Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Acta Vet Scand ; 66(1): 29, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965607

RESUMEN

BACKGROUND: Chiari malformation type II (CMII) was originally reported in humans as a rare disorder characterized by the downward herniation of the hindbrain and towering cerebellum. The congenital brain malformation is usually accompanied by spina bifida, a congenital spinal anomaly resulting from incomplete closure of the dorsal aspect of the spinal neural tube, and occasionally by other lesions. A similar disorder has been reported in several animal species, including cattle, particularly as a congenital syndrome. A cause of congenital syndromic Chiari-like malformation (CSCM) in cattle has not been reported to date. We collected a series of 14 CSCM-affected Holstein calves (13 purebred, one Red Danish Dairy F1 cross) and performed whole-genome sequencing (WGS). WGS was performed on 33 cattle, including eight cases with parents (trio-based; group 1), three cases with one parent (group 2), and three single cases (solo-based; group 3). RESULTS: Sequencing-based genome-wide association study of the 13 Holstein calves with CSCM and 166 controls revealed no significantly associated genome region. Assuming a single Holstein breed-specific recessive allele, no region of shared homozygosity was detected suggesting heterogeneity. Subsequent filtering for protein-changing variants that were only homozygous in the genomes of the individual cases allowed the identification of two missense variants affecting different genes, SHC4 in case 4 in group 1 and WDR45B in case 13 in group 3. Furthermore, these two variants were only observed in Holstein cattle when querying WGS data of > 5,100 animals. Alternatively, potential de novo mutational events were assessed in each case. Filtering for heterozygous private protein-changing variants identified one DYNC1H1 frameshift variant as a candidate causal dominant acting allele in case 12 in group 3. Finally, the presence of larger structural DNA variants and chromosomal abnormalities was investigated in all cases. Depth of coverage analysis revealed two different partial monosomies of chromosome 2 segments in cases 1 and 7 in group 1 and a trisomy of chromosome 12 in the WDR45B homozygous case 13 in group 3. CONCLUSIONS: This study presents for the first time a detailed genomic evaluation of CSCM in Holstein cattle and suggests an unexpected genetic and allelic heterogeneity considering the mode of inheritance, as well as the type of variant. For the first time, we propose candidate causal variants that may explain bovine CSCM in a certain proportion of affected calves. We present cattle as a large animal model for human CMII and propose new genes and genomic variants as possible causes for related diseases in both animals and humans.


Asunto(s)
Malformación de Arnold-Chiari , Enfermedades de los Bovinos , Estudio de Asociación del Genoma Completo , Animales , Bovinos/genética , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/congénito , Enfermedades de los Bovinos/patología , Malformación de Arnold-Chiari/veterinaria , Malformación de Arnold-Chiari/genética , Femenino , Estudio de Asociación del Genoma Completo/veterinaria , Masculino , Secuenciación Completa del Genoma/veterinaria
2.
Epilepsia ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953796

RESUMEN

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

3.
Neurol Sci ; 45(9): 4583-4588, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38806879

RESUMEN

Spinal Muscular Atrophy (SMA) emerges as a prominent genetic neuromuscular disorder primarily caused by variants in the survival motor neuron (SMN) gene. However, it is noteworthy that alternative variants impacting DYNC1H1 have also been linked to a subtype known as spinal muscular atrophy lower extremity predominant (SMA-LED). This observation underscores the complexity of SMA and highlights the necessity for tailored, gene-specific management strategies. Our study elucidates how similar approaches to managing SMA can yield distinct outcomes, emphasizing the imperative for personalized gene-based interventions in effectively addressing these conditions. Two patients were referred for further management due to clinical suspicion of type-3 SMA. The definitive diagnosis was confirmed through the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique, as well as whole-exome sequencing (WES). The analysis revealed deletions in exon-7 and 8 of SMN1 in the first patient and a likely pathogenic mutation (NM_001376.5(DYNC1H1):c.1867 T > C (NP_001367.2: p.Phe623Leu)) in DYNC1H1 in the second patient. Both patients presented with lower limb muscle weakness. However, while the first patient exhibited a gradual increase in severity over the years, the second patient displayed no progressive symptoms. The management was adjusted accordingly based on the genetic findings. Our observation underscores the complexity of SMA and highlights the necessity for tailored, gene-specific management strategies. Our study elucidates how similar approaches to managing SMA can yield distinct outcomes, emphasizing the imperative for personalized gene-based interventions in effectively addressing these conditions.


Asunto(s)
Dineínas Citoplasmáticas , Atrofia Muscular Espinal , Mutación , Proteína 1 para la Supervivencia de la Neurona Motora , Humanos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Dineínas Citoplasmáticas/genética , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Femenino
4.
Acta Neuropathol ; 147(1): 13, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194050

RESUMEN

The development of the cerebral cortex involves a series of dynamic events, including cell proliferation and migration, which rely on the motor protein dynein and its regulators NDE1 and NDEL1. While the loss of function in NDE1 leads to microcephaly-related malformations of cortical development (MCDs), NDEL1 variants have not been detected in MCD patients. Here, we identified two patients with pachygyria, with or without subcortical band heterotopia (SBH), carrying the same de novo somatic mosaic NDEL1 variant, p.Arg105Pro (p.R105P). Through single-cell RNA sequencing and spatial transcriptomic analysis, we observed complementary expression of Nde1/NDE1 and Ndel1/NDEL1 in neural progenitors and post-mitotic neurons, respectively. Ndel1 knockdown by in utero electroporation resulted in impaired neuronal migration, a phenotype that could not be rescued by p.R105P. Remarkably, p.R105P expression alone strongly disrupted neuronal migration, increased the length of the leading process, and impaired nucleus-centrosome coupling, suggesting a failure in nucleokinesis. Mechanistically, p.R105P disrupted NDEL1 binding to the dynein regulator LIS1. This study identifies the first lissencephaly-associated NDEL1 variant and sheds light on the distinct roles of NDE1 and NDEL1 in nucleokinesis and MCD pathogenesis.


Asunto(s)
Lisencefalia , Humanos , Lisencefalia/genética , Movimiento Celular/genética , Proliferación Celular , Corteza Cerebral , Dineínas/genética , Proteínas Portadoras , Proteínas Asociadas a Microtúbulos/genética
5.
Seizure ; 116: 119-125, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37903666

RESUMEN

OBJECTIVES: The DYNC1H1 variants are associated with abnormal brain morphology and neuromuscular disorders that are accompanied by epilepsy. This study aimed to explore the relationship between DYNC1H1 variants and epilepsy. MATERIALS AND METHODS: Trios-based whole-exome sequencing was performed on patients with epilepsy. Previously reported epilepsy-related DYNC1H1 variants were systematically reviewed to analyse genotype-phenotype correlation. RESULTS: The DYNC1H1 variants were identified in four unrelated cases of infant-onset epilepsy, including two de novo and two biallelic variants. Two patients harbouring de novo missense variants located in the stem and stalk domains presented with refractory epilepsies, whereas two patients harbouring biallelic variants located in the regions between functional domains had mild epilepsy with infrequent focal seizures and favourable outcomes. One patient presented with pachygyria and neurodevelopmental abnormalities, and the other three patients presented with normal development. These variants have no or low frequencies in the Genome Aggregation Database. All the missense variants were predicted to be damaging using silico tools. Previously reported epilepsy-related variants were monoallelic variants, mainly de novo missense variants, and all the patients presented with severe epileptic phenotypes or developmental delay and malformations of cortical development. Epilepsy-related variants were clustered in the dimerization and stalk domains, and generalized epilepsy-associated variants were distributed in the stem domain. CONCLUSION: This study suggested that DYNC1H1 variants are potentially associated with infant-onset epilepsy without neurodevelopmental disorders, expanding the phenotypic spectrum of DYNC1H1. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic variation.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Trastornos del Neurodesarrollo , Lactante , Humanos , Mutación , Epilepsia/genética , Trastornos del Neurodesarrollo/genética , Mutación Missense , Fenotipo , Dineínas Citoplasmáticas/genética
6.
Front Neurol ; 14: 1163803, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181555

RESUMEN

Background: Mutations in the dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene are linked to malformations of cortical development (MCD), which may be accompanied by central nervous system (CNS) manifestations. Here, we present the case of a patient with MCD harboring a variant of DYNC1H1 and review the relevant literature to explore genotype-phenotype relationships. Case presentation: A girl having infantile spasms, was unsuccessfully administered multiple antiseizure medications and developed drug-resistant epilepsy. Brain magnetic resonance imaging (MRI) at 14 months-of-age revealed pachygyria. At 4 years-of-age, the patient exhibited severe developmental delay and mental retardation. A de novo heterozygous mutation (p.Arg292Trp) in the DYNC1H1 gene was identified. A search of multiple databases, including PubMed and Embase, using the search strategy DYNC1H1 AND [malformations of cortical development OR seizure OR intellectual OR clinical symptoms] up to June 2022, identified 129 patients from 43 studies (including the case presented herein). A review of these cases showed that patients with DYNC1H1-related MCD had higher risks of epilepsy (odds ratio [OR] = 33.67, 95% confidence interval [CI] = 11.59, 97.84) and intellectual disability/developmental delay (OR = 52.64, 95% CI = 16.27, 170.38). Patients with the variants in the regions encoding the protein stalk or microtubule-binding domain had the most prevalence of MCD (95%). Conclusion: MCD, particularly pachygyria, is a common neurodevelopmental disorder in patients with DYNC1H1 mutations. Literature searches reveales that most (95%) patients who carried mutations in the protein stalk or microtubule binding domains exhibited DYNC1H1-related MCD, whereas almost two-thirds of patients (63%) who carried mutations in the tail domain did not display MCD. Patients with DYNC1H1 mutations may experience central nervous system (CNS) manifestations due to MCD.

7.
BMC Med Genomics ; 16(1): 47, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882741

RESUMEN

BACKGROUND: Spinal muscular atrophy, lower extremity predominant (SMALED) is a type of non-5q spinal muscular atrophy characterised by weakness and atrophy of lower limb muscles without sensory abnormalities. SMALED1 can be caused by dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene variants. However, the phenotype and genotype of SMALED1 may overlap with those of other neuromuscular diseases, making it difficult to diagnose clinically. Additionally, bone metabolism and bone mineral density (BMD) in patients with SMALED1 have never been reported. METHODS: We investigated a Chinese family in which 5 individuals from 3 generations had lower limb muscle atrophy and foot deformities. Clinical manifestations and biochemical and radiographic indices were analysed, and mutational analysis was performed by whole-exome sequencing (WES) and Sanger sequencing. RESULTS: A novel mutation in exon 4 of the DYNC1H1 gene (c.587T > C, p.Leu196Ser) was identified in the proband and his affected mother by WES. Sanger sequencing confirmed that the proband and 3 affected family members were carriers of this mutation. As leucine is a hydrophobic amino acid and serine is hydrophilic, the hydrophobic interaction resulting from mutation of amino acid residue 196 could influence the stability of the DYNC1H1 protein. Leg muscle magnetic resonance imaging of the proband revealed severe atrophy and fatty infiltration, and electromyographic recordings showed chronic neurogenic impairment of the lower extremities. Bone metabolism markers and BMD of the proband were all within normal ranges. None of the 4 patients had experienced fragility fractures. CONCLUSION: This study identified a novel DYNC1H1 mutation and expands the spectrum of phenotypes and genotypes of DYNC1H1-related disorders. This is the first report of bone metabolism and BMD in patients with SMALED1.


Asunto(s)
Dineínas Citoplasmáticas , Atrofia Muscular Espinal , Humanos , Aminoácidos , Atrofia , Dineínas Citoplasmáticas/genética , Pueblos del Este de Asia , Extremidad Inferior , Músculos , Atrofia Muscular Espinal/genética , Mutación Missense
8.
Epilepsy Behav Rep ; 21: 100580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636459

RESUMEN

DYNC1H1 variants are associated with peripheral neuronal dysfunction and brain morphology abnormalities resulting in neurodevelopmental delay. However, few studies have focused on the association between DYNC1H1 variants and epilepsy. Herein, we report a case of drug-resistant focal epilepsy associated with a pathogenic variant of DYNC1H1. We further summarized the clinical, genetic, and neuroimaging characteristics of patients with DYNC1H1 variant-associated epilepsy from the relevant literature. This report expands the phenotypic spectrum of DYNC1H1-related disorder to include early-onset epilepsy, which is frequently associated with neurodevelopmental delay and intellectual disability, malformations of cortical development, and neuromuscular, ophthalmic, and orthopedic involvement.

9.
Ophthalmic Genet ; 44(6): 568-571, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36537327

RESUMEN

BACKGROUND: Mutations in the DYNC1H1 gene have been linked to multiple neurologic syndromes with a multitude of clinical manifestations, both ocular and non-ocular. Previous case reports have outlined various ocular phenotypes, including cataracts of congenital onset, infantile onset, and adult onset with lack of further ophthalmologic detail. CASE PRESENTATION: Our case report outlines, in more detail, a 24-month-old male with a heterozygous mutation in the DYNC1H1 gene who developed a white, intumescent cataract in his left eye and a posterior subcapsular cataract in his right eye with evidence of progressive axial myopia. CONCLUSIONS: Based on the findings outlined in our case we suggest eye exams at regular intervals during early childhood in patients with DYNC1H1 mutations to screen for amblyogenic ocular pathology and potential rapidly developing cataracts.


Asunto(s)
Catarata , Miopía Degenerativa , Preescolar , Adulto , Humanos , Masculino , Ojo , Cara , Catarata/genética , Mutación , Dineínas Citoplasmáticas
10.
Front Neurol ; 13: 943324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899263

RESUMEN

Objectives: Spinal muscular atrophy with lower extremity predominance 1 (SMALED1) and Charcot-Marie-Tooth diseasetype 2O (CMT2O) are two kinds of hereditary neuromuscular diseases caused by DYNC1H1 mutations. In this study, we reported two patients with SMALED1 caused by DYNC1H1 mutations. The genotype-phenotype correlations were further analyzed by systematically reviewing previous relevant publications. Materials and Methods: Two patients' with SMALED1 and their parents' clinical data were collected, and detailed clinical examinations were performed. WES was then applied, which was confirmed by Sanger sequencing. PubMed, Web of Science, CNKI, and Wanfang Data were searched, and all publications that met the inclusion criteria were carefully screened. Any individual patient without a detailed description of clinical phenotypes was excluded. Results: The two patients manifested delayed motor milestones and muscle wasting of both lower extremities. The diagnosis was further confirmed as SMALED1. Genetic testing revealed heterozygous DYNC1H1 mutations c.1792C>T and c.790C>G; the latter is a novel dominant mutation. Genotype-phenotype analysis of DYNC1H1 variants and neuromuscular diseases revealed that mutations in the DYN1 region of DYNC1H1 protein were associated with a more severe phenotype, more complicated symptoms, and more CNS involvement than the DHC_N1 region. Conclusion: Our study potentially expanded the knowledge of the phenotypic and genetic spectrum of neuromuscular diseases caused by DYNC1H1 mutations. The genotype-phenotype correlation may reflect the pathogenesis underlying the dyneinopathy caused by DYNC1H1 mutations.

11.
Brain Dev ; 44(4): 294-298, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34974950

RESUMEN

BACKGROUND: Mutations in the cytoplasmic dynein 1 heavy chain gene (DYNC1H1) have been associated with spinal muscular atrophy with predominant lower extremity involvement (SMA-LED), Charcot-Marie-Tooth 2O (CMT2O) disease, cortical migration anomalies, and autosomal dominant mental retardation13. SMA-LED phenotype-related mutation was found in the DYNC1H1 gene in the patient who applied with the complaint of gait disturbance. METHODS: Pathogenic heterozygous c.1678G > A (p.Val560Met) mutation was detected in the DYNC1H1 gene by next-generation targeted gene analysis in the patient who had no phenotypic findings except delayed motor milestones, lumbar lordosis, and lower extremity muscle weakness. The patient's creatinine phosphokinase enzyme level and brain magnetic resonance imaging (MRI) were normal. Electromyography (EMG) had pure motor findings. CONCLUSION: It should be kept in mind that DYNC1H1 mutation, which we are accustomed to seeing with accompanying findings such as orthopedic and ocular dysmorphic findings, sensorineural EMG findings, and intellectual disability, can also observe with pure motor findings such as muscular dystrophy examination findings.


Asunto(s)
Dineínas Citoplasmáticas/genética , Atrofia Muscular Espinal , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Extremidad Inferior/fisiopatología , Atrofia Muscular Espinal/complicaciones , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología
12.
Neurol Sci ; 43(4): 2853-2858, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35088241

RESUMEN

DYNC1H1 variants are associated with broad phenotypes including Charcot-Marie-Tooth disease, spinal muscular atrophy, and mental retardation. However, DYNC1H1 variants related intractable epilepsy have not yet been described in detail so far. Herein, we describe the detailed clinical manifestations of a female patient, carrying a novel de novo variant in DYNC1H1 (p.H311Y), who presented with malformation of cortical development (MCD), refractory epilepsy, intellectual disability, and lower motor neuron disease. We provide a review of previously reported patients who presented with epilepsy associated with DYNC1H1 variants. Of the patients with epilepsy, the DYNC1H1 variants were distributed, on average, in the tail, linker, and motor domains, rather than being mainly distributed in the tail domain as previously reported.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Epilepsia Refractaria , Discapacidad Intelectual , Atrofia Muscular Espinal , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Dineínas Citoplasmáticas/genética , Epilepsia Refractaria/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Atrofia Muscular Espinal/genética , Mutación , Fenotipo , Secuenciación del Exoma
13.
Cells ; 12(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36611941

RESUMEN

Arf-like protein 2 (ARL2) is a ubiquitously expressed small GTPase with multiple functions. In a cell culture, ARL2 participates with tubulin cofactor D (TBCD) in the neogenesis of tubulin αß-heterodimers, the building blocks of microtubules. To evaluate this function in the retina, we conditionally deleted ARL2 in mouse retina at two distinct stages, either during the embryonic development (retArl2-/-) or after ciliogenesis specifically in rods (rodArl2-/-). retArl2-/- retina sections displayed distorted nuclear layers and a disrupted microtubule cytoskeleton (MTC) as early as postnatal day 6 (P6). Rod and cone outer segments (OS) did not form. By contrast, the rod ARL2 knockouts were stable at postnatal day 35 and revealed normal ERG responses. Cytoplasmic dynein is reduced in retArl2-/- inner segments (IS), suggesting that dynein may be unstable in the absence of a normal MTC. We investigated the microtubular stability in the absence of either ARL2 (retARL2-/-) or DYNC1H1 (retDync1h1-/-), the dynein heavy chain, and found that both the retArl2-/- and retDync1h1-/- retinas exhibited reduced microtubules and nuclear layer distortion. The results suggest that ARL2 and dynein depend on each other to generate a functional MTC during the early photoreceptor development.


Asunto(s)
Dineínas , Tubulina (Proteína) , Ratones , Animales , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo
14.
World J Clin Cases ; 9(30): 9302-9309, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34786417

RESUMEN

BACKGROUND: The DYNC1H1 gene encodes a part of the dynamic protein, and the protein mutations may further affect the growth and development of neurons, resulting in degeneration of anterior horn cells of the spinal cord, and a variety of clinical phenotypes finally resulting in axonal Charcot-Marie-Tooth disease type 20 (CMT20), mental retardation 13 (MRD13) and spinal muscular atrophy with lower extremity predominant 1 (SMA-LED). The incidence of the disease is low, and it is difficult to diagnose, especially in children. Here, we report a case of DYNC1H1 gene mutation and review the related literature to improve the pediatrician's understanding of DYNC1H1 gene-related disease to make an early correct diagnosis and provide better services for children. CASE SUMMARY: A 4-mo-old Chinese female child with adducted thumbs, high arch feet, and epileptic seizure presented slow response, delayed development, and low limb muscle strength. Electroencephalogram showed abnormal waves, a large number of multifocal sharp waves, sharp slow waves, and multiple spasms with a series of attacks. High-throughput sequencing and Sanger sequencing identified a heterozygous mutation, c.5885G>A (p.R1962H), in the DYNC1H1 gene (NM_001376) of the proband, which was not identified in her parents. Combined with the clinical manifestations and pedigree of this family, this mutation is likely pathogenic based on the American Academy of Medical Genetics and Genomics guidelines. The child was followed when she was 1 year and 2 mo old. The magnetic resonance imaging result was consistent with the findings of white matter myelinated dysplasia and congenital giant gyrus. The extensive neurogenic damage to the extremities was considered, as the results of electromyography showed that the motor conduction velocity and sensory conduction of the nerves of the extremities were not abnormal, and the degree of fit of the children with severe contraction was poor. At present, the child is 80 cm in length and 9 kg in weight, with slender limbs and low muscle strength, and still does not raise her head. She cannot sit or speak. Speech, motor, and mental development was significantly delayed. There is still no effective treatment for this disease. CONCLUSION: We herein report a de novo variant of DYNC1H1 gene, c.5885G>A (p.R1962H), leading to overlapping phenotypes (seizure, general growth retardation, and muscle weakness) of CMT20, MRD13, and SMA-LED, but there is no effective treatment for such condition. Our case enriches the DYNC1H1 gene mutation spectrum and provides an important basis for clinical diagnosis and treatment and genetic counseling.

15.
Front Neurol ; 12: 733178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803881

RESUMEN

Objective: The DYNC1H1 gene is related to a variety of diseases, including spinal muscular atrophy with lower extremity-predominant 1, Charcot-Marie-Tooth disease type 2O, and mental retardation, autosomal dominant13 (MRD13). Some patients with DYNC1H1 variant also had epilepsy. This study aimed to detect DYNC1H1 variants in Chinese patients with infantile spasms (ISs). Methods: We reviewed clinical information, video electroencephalogram (V-EEG), and neuroimaging of a newly identified cohort of five patients with de novo DYNC1H1gene variants. Results: Five patients with four DYNC1H1variants from four families were included. All patients had epileptic spasms (ESs), the median age at seizure onset was 7.5 months (range from 5 months to 2 years 7 months), and the interictal V-EEG results were hypsarrhythmia. Four of five patients had brain magnetic resonance imaging (MRI) abnormalities. Four de novo DYNC1H1 variants were identified, including two novel variants (p.N1117K, p.M3405L) and two reported variants (p.R1962C, p.F1093S). As for the variant site, two variants are located in the tail domain, one variant is located in the motor domain, and one variant is located in the stalk domain. All patients had tried more than five kinds of antiepileptic drugs. One patient has been controlled well by vigabatrin (VGB) for 4 years, and another patient by VGB and steroids for 1.5 years. The other three patients still had frequent ESs. All patients had severe intellectual disability and development delays. Significance: IS was one of the phenotypes of DYNC1H1 variants. Most patients had non-specific brain MRI abnormality. Two of four DYNC1H1 variants were novel, expanding the variant spectrum. The IS phenotype was related to the variant's domains of DYNC1H1 variant sites. All patients were drug-refractory and showed development delays.

16.
Exp Cell Res ; 409(1): 112897, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717919

RESUMEN

It is urgent to identify new biomarkers and therapeutic targets to ameliorate the clinical prognosis of patients with lung cancer. The functional significance and molecular mechanism of dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) in nonsmall cell lung cancer (NSCLC) progression is still elusive. In our current study, publicly available data and Western blotting experiments confirmed that DYNC1H1 expression was upregulated in lung cancer samples compared with noncancerous samples. Quantitative real-time PCR (qPCR) results indicated that high DYNC1H1 expression in lung cancer tissues was significantly associated with clinical tumor stage and distal metastasis; moreover, its high expression was negatively correlated with prognosis. Functional experiments demonstrated that DYNC1H1 loss of function caused a significant decrease in cell viability and cell proliferative ability, inhibition of the cell cycle, and promotion of both migration potential and invasion potential in vitro. Animal experiments by tail vein injection of lung cancer cells showed that DYNC1H1 knockdown significantly decreased lung cancer metastasis. Mechanistically, the results from a human protein array showed changes in the IFN-γ-JAK-STAT signaling pathway, and analysis of The Cancer Genome Atlas (TCGA) immune data demonstrated that disturbance of the immune microenvironment might be involved in the impaired growth and metastatic ability mediated by DYNC1H1 loss in NSCLC. DYNC1H1 might serve as a promising biological marker of prognosis and a potential clinical therapeutic target for patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/genética , Dineínas Citoplasmáticas/genética , Inmunidad/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Transducción de Señal/genética , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Interferón gamma/genética , Janus Quinasa 1/genética , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Factores de Transcripción STAT/genética , Microambiente Tumoral , Regulación hacia Arriba/genética
17.
Open Life Sci ; 16(1): 766-780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34435133

RESUMEN

Lidocaine can inhibit the malignant development of various human cancers. Circular RNA (circRNA) dynein 1 heavy chain gene (circ_DYNC1H1) acted as a pro-cancer molecule in hepatocellular carcinoma (HCC). This study aimed to explore whether the function of lidocaine was related to the oncogenic circ_DYNC1H1 in HCC. Colony formation assay and 3-(4,5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay were used for proliferation detection. Cell apoptosis was assessed by flow cytometry, and migration or invasion was determined by the transwell assay. The levels of circ_DYNC1H1, microRNA-520a-3p (miR-520a-3p), and ubiquitin-specific protease 14 (USP14) were examined using the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Protein levels were measured using western blot. The binding between miR-520a-3p and circ_DYNC1H1 or USP14 was confirmed by the dual-luciferase reporter assay. In vivo assay was conducted by a xenograft model in mice. Lidocaine reduced proliferation, migration, and invasion but promoted apoptosis in HCC cells. The circ_DYNC1H1 expression was downregulated in lidocaine-treated HCC cells. The inhibitory effect of lidocaine on HCC progression was weakened after circ_DYNC1H1 overexpression. miR-520a-3p was a target of circ_DYNC1H1, and the function of lidocaine was related to the regulation of circ_DYNC1H1/miR-520a-3p axis. USP14 served as a target for miR-520a-3p, and circ_DYNC1H1 could sponge miR-520a-3p to regulate the USP14 expression. The lidocaine-induced suppression of HCC development was also achieved by mediating the miR-520a-3p/USP14 axis. In vivo assay revealed that lidocaine suppressed the tumor growth of HCC by reducing the expression of circ_DYNC1H1 to affect the levels of miR-520a-3p and USP14. Our results clarified that lidocaine impeded tumor progression via targeting the circ_DYNC1H1/miR-520a-3p/USP14 axis in HCC cells.

18.
Child Neurol Open ; 8: 2329048X211027438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368388

RESUMEN

Mutations in DYNC1H1 have been shown to cause spinal muscular atrophy lower extremity predominant type 1 (SMALED1), an autosomal dominant genetic neuromuscular disorder characterized by degeneration of spinal cord motor neurons resulting in muscle weakness. Here, we describe monozygotic twins, one with a more severe upper motor neuron phenotype as a result of a suspected perinatal hypoxic-ischemic event and the other presenting a typical lower motor neuron phenotype. Using exome sequencing, we identified the novel de novo variant c.752G>T; p.Arg251Leu in DYNC1H1. We thereby add this variant to the growing list of mutations in DYNC1H1 that cause SMALED1.

19.
Brain Dev ; 43(8): 857-862, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34092403

RESUMEN

BACKGROUND: The DYNC1H1 gene encodes the heavy chain of cytoplasmic dynein 1, a core structure of the cytoplasmic dynein complex. Dominant DYNC1H1 mutations are implicated in Charcot-Marie-Tooth disease, axonal, type 20, spinal muscular atrophy, lower extremity-predominant 1, and autosomal dominant mental retardation 13 with neuronal migration defects. We report two patients with DYNC1H1 mutations who had intractable epilepsy and intellectual disability (ID), one with and one without pachygyria. CASE REPORTS: Patient 1 had severe ID. At the age of 2 months, she presented myoclonic seizures and tonic seizures, and later experienced atonic seizures and focal impaired-awareness seizures (FIAS). EEG showed slow waves in right central areas during myoclonic seizures. Brain MRI revealed pachygyria, predominantly in the occipital lobe. After callosal transection her atonic seizures disappeared, but FIAS remained. Patient 2 was diagnosed with autism spectrum disorder (ASD) and severe ID. At the age of 7 years, he presented generalized tonic-clonic seizures, myoclonic seizures, and FIAS. Interictal EEG showed generalized spike-and-wave complexes, predominantly in the left frontal area. Brain MRI was unremarkable. Exome sequencing revealed novel de novo mutations in DYNC1H1: c.4691A > T, p.(Glu1564Val) in Patient 1 and c.12536 T > C, p.(Leu4179Ser) in Patient 2. CONCLUSIONS: DYNC1H1 comprises a stem, stalk, and six AAA domains. Patient 2 is the second report of an AAA6 domain mutation without malformations of cortical development. The p.(Gly4072Ser) mutation in the AAA6 domain was also reported in a patient with ASD. It may be that the AAA6 domain has little effect on neuronal movement of DYNC1H1 along microtubules.


Asunto(s)
Dineínas Citoplasmáticas/genética , Epilepsia Refractaria/genética , Adolescente , Anticonvulsivantes/administración & dosificación , Trastorno del Espectro Autista/genética , Niño , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/tratamiento farmacológico , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Malformaciones del Desarrollo Cortical/genética , Secuenciación del Exoma
20.
Neurol Sci ; 42(5): 1827-1833, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32895776

RESUMEN

Spinal muscular atrophy (SMA) is a type of autosomal recessive genetic disease, which seriously threatens the health and lives of children and adolescents. We attempted to find some genes and mutations related to the onset of SMA. Eighty-three whole-blood samples were collected from 28 core families, including 28 probands with clinically suspected SMA (20 SMA patients, 5 non-SMA children, and 3 patients with unknown etiology) and their parents. The multiplex ligation probe amplification (MLPA) was performed for preliminary diagnosis. The high-throughput sequencing technology was used to conduct the whole-exome sequencing analysis. We analyzed the mutations in adjacent genes of SMN1 gene and the unique mutations that only occurred in SMA patients. According to the MLPA results, 20 probands were regarded as experimental group and 5 non-SMA children as control group. A total of 10 mutations were identified in the adjacent genes of SMN1 gene. GUSBP1 g.[69515863G>A], GUSBP1 g.[69515870C>T], and SMA4 g.[69515738C>A] were the top three most frequent sites. SMA4 g.[69515726A>G] and OCLN c.[818G>T] have not been reported in the existing relevant researches. Seventeen point mutations in the DYNC1H1 gene were only recognized in SMA children, and the top two most common mutations were c.[2869-34A>T] and c.[345-89A>G]; c.[7473+105C>T] was the splicing mutation that might change the mRNA splicing site. The mutations of SMA4 g.[69515726A>G], OCLN c.[818G>T], DYNC1H1 c.[2869-34A>T], DYNC1H1 c.[345-89A>G], and DYNC1H1 c.[7473+105C>T] in the adjacent genes of SMN1 gene and other genes might be related to the onset of SMA.


Asunto(s)
Atrofia Muscular Espinal , Adolescente , Niño , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Atrofia Muscular Espinal/genética , Mutación/genética , Padres , Mutación Puntual , Proteína 1 para la Supervivencia de la Neurona Motora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA