RESUMEN
Conventional RA treatments required prolonged therapy courses that have been accompanied with numerous side effects impairing the patient's quality of life. Therefore, microneedles combined with nanotechnology emerged as a promising alternative non-invasive, effective and self-administrating treatment option. Hence, the main aim of this study is to reduce the side effects associated with systemic teriflunomide administration through its encapsulation in solid lipid nanoparticles (TER-SLNs) and their administration through transdermal route using AdminPen™ hollow microneedles array in the affected joint area directly. In vitro characterization studies were conducted including particle size, zeta potential, encapsulation efficiency and in vitro drug release. Also, ex vivo insertion properties of AdminPen™ hollow microneedles array was carried out. Besides, in vivo evaluation in rats with antigen induced arthritis model were also conducted by assessment of joint diameter, histopathological examination of the dissected joints and testing the levels of TNF-α, IL1B, IL7, MDA, MMP 3, and NRF2 at the end of the experiment. The selected TER-SLNs formulation was about 155.3 nm with negative surface charge and 96.45 % entrapment efficiency. TER-SLNs had a spherical shape and provided sustained release for nearly 96 h. In vivo results demonstrated that nanoencapsulation along with the use of hollow microneedles had a significant influence in improving TER anti-arthritic effects compared with TER suspension with no significant difference from the negative control group.
Asunto(s)
Artritis Reumatoide , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Ratas , Calidad de Vida , Artritis Reumatoide/tratamiento farmacológico , Administración CutáneaRESUMEN
Systemic treatments for rheumatoid arthritis are associated with many side effects. This study aimed to minimize the side effects associated with the systemic administration of leflunomide (LEF) by formulating LEF-loaded emulsomes (EMLs) for intra-articular administration. Additionally, EMLs were loaded with supramagnetic nanoparticles (SPIONs) to enhance joint localization, where a magnet was placed on the joint area after intra-articular administration. Full in vitro characterization, including colloidal characteristics, entrapment efficiency, and in vitro release were conducted besides the in vivo evaluation in rats with adjuvant-induced arthritis. In vivo study included joint diameter measurement, X-ray radiographic analysis, RT-PCR analysis, Western blotting, ELISA for inflammatory markers, and histopathological examination of dissected joints. The particle size and entrapment efficiency of the selected LEF SPION EMLs were 198.2 nm and 83.7%, respectively. The EMLs exhibited sustained release for 24 h. Moreover, in vivo evaluation revealed LEF SPION EMLs to be superior to the LEF suspension, likely due to the increase in LEF solubility by nanoencapsulation that improved the pharmacological effects and the use of SPION that ensured the localization of EMLs in the intra-articular cavity upon administration.