained for each compound were explored and it was observed that the molecules used in this research have potential anti-human insulin-degrading enzyme activities. Also, (3S,6S,9S)-9-((R)-1-(benzyloxy)ethyl)-6-methyl-3-(4-methylphenethyl)-1,4,7,10-tetraazacyclododecane-2,5,8,11-tetraone (compound 2) with highest binding affinity (-7.95349026 kcal/mol) possess utmost ability to inhibit human insulin-degrading enzyme (PDB id: 2g56) than other investigated compounds and acarbose (referenced compound). The pharmacokinetic analysis for compound 2 was examined and compared to the predicted report for the referenced compound.

14.
Adv Mater ; : e2403989, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097947

RESUMEN

Diffusion processes govern fundamental phenomena such as phase transformations, doping, and intercalation in van der Waals (vdW) bonded materials. Here, the diffusion dynamics of W atoms by visualizing the motion of individual atoms at three different vdW interfaces: hexagonal boron nitride (BN)/vacuum, BN/BN, and BN/WSe2, by recording scanning transmission electron microscopy movies is quantified. Supported by density functional theory (DFT) calculations, it is inferred that in all cases diffusion is governed by intermittent trapping at electron beam-generated defect sites. This leads to diffusion properties that depend strongly on the number of defects. These results suggest that diffusion and intercalation processes in vdW materials are highly tunable and sensitive to crystal quality. The demonstration of imaging, with high spatial and temporal resolution, of layers and individual atoms inside vdW heterostructures offers possibilities for direct visualization of diffusion and atomic interactions, as well as for experiments exploring atomic structures, their in situ modification, and electrical property measurements of active devices combined with atomic resolution imaging.

15.
J Hazard Mater ; 477: 135410, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098200

RESUMEN

The widespread use of nuclear energy has raised concerns about nuclear safety and radioactive waste management, particularly due to the release of radioactive cesium. This study investigates the use of t-BAMBP (4-tert-butyl-2-(α-methylbenzyl) phenol) for the extraction and separation of cesium from simulate high concentration cesium containing wastewater, focusing on the selection of suitable diluents to enhance the efficiency of the process. We performed a systematic study using density functional theory (DFT) calculations to evaluate the intrinsic properties and interactions of various common diluents with t-BAMBP. The diluents studied include aromatic hydrocarbons (benzene, toluene, xylene), alkanes (cyclohexane, hexane, heptane), and alcohols (hexanol, octanol). Our computational results revealed that cyclohexane is the most suitable diluent due to its moderate solvation-free energy, high nonpolarity, and optimal balance between solubility and reactivity. Experimental validation confirmed the computational findings. The cyclohexane-diluted t-BAMBP system achieved the highest cesium extraction efficiency of over 94 %, with a separation factor (ßCs/K) of 767.67. Cyclohexane demonstrated the lowest toxicity and cost among the diluents evaluated, making it a safer and more economical choice for practical applications. The results of this study provide a comprehensive theoretical and experimental basis for the selection of diluents in the t-BAMBP extraction system, offering insights for the sustainable utilization of cesium resources and effective management of radioactive waste.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124900, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39098294

RESUMEN

The atmospheric partitioning of trifluoroacetic acid (TFA) in aerosol is a complex function of the size of suspended water droplets and their pH value. The unraveling of the affinity of TFA towards basic but not acidic conditions may be accomplished by providing an insight into the hydration pattern of undissociated TFA. Owing to rather scarce details on very dilute aqueous solutions of trifluoroacetic acid (TFA), we examined CF3COOD and CF3COONa solutions in D2O in the concentration range 0.001-0.1 mol dm-3 using transmission FTIR spectroscopy and computational methods. Besides detecting the signals originated from undissociated species in both CF3COOD (1787 cm-1 and 1766 cm-1 at c0 = 0.1 mol dm-3) and CF3COONa (1807 cm-1 at c0 = 0.1 mol dm-3) D2O solutions, through computational techniques we identified different TFA hydrates that contribute to the complexity of the spectral appearance. The combination of experimental and computational data suggested the concentration dependence of the predominant hydrogen bonding pattern of TFA. The results obtained in this work should help in understanding the partitioning of TFA into micron-size water droplets in the atmosphere in molecular and structural terms, i.e. the eventual stability of a hydrated complex for a particular TFA conformer.

17.
Free Radic Res ; : 1-8, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101778

RESUMEN

The antioxidant properties of 21 proteinogenic amino acids (AAs) and 3,4-dioxophenylanine (DOPA) have been studied in implicit water using density functional theory (DFT). All the calculations have been performed according to three oxidation mechanisms: (1) hydrogen-atom transfer (HAT); (2) single electron transfer followed by proton transfer (SET-PT); and (3) sequential proton-loss electron transfer (SPLET). As a result, five AAs with the highest antioxidant capacity have been established: DOPA, selenocysteine (Sec), tyrosine (Tyr), cysteine (Cys), and tryptophan (Trp). Also, global reactivity in terms of hardness/softness has been evaluated, as well as Fukui indices of local reactivity. Trp has been determined as the most reactive molecule, whereas selenium atom of Sec has been established as the most reactive atom. All the findings are in agreement with the recent literature on both experimental and theoretical studies of amino acids antioxidant activity. However, to the best of my knowledge, the calculations for one electron redox reactions of zwitterionic amino acids in implicit water have been performed for the first time.

18.
Chemistry ; : e202402294, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101875

RESUMEN

In this work, we synthesize a series of push-pull compounds bearing naphthalimide as the electron acceptor and tetraphenylethylene (TPE)/triphenylamine (TPA)/phenothiazine (PTZ) as the electron rich/electron donor units. These moieties are arranged in highly conjugated quadrupolar structures. The structure-property relationships are investigated through a joint experimental time-resolved spectroscopic and computational TD-DFT study. The femtosecond transient absorption and fluorescence up-conversion experiments reveal ultrafast photoinduced intramolecular charge transfer. This is likely the key factor leading to efficient spin-orbit CT-induced intersystem crossing for the TPA- and PTZ-derivatives as well as to small singlet-to-triplet energy gap. Consequently, evidence for a delayed fluorescence component is found together with the main prompt emission in the fluorescence kinetics both in solution and in thin film. The weight of the Thermally Activated Delayed Fluorescence (TADF) is greatly enhanced when these fluorophores are used as guests in solid-state host matrices. TADF is interestingly revealed in the orange-red region of the visible. Such long wavelength emission is here observed with surprisingly large fluorescence quantum yields, thanks to the conjugation enhancement achieved in these newly synthesized structures relative to previous studies. Our findings may be thus promising for the future development of efficient third generation TADF-based OLEDs.

19.
Nano Lett ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101965

RESUMEN

Lanthanide (Ln) elements Gd and Yb alloyed with a Pb monolayer on the Si(111) substrate form LnPb3 compounds having the same crystal structure. They comprise a single-atom-thick Pb layer arranged in a slightly distorted kagome lattice with Ln atoms filling the hexagonal voids. They have similar electronic band structures except for the Fermi level position, which varies between the divalent Yb- and trivalent Gd-containing compounds by ∼0.47 eV. The ability to create a 2D solid solution with the unified continuous Pb layer and hexagonal voids randomly filled with either Gd or Yb atoms allows precise control of the Fermi level position. Small alteration of the Fermi level triggers drastic changes in the Fermi surface topology due to the Lifshitz transition, hence in the physical properties. In particular, the sheet resistance of the GdxYb1-xPb3/Si(111) system can be controllably varied over an order of magnitude range.

20.
ACS Appl Bio Mater ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087675

RESUMEN

Our study focuses on synthesizing and exploring the potential of three N-(4) substituted thiosemicarbazones derived from cinnamic aldehyde, alongside their Ru(II)-(η6 -p-cymene)/(η6-benzene) complexes. The synthesized compounds were comprehensively characterized using a range of analytical techniques, including FT-IR, UV-visible spectroscopy, NMR (1H, 13C), and HRMS. We investigated their electronic and physicochemical properties via density functional theory (DFT). X-ray crystal structures validated structural differences identified by DFT. Molecular docking predicted promising bioactivities, supported by experimental observations. Notably, docking with EGFR suggested an inhibitory potential against this cancer-related protein. Spectroscopic titrations revealed significant DNA/BSA binding affinities, particularly with DNA intercalation and BSA hydrophobic interactions. RuPCAM displayed the strongest binding affinity with DNA (Kb = 6.23 × 107 M-1) and BSA (Kb = 9.75 × 105 M-1). Assessed the cytotoxicity of the complexes on cervical cancer cells (HeLa), and breast cancer cells (MCF-7 and MDA-MB 231), revealing remarkable potency. Additionally, selectivity was assessed by examining MCF-10a normal cell lines. The active complexes were found to trigger apoptosis, a vital cellular process crucial for evaluating their potential as anticancer agents utilizing staining assays and flow cytometry analysis. Intriguingly, complexation with Ru(II)-arene precursors significantly amplified the bioactivity of thiosemicarbazones, unveiling promising avenues toward the creation of powerful anticancer agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA