Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Heliyon ; 10(12): e32067, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952375

RESUMEN

Objectives: This study investigated the in vivo embryotoxicity, teratogenic potential, and additional effects of orthodontic acrylic resin as well as its components, utilizing zebrafish as a model organism. The research focused on morphological, cardiac, behavioral, and cognitive evaluations that were performed on embryos and larval-stage animals subjected to chronic exposure. Materials and methods: Embryo and larval-stage zebrafish were categorized into five experimental groups, which were further subdivided into five subgroups. These subgroups included three specific doses for each tested substance, a control with the vehicle (0.1 % dimethyl sulfoxide in water), and an absolute control (water). Assessments were performed on day 5 post-fertilization, which included morphological, cardiac, behavioral, and cognitive evaluations. All experiments had a sample size of ten animals and were performed in triplicate. Survival and hatching rates were analyzed using the Kaplan-Meier test, while other measurements were assessed using one-way analysis of variance (ANOVA), followed by the Tukey post hoc test. Results: Statistically significant differences were observed between the control and treatment groups across all the tested substances for heart rate, cognitive responsiveness, and cellular apoptosis. However, survival, hatching rate, and other parameters exhibited no significant variation, except for the highest dose in the dibutyl phthalate group, which demonstrated a notable difference in survival. Conclusions: Chronic exposure to acrylic resin and its components may be associated with decreased cognitive ability and cardiac rhythm, as well as an increase in the level of cellular apoptosis in zebrafish.

2.
J Pharm Biomed Anal ; 248: 116323, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972227

RESUMEN

Taking advantage of the competitive binding affinity towards Ti(IV) between 4-(2-pyridylazo) resorcinol (PAR) and phthalate, a simple indicator displacement (ID)-based colorimetric assay was designed for indirect determination of a well-known phthalic acid ester, dibutyl phthalate (DBP). The indicator PAR and Ti(IV) formed a purplish-red-colored Ti(IV)-PAR complex (λmax = 540 nm) at a 1:1 ratio. In the presence of pre-hydrolyzed DBP, colorless complex formation of phthalate ion (emerging from alkaline hydrolysis of DBP) with Ti(IV) resulted in a hypsochromic shift in absorbance maximum, accompanying a color change from purplish-red to yellowish-orange (λmax = 390 nm) by the release of PAR from Ti(IV)-PAR system. Based on this mechanism, the linear response range of the system for DBP was found to lie between 0.16 and 0.37 mmol L-1 with an experimental detection limit of 11.6 µmol L-1. The recommended Ti(IV)-PAR system was successfully applied to DBP-containing pharmaceutical products (as real sample) after a simple clean-up process for removing possible water-soluble interferents. The analytical results obtained from the recommended method (by applying the standard addition approach) and the reference liquid chromatography-tandem mass spectrometric (LC-MS/MS) method were statistically compared using DBP-extract of the drug samples. Consequently, a simple and selective colorimetric ID strategy was proposed for the analysis of DBP in pharmaceuticals for the first time.


Asunto(s)
Colorimetría , Dibutil Ftalato , Límite de Detección , Resorcinoles , Titanio , Colorimetría/métodos , Resorcinoles/química , Resorcinoles/análisis , Titanio/química , Dibutil Ftalato/análisis , Dibutil Ftalato/química , Espectrometría de Masas en Tándem/métodos , Hidrólisis , Cromatografía Líquida de Alta Presión/métodos
3.
Aquat Toxicol ; 272: 106980, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838504

RESUMEN

Dibutyl phthalate (DBP) is a widely-used plasticizer that is dispersed in various environments, causing significant pollution and health risks. The toxic mechanism of DBP has been discussed in recent years, while the susceptibility of mitochondrial DNA (mtDNA) to DBP exposure and the resulting damage remain unclear. In this study, maternal zebrafish were exposed to environmentally relevant concentration of DBP for 0, 2, 4, and 6 weeks. Results showed that DBP exposure impaired health status, leading to the reduced body length and weight, condition factor, hepatosomatic index, and gonadosomatic index. Furthermore, DBP exposure induced oxidative stress and ATP deficiency in the gill and liver in a time-dependent manner. The oxidized mtDNA (ox-mtDNA) levels in the D-loop and ND1 regions were assessed in different tissues, showing distinct response patterns. The high energy-consuming tissues such as heart, brain, gill, and liver exhibited elevated susceptibility to mitochondrial damage, with a rapid increase in ox-mtDNA levels in the short term. Conversely, in muscle, ovary, eggs, and offspring, ox-mtDNA gradually accumulated over the exposure period. Notably, the ox-mtDNA levels in the D-loop region of blood showed a prompt response to DBP exposure, making it convenient for evaluation. Additionally, decreased hatching rates, increased mortality, lipoperoxidation, and depressed swimming performance were observed in offspring following maternal DBP exposure, suggesting the inherited impairments of maternal mtDNA. These findings highlight the potential for ox-mtDNA to serve as a convenient biomarker for environmental contamination, aiding in ecological risk assessment and forewarning systems in aquatic environment.


Asunto(s)
ADN Mitocondrial , Dibutil Ftalato , Estrés Oxidativo , Contaminantes Químicos del Agua , Pez Cebra , Animales , Contaminantes Químicos del Agua/toxicidad , Dibutil Ftalato/toxicidad , Femenino , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , Estrés Oxidativo/efectos de los fármacos , Branquias/efectos de los fármacos , Branquias/metabolismo , Exposición Materna , Daño del ADN , Hígado/efectos de los fármacos
4.
Chem Biol Interact ; 399: 111120, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944327

RESUMEN

Dibutyl phthalate (DBP) is widely used in many consumer and personal care products. Here, we report vascular endothelial response to DBP in three different exposure scenarios: after short-term exposure (24 h) of human endothelial cells (ECs) EA.hy926 to 10-6, 10-5, and 10-4 M DBP, long-term exposure (12 weeks) of EA.hy926 cells to 10-9, 10-8, and 10-7 M DBP, and exposure of rats (28 and 90 days) to 100, 500, and 5000 mg DBP/kg food. We examined different vascular functions such as migration of ECs, adhesion of ECs to the extracellular matrix, tube formation, the morphology of rat aorta, as well as several signaling pathways involved in controlling endothelial function. Short-term in vitro exposure to DBP increased migration of ECs through G protein-coupled estrogen receptor, extracellular signal-regulated kinase 1/2, and nitric oxide (NO) signaling and decreased adhesion to gelatin. Long-term in vitro exposure to DBP transiently increased EC migration and had a bidirectional effect on EC adhesion to gelatin and tube formation. These effects were accompanied by a sustained increase in NO production and endothelial NO synthase (eNOS) and Akt activity. In vivo, exposure to DBP for 90 days decreased the aortic wall-to-lumen ratio and increased eNOS and Akt phosphorylation in ECs of rat aorta. This comparative investigation has shown that exposure to DBP may affect vascular function by altering EC migration, adhesion to gelatin, and tube formation after short- and long-term in vitro exposure and by decreasing the aortic wall-to-lumen ratio in vivo. The eNOS-NO and Akt signaling could be important in mediating the effects of DBP in long-term exposure scenarios.

5.
Environ Res ; 257: 119403, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38871274

RESUMEN

Commonly utilized as a plasticizer in the food and chemical sectors, Dibutyl phthalate (DBP) poses threats to the environment and human well-being as it seeps or moves into the surroundings. Nevertheless, research on the harmfulness of DBP to aquatic organisms is limited, and its impact on stem cells and tissue regeneration remains unidentified. Planarians, recognized for their robust regenerative capabilities and sensitivity to aquatic pollutants, are emerging animal models in toxicology. This study investigated the comprehensive toxicity effects of environmentally relevant levels of DBP on planarians. It revealed potential toxicity mechanisms through the use of immunofluorescence, chromatin dispersion assay, Western blot, quantitative real-time fluorescence quantitative PCR (qRT-PCR), chromatin behavioral and histological analyses, immunofluorescence, and terminal dUTP nickel-end labeling (TUNEL). Findings illustrated that DBP caused morphological and motor abnormalities, tissue damage, regenerative inhibition, and developmental neurotoxicity. Further research revealed increased apoptosis and suppressed stem cell proliferation and differentiation, disrupting a balance of cell proliferation and death, ultimately leading to morphological defects and functional abnormalities. This was attributed to oxidative stress and DNA damage caused by excessive release of reactive oxygen species (ROS). This exploration furnishes fresh perspectives on evaluating the toxicity peril posed by DBP in aquatic organisms.


Asunto(s)
Dibutil Ftalato , Planarias , Regeneración , Contaminantes Químicos del Agua , Animales , Dibutil Ftalato/toxicidad , Planarias/efectos de los fármacos , Planarias/fisiología , Contaminantes Químicos del Agua/toxicidad , Regeneración/efectos de los fármacos , Ecotoxicología , Estrés Oxidativo/efectos de los fármacos , Plastificantes/toxicidad , Apoptosis/efectos de los fármacos
6.
Heliyon ; 10(11): e31880, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845962

RESUMEN

The impact of emerging pollutants such as ibuprofen and dibutyl phthalate on aquatic species is a growing concern and the need for proper assessment and evaluation of these toxicants is imperative. The objective of this study was to examine the toxicogenomic impacts of ibuprofen and dibutyl phthalate on Clarias gariepinus, a widely distributed African catfish species. Results showed that exposure to the test compounds caused significant changes in gene expression, including upregulation of growth hormone, interleukin, melatonin receptors, 17ß-Hydroxysteroid Dehydrogenase, heat shock protein, doublesex, and mab-3 related transcription factor. On the other hand, expression of forkhead Box Protein L2 and cytochrome P450 was downregulated, revealing a potential to induce female to male sex reversal. The binding affinities and hydrophobic interactions of the test compounds with the reference genes were also studied, showing that ibuprofen had the lowest binding energy and the highest affinity for the docked genes. Both compounds revealed a mutual molecular interaction with amino acids residues within the catalytic cavity of the docked genes. These results provide new insights into the toxic effects of ibuprofen and dibutyl phthalate on Clarias gariepinus, contributing to a better understanding of the environmental impact of these pollutants.

7.
Aquat Toxicol ; 272: 106962, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797068

RESUMEN

Diisobutyl phthalate (DiBP), is widely chemical replacement for Dibutyl phthalate (DBP). Although DBP and DiBP have been detected in surface water worldwide, few studies to date have systematically assessed the risks of DBP and its alternatives to aquatic organisms. The present study compared DBP and DiBP for their individual and joint toxicity as well as thyroid hormone levels in zebrafish embryo. Transcripts of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were investigated in developing zebrafish larvae by application of real time polymerase chain reaction. The median half-lethal concentrations of DBP and DiBP to zebrafish at 96 h were 0.545 mg L-1 and 1.149 mg L-1, respectively. The joint toxic effect of DBP-DiBP (0.25-0.53 mg L-1) with the same ratio showed a synergistic effect. Thyroid hormones levels increased with exposure to 10 µg L-1 of DBP or 50 µg L-1 of DiBP, and exposure to both compounds significantly increased thyroid gland-specific transcription of thyroglobulin gene (tg), hyronine deiodinase (dio2), and transthyretin (ttr), indicating an adverse effect associated with the HPT axis. Molecular docking results indicated that DBP (-7.10 kcal/M and -7.53 kcal/M) and DiBP (-6.63 kcal/M and -7.42 kcal/M) had the same docking energy with thyroid hormone receptors. Our data facilities an understand of potential harmful effects of DBP and its alternative (DiBP).


Asunto(s)
Dibutil Ftalato , Embrión no Mamífero , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/genética , Dibutil Ftalato/toxicidad , Dibutil Ftalato/análogos & derivados , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Ácidos Ftálicos/toxicidad , Hormonas Tiroideas/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/genética , Glándula Tiroides/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos
8.
Food Chem ; 452: 139430, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713984

RESUMEN

As emerging contaminants, microplastics threaten food and environmental safety. Dibutyl phthalate (DBP, released from microplastics) and benzo[a]pyrene (BaP, adsorbed on microplastics) coexisted in food and the environment, harming human health, requesting a sensitive and simultaneous testing method to monitor. To address current sensitivity, simultaneousness, and on-site portability challenges during dual targets in complex matrixes, CuCo2S4/Fe3O4 nanoflower was designed to develop a smartphone-assisted photoelectrochemical point-of-care test (PEC POCT). The carrier transfer mechanism in CuCo2S4/Fe3O4 was proven via density functional theory calculation. Under optimal conditions, the PEC POCT showed low detection limits of 0.126, and 0.132 pg/mL, wide linearity of 0.001-500, and 0.0005-50 ng/mL for DBP and BaP, respectively. The smartphone-assisted PEC POCT demonstrated satisfied recoveries (80.00%-119.63%) in real samples. Coherent results were recorded by comparing the PEC POCT to GC-MS (DBP) and HPLC (BaP). This novel method provides a practical platform for simultaneous POCT for food safety and environment monitoring.


Asunto(s)
Técnicas Electroquímicas , Contaminación de Alimentos , Microplásticos , Teléfono Inteligente , Contaminación de Alimentos/análisis , Microplásticos/análisis , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Límite de Detección , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Cobre/análisis , Cobre/química , Benzo(a)pireno/análisis , Dibutil Ftalato/análisis
9.
Environ Technol ; : 1-15, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820597

RESUMEN

Plasticisers, such as dibutyl phthalate (DBP), are contaminants of emerging concern (CEC) that are toxic to living things and the environment. Unlike hydrophilic pollutants, DBP shows the characteristics of hydrophilic and hydrophobic nature which makes its degradation or removal difficult using conventional treatment technologies. The current study explored the potential of photocatalysis followed by electrocatalytic oxidation (PC + EC) using vanadium pentoxide (V2O5) and carbon-coated titanium (C/Ti) anode for the removal of 75 mg L-1 DBP from water. The structural stability and changes in the functional groups after treatment of the catalyst were determined using powder XRD and FTIR studies that found the catalyst structure to be stable. Optimization studies showed that UV-A (315-400 nm) irradiation source, 112 mA cm-2 current density, 50 mg L-1 catalyst dosage, 360 min PC, 210 min EC at pH 3 and 20 mM sodium sulphate managed to degrade 99.5% of DBP with 97% COD and 87.7% TOC removal. Compared to electrocatalytic oxidation (EC), PC + EC showed 40% higher TOC removal. Reusability studies found the reduction of 45% for COD removal after four treatment cycles with V2O5, while the anode material showed no considerable decrease in its degradation efficiency. High-resolution mass spectrometry (HRMS) studies established that complete degradation was preceded by the oxidation of DBP to phthalic anhydride and phthalic acid responsible for the increase in TOC during the initial treatment period. Overall, this study lays out insights for the application of photo-electrocatlytic oxidation for the removal of ubiquitous poorly soluble water pollutants such as phthalates.

10.
Environ Pollut ; 349: 123917, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583794

RESUMEN

Phthalate esters (PAEs) are plasticizers widely used in the industry and easily released into the environment, posing a serious threat to human health. Molecularly imprinted polymers (MIPs) are important as selective adsorbents for the removal of PAEs. In this study, three kinds of mussel-inspired MIPs for the removal of PAEs were first prepared with gallic acid (GA), hexanediamine (HD), tannic acid (TA), and dopamine (DA) under mild conditions. The adsorption results showed that the MIP with low cost derived from GA and HD (GAHD-MIP) obtained the highest adsorption capacity among these materials. Furthermore, 97.43% of equilibrium capacity could be reached within the first 5 min of adsorption. Especially, the dummy template of diallyl phthalate (DAP) with low toxicity was observed to be more suitable to prepare MIPs than dibutyl phthalate (DBP), although DBP was the target of adsorption. The adsorption process was in accordance with the pseudo-second-order kinetics model. In the isotherm analysis, the adsorption behavior agreed with the Freundlich model. Additionally, the material maintained high adsorption performance after 7 cycles of regeneration tests. The GAHD-MIP adsorbents in this study, with low cost, rapid adsorption equilibrium, green raw materials, and low toxicity dummy template, provide a valuable reference for the design and development of new MIPs.


Asunto(s)
Dibutil Ftalato , Ácido Gálico , Polímeros Impresos Molecularmente , Contaminantes Químicos del Agua , Adsorción , Dibutil Ftalato/química , Contaminantes Químicos del Agua/química , Ácido Gálico/química , Polímeros Impresos Molecularmente/química , Ácidos Ftálicos/química , Cinética , Purificación del Agua/métodos
11.
Environ Sci Technol ; 58(18): 7731-7742, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38662601

RESUMEN

Plastics contaminations are found globally and fit the exposure profile of the planetary boundary threat. The plasticizer of dibutyl phthalate (DBP) leaching has occurred and poses a great threat to human health and the ecosystem for decades, and its toxic mechanism needs further comprehensive elucidation. In this study, environmentally relevant levels of DBP were used for exposure, and the developmental process, oxidative stress, mitochondrial ultrastructure and function, mitochondrial DNA (mtDNA) instability and release, and mtDNA-cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway with inflammatory responses were measured in zebrafish at early life stage. Results showed that DBP exposure caused developmental impairments of heart rate, hatching rate, body length, and mortality in zebrafish embryo. Additionally, the elevated oxidative stress damaged mitochondrial ultrastructure and function and induced oxidative damage to the mtDNA with mutations and instability of replication, transcription, and DNA methylation. The stressed mtDNA leaked into the cytosol and activated the cGAS-STING signaling pathway and inflammation, which were ameliorated by co-treatment with DBP and mitochondrial reactive oxygen species (ROS) scavenger, inhibitors of cGAS or STING. Furthermore, the larval results suggest that DBP-induced mitochondrial toxicity of energy disorder and inflammation were involved in the developmental defects of impaired swimming capability. These results enhance the interpretation of mtDNA stress-mediated health risk to environmental contaminants and contribute to the scrutiny of mitochondrial toxicants.


Asunto(s)
ADN Mitocondrial , Dibutil Ftalato , Pez Cebra , Animales , ADN Mitocondrial/efectos de los fármacos , Dibutil Ftalato/toxicidad , Estrés Oxidativo/efectos de los fármacos
12.
Food Chem Toxicol ; 188: 114663, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631435

RESUMEN

The effect of endothelial cells' exposure to dibutyl phthalate (DBP) on monocyte adhesion is largely unknown. We evaluated monocyte adhesion to DBP-exposed endothelial cells by combining three approaches: short-term exposure (24 h) of EA.hy926 cells to 10-6, 10-5, and 10-4 M DBP, long-term exposure (12 weeks) of EA.hy926 cells to 10-9, 10-8, and 10-7 M DBP, and exposure of rats (28 and 90 days) to 100, 500, and 5000 mg DBP/kg food. Monocyte adhesion to human EA.hy926 and rat aortic endothelial cells, expression of selected cellular adhesion molecules and chemokines, and the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) were analyzed. We observed increased monocyte adhesion to DBP-exposed EA.hy926 cells in vitro and to rat aortic endothelium ex vivo. ERK1/2 inhibitor prevented monocyte adhesion to DBP-exposed EA.hy926 cells in short-term exposure experiments. Increased ERK1/2 phosphorylation in rat aortic endothelium and transient decrease in ERK1/2 activation following long-term exposure of EA.hy926 cells to DBP were also observed. In summary, exposure of endothelial cells to DBP promotes monocyte adhesion, thus suggesting a possible role for this phthalate in the development of atherosclerosis. ERK1/2 signaling could be the mediator of monocyte adhesion to DBP-exposed endothelial cells, but only after short-term high-level exposure.


Asunto(s)
Adhesión Celular , Dibutil Ftalato , Células Endoteliales , Monocitos , Dibutil Ftalato/toxicidad , Animales , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Adhesión Celular/efectos de los fármacos , Humanos , Ratas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Masculino , Aorta/efectos de los fármacos , Aorta/citología , Línea Celular , Fosforilación/efectos de los fármacos
13.
Chemosphere ; 357: 142108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657698

RESUMEN

Numerous studies reported the concentration of agonists of aryl hydrocarbon receptor (AhR) in indoor dust by target chemical analysis or the biological effects of activating the AhR by indoor extracts, but the major AhR agonists identification in indoor dust were rarely researched. In the present study, the indoor dust samples were collected for 7-ethoxyresorufin O-deethylase (EROD) assay and both non-targeted and targeted chemical analysis for AhR agonists by gas chromatography quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry analysis. Coupled with non-targeted analysis and toxicity Forecaster (ToxCast)/Tox21 database, 104 ToxCast chemicals were screened to be able to induce EROD response. The combination of targeted chemical analyses and biological effects evaluation indicated that PAHs, dibutyl phthalate (DBP) and Cypermethrin might be the important AhR-agonists in different indoor dust and mainly contributed in 1.84%-97.56 % (median: 26.62%) of total observed biological effects through comparing toxic equivalency quotient derived from chemical analysis with biological equivalences derived from bioassay. DBP and cypermethrin seldom reported in the analysis of AhR agonists should raise great concern. In addition, the present results in experiment of synthetic solution of 4 selected AhR-agonists pointed out that some unidentified AhR agonists existed in indoor dust.


Asunto(s)
Contaminación del Aire Interior , Polvo , Cromatografía de Gases y Espectrometría de Masas , Receptores de Hidrocarburo de Aril , Polvo/análisis , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/metabolismo , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Monitoreo del Ambiente/métodos , Piretrinas/análisis , Piretrinas/toxicidad , Citocromo P-450 CYP1A1/metabolismo , Humanos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Bases de Datos Factuales
14.
Aquat Toxicol ; 269: 106881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430782

RESUMEN

Dibutyl phthalate (DBP) is a commonly used plasticizer that is frequently detected in water samples due to its widespread use. Titanium dioxide nanoparticles (n-TiO2) have been found to enhance the harmful effects of organic contaminants by increasing their bioavailability in aquatic environments. However, the combined toxic effects of DBP and n-TiO2 on aquatic organisms remain unclear. This study aimed to investigate the neurotoxicity of DBP and n-TiO2 synergistic exposure during the early life stage of zebrafish. The results of the study revealed that co-exposure of DBP and n-TiO2 led to an increase in deformities and a significant reduction in the active duration of zebrafish larvae. Furthermore, the co-exposure of DBP and n-TiO2 resulted in elevated levels of oxidative stress and altered gene expression related to neurodevelopment and apoptosis. Notably, n-TiO2 exacerbated the oxidative damage and apoptosis induced by DBP alone exposure. Additionally, co-exposure of the 1.0 mg/L DBP and n-TiO2 significantly affected the expression of genes associated with neurodevelopment. Moreover, disturbances in amino acid metabolism and interference with lipid metabolism were observed as a result of DBP and n-TiO2 co-exposure. In general, n-TiO2 aggravated the neurotoxicity of DBP in the early life stage of zebrafish by increasing oxidative stress, apoptosis, and disrupting amino acid synthesis and lipid metabolism. Therefore, it is essential to consider the potential risks caused by DBP and nanomaterials co-existence in the aquatic environment.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Dibutil Ftalato/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo , Titanio/toxicidad , Aminoácidos/metabolismo
15.
Ecotoxicol Environ Saf ; 274: 116124, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503108

RESUMEN

OBJECTIVE: The primary objective of this study was to investigate the toxicological impact of Dibutyl phthalate (DBP) on the process of liver fibrosis transitioning into cirrhosis and the subsequent development of portal hypertension (PHT) through the mechanism of epithelial-mesenchymal transition (EMT) mediated by the ROS/TGF-ß/Snail-1 signaling pathway. METHOD: Carbon tetrachloride (CCl4) (1 mg/kg) was introduced in adult rats by oral feeding in CCl4 and CCl4+DBP groups twice a week for 8 weeks, and twice for another 8 week in CCl4 group. DBP was introduced by oral feeding in the CCl4+DBP group twice over the following 8 weeks. We subsequently analyzed hemodynamics measurements and liver cirrhosis degree, hepatic inflammation and liver function in the different groups. EMT related genes expression in rats in the groups of Control, DBP, CCl4 and CCl4+DBP were measured by immunohistochemistry (IHC). Enzyme-linked immunosorbent Assay (ELISA), qRT-PCR, western blot were used to detect the EMT related proteins and mRNA gene expression levels in rats and primary hepatocytes (PHCs). Reactive oxygen species (ROS) were examined with a ROS detection kit. RESULTS: The results showed that the CCl4+DBP group had higher portal pressure (PP) and lower mean arterial pressure (MAP) than the other groups. Elevated collagen deposition, profibrotic factor, inflammation, EMT levels were detected in DBP and CCl4+DBP groups. ROS, TGF-ß1 and Snail-1 were highly expressed after DBP exposure in vitro. TGF-ß1 had the potential to regulate Snail-1, and both of them were subject to regulation by ROS. CONCLUSION: DBP could influence the progression of EMT through its toxicological effect by ROS/TGF-ß1/Snail-1 signalling pathway, causing cirrhosis and PHT in final. The findings of this research might contribute to a novel comprehension of the underlying toxicological mechanisms and animal model involved in the progression of cirrhosis and PHT, and potentially offered a promising therapeutic target for the treatment of the disease.


Asunto(s)
Dibutil Ftalato , Transición Epitelial-Mesenquimal , Hipertensión Portal , Factor de Crecimiento Transformador beta1 , Animales , Ratas , Dibutil Ftalato/toxicidad , Fibrosis , Hipertensión Portal/inducido químicamente , Inflamación , Cirrosis Hepática/inducido químicamente , Especies Reactivas de Oxígeno , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
16.
Sci Total Environ ; 926: 171852, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518818

RESUMEN

A comprehensive understanding of the molecular mechanisms underlying microbial catabolism of dibutyl phthalate (DBP) is still lacking. Here, we newly isolated a bacterial strain identified as Pseudomonas aeruginosa PS1 with high efficiency of DBP degradation. The degradation ratios of DBP at 100-1000 mg/L by this strain reached 80-99 % within 72 h without a lag phase. A rare DBP-degradation pathway containing two monobutyl phthalate-catabolism steps was proposed based on intermediates identified by HPLC-TOF-MS/MS. In combination with genomic and transcriptomic analyses, we identified 66 key genes involved in DBP biodegradation and revealed the genetic basis for a new complete catabolic pathway from DBP to Succinyl-CoA or Acetyl-CoA in the genus Pseudomonas for the first time. Notably, we found that a series of homologous genes in Pht and Pca clusters were simultaneously activated under DBP exposure and some key intermediate degradation related gene clusters including Pht, Pca, Xyl, Ben, and Cat exhibited a favorable coexisting pattern, which contributed the high-efficient DBP degradation ability and strong adaptability to this strain. Overall, these results broaden the knowledge of the catabolic diversity of DBP in microorganisms and enhance our understanding of the molecular mechanism underlying DBP biodegradation.


Asunto(s)
Dibutil Ftalato , Pseudomonas aeruginosa , Dibutil Ftalato/análisis , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Multiómica , Espectrometría de Masas en Tándem , Biodegradación Ambiental
17.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464211

RESUMEN

Introduction: Dibutyl phthalate (DBP), a phthalate congener, is widely utilized in consumer products and medication coatings. Women of reproductive age have a significant burden of DBP exposure through consumer products, occupational exposure, and medication. Prenatal DBP exposure is associated with adverse pregnancy/fetal outcomes and cardiovascular diseases in the offspring. However, the role of fetal sex and the general mechanisms underlying DBP exposure-associated adverse pregnancy outcomes are unclear. We hypothesize that prenatal DBP exposure at an environmentally relevant low dosage adversely affects fetal-placental development and function during pregnancy in a fetal sex-specific manner. Methods: Adult female CD-1 mice (8-10wks) were orally treated with vehicle (control) or with environmentally relevant low DBP dosages at 0.1 µg/kg/day (refer as DBP0.1) daily from 30 days before pregnancy through gestational day (GD) 18.5. Dam body mass composition was measured non-invasively using the echo-magnetic resonance imaging system. Lipid disposition in fetal labyrinth and maternal decidual area of placentas was examined using Oil Red O staining. Results: DBP0.1 exposure did not significantly affect the body weight and adiposity of non-pregnant adult female mice nor the maternal weight gain pattern and adiposity during pregnancy in adult female mice. DBP0.1 exposure does not affect fetal weight but significantly increased the placental weight at GD18.5 (indicative of decreased placental efficiency) in a fetal sex-specific manner. We further observed that DBP0.1 significantly decreased lipid disposition in fetal labyrinth of female, but not male placentas, while it did not affect lipid disposition in maternal decidual. Conclusions: Prenatal exposure to environmentally relevant low-dosage DBP adversely impacts the fetal-placental efficiency and lipid disposition in a fetal sex-specific manner.

18.
Environ Pollut ; 348: 123846, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548160

RESUMEN

Dibutyl phthalate (DBP) contamination has raised global concern for decades, while its health risk with toxic mechanisms requires further elaboration. This study used zebrafish ZF4 cells to investigate the toxicity of ferroptosis with underlying mechanisms in response to DBP exposure. Results showed that DBP induced ferroptosis, characterized by accumulation of ferrous iron, lipid peroxidation, and decrease of glutathione peroxidase 4 levels in a time-dependent manner, subsequently reduced cell viability. Transcriptome analysis revealed that voltage-dependent anion-selective channel (VDAC) in mitochondrial outer membrane was upregulated in ferroptosis signaling pathways. Protecting mitochondria with a VDAC2 inhibitor or siRNAs attenuated the accumulation of mitochondrial superoxide and lipid peroxides, the opening of mitochondrial permeability transition pore (mPTP), and the overload of iron levels, suggesting VDAC2 oligomerization mediated the influx of iron into mitochondria that is predominant and responsible for mitochondria-dependent ferroptosis under DBP exposure. Furthermore, the pivotal role of activating transcription factor 4 (ATF4) was identified in the transcriptional regulation of vdac2 by ChIP assay. And the intervention of atf4b inhibited DBP-induced VDAC2 upregulation and oligomerization. Taken together, this study reveals that ATF4-VDAC2 signaling pathway is involved in the DBP-induced ferroptosis in zebrafish ZF4 cells, contributing to the in-depth understanding of biotoxicity and the ecological risk assessment of phthalates.


Asunto(s)
Ferroptosis , Pez Cebra , Animales , Dibutil Ftalato/toxicidad , Dibutil Ftalato/metabolismo , Mitocondrias/metabolismo , Hierro/metabolismo
19.
Biosensors (Basel) ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38534228

RESUMEN

Development of an efficient technique for accurate and sensitive dibutyl phthalate (DBP) determination is crucial for food safety and environment protection. An ultrasensitive molecularly imprinted polymers (MIP) voltammetric sensor was herein engineered for the specific determination of DBP using poly-l-lysine/poly(3,4-ethylenedioxythiophene)/porous graphene nanocomposite (PLL/PEDOT-PG) and poly(o-phenylenediamine)-imprinted film as a label-free and sensing platform. Fabrication of PEDOT-PG nanocomposites was achieved through a simple liquid-liquid interfacial polymerization. Subsequently, poly-l-lysine (PLL) functionalization was employed to enhance the dispersibility and stability of the prepared PEDOT-PG, as well as promote its adhesion on the sensor surface. In the presence of DBP, the imprinted poly(o-phenylenediamine) film was formed on the surface of PLL/PEDOT-PG. Investigation of the physical properties and electrochemical behavior of the MIP/PLL/PEDOT-PG indicates that the incorporation of PG into PEDOT, with PLL uniformly wrapping its surface, significantly enhanced conductivity, carrier mobility, stability, and provided a larger surface area for specific recognition sites. Under optimal experimental conditions, the electrochemical response exhibited a linear relationship with a logarithm of DBP concentration within the range of 1 fM to 5 µM, with the detection limit as low as 0.88 fM. The method demonstrated exceptional stability and repeatability and has been successfully applied to quantify DBP in plastic packaging materials.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Grafito , Impresión Molecular , Nanocompuestos , Fenilendiaminas , Polímeros , Dibutil Ftalato , Polímeros Impresos Molecularmente , Técnicas Electroquímicas/métodos , Grafito/química , Polilisina , Porosidad , Nanocompuestos/química , Impresión Molecular/métodos , Límite de Detección , Electrodos
20.
Environ Sci Pollut Res Int ; 31(14): 21399-21414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393557

RESUMEN

The phthalate ester, dibutyl phthalate (DBP), is one of the endocrine-disrupting chemicals detected in various aquatic environments. Previous research has found multiple toxic effects of DBP in aquatic organisms; however, the neurotoxic effects of the compound are surprisingly scanty. The purpose of this study was aimed to evaluate the role of oxidative stress in the induction of neurotoxicity in the brain tissue of the fish Pseudetroplus maculatus. The fish were exposed to the sublethal concentration of DBP (200 µg L-1) for 1, 4, 7, and 15 days along with control and vehicle control groups. The induction of oxidative stress in the brain subcellular fractions was proved by alterations in the activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase along with the reduction in the total antioxidant capacity. Meanwhile, the levels of hydrogen peroxide and lipid peroxidation were increased. Neurotransmitters such as acetylcholine, dopamine, adrenaline, noradrenaline, and serotonin were altered in all subcellular fractions suggesting the disruption of the neurotransmitter system in the fish brain. These results indicate that DBP induces oxidative stress, which correlates with neurotoxicity in Pseudetroplus maculatus brain tissue.


Asunto(s)
Dibutil Ftalato , Plastificantes , Animales , Dibutil Ftalato/toxicidad , Plastificantes/toxicidad , Estrés Oxidativo , Antioxidantes/metabolismo , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA