RESUMEN
The accumulation of trace metals in the environmental compartments of coastal rivers is a global and complex environmental issue, requiring multiple tools to constrain the various anthropogenic sources and biogeochemical processes affecting the water quality of these environments. The Valao fluvio-estuarine system (Rio de Janeiro, Brazil) presents a challenging case of a coastal river contaminated by both modern and historical anthropogenic metal sources, located in the land and in the intra-estuary, continuously mixed by tidal cycles. This study employed a combination of spatial distribution analysis of trace metals including gadolinium (Gd), zinc (Zn) isotopic analyses, and X-ray absorption spectroscopy (XAS) to distinguish between these sources. The concentrations of metals in both dissolved (water samples) and surficial sediment compartments (Suspended Particulate Matter and sediment samples) display an overall enrichment trend from upstream to downstream. Multivariate statistical analysis allows to discriminate geogenic elements derived from watershed geology (Ti, K, and Mg) vs anthropogenic contaminants from urban runoff and domestic sewage discharges (Cu, Cr, Pb, Zn, and Gd); and legacy metal contaminants (Zn and Cd) remobilized from ancient metallurgical wastes and transported upstream in the estuary during tidal cycles. The anthropogenic Gd concentration in the dissolved compartment increases along the watercourse, highlighting continuous ongoing sewage discharge. Zinc solid speciation also indicates that Zn contribution from legacy metallurgy waste is primarily associated with sulfide-Zn and Zn-phyllosilicate in the outlet estuary, while in upstream sediments of fluvio-estuarine system, Zn is found bound to organic matter. Zinc isotope systematically reveals a progressive downstream shift to heavier isotope compositions. Upstream, the relatively pristine site and the urbanized section of the river exhibit a relatively uniform δ66/64Zn value (+0.20 ± 0.07 ) in suspended particulate matter (SPM) and surficial sediments. These results indicate that domestic sewage discharges contribute to Zn enrichment in sediments of the Valao fluvio-estuarine system but without modifying its isotope signature in sediments. The sediment of the downstream estuarine section shows a heavier δ66/64Zn value (+0.48 ± 0.08 ), indicating the strong influence of the intra-estuarine source identified as the historical metallurgic contamination. An integrated view of the geochemical tracers allows thus inferring that the untreated sewage and legacy metallurgical contamination are the primary sources of anthropogenic Zn contamination. It highlights the progressive mixing along the estuarine gradient under tidal dynamics. The influence of the former source continuously expands from the headland towards the estuary.
RESUMEN
Based on the carbon emission accounting method for domestic sewage, combined with the current situation of rural domestic sewage treatment, the carbon emissions of traditional schemes and source separation schemes under the three scenarios of single household, multi-household, and pipeline treatments were calculated. The results showed that the net carbon emissions ï¼calculated as CO2ï¼ of the single household, multi-household, and pipeline treatment traditional schemes were 1.21, 3.37, and 2.69 kg·m-3, respectively. The net carbon emissions ï¼calculated as CO2ï¼ of the single household, multi-household, and pipeline treatments in source separation schemes were -0.50, -0.04, and -0.54 kg·m-3, respectively, achieving zero or even negative carbon emissions. The direct and indirect carbon emissions of the source separation scheme were lower than those of the traditional scheme under all three scenarios. The carbon compensation measures in the source separation scheme mainly came from the land use of urine after storage and treatment. By separating blackwater from graywater at the source, the Source Separation Program achieved resource utilization of highly concentrated pollutants in blackwater, reducing emissions while generating significant carbon offsets. Therefore, efforts should be made to promote the separation and treatment of rural domestic sewage sources, improve the utilization rate of rural domestic sewage resources, and achieve green and low-carbon development of rural domestic sewage treatment.
RESUMEN
Controlling sludge concentration is an effective means to achieve PN. In this article, the reactor used domestic sewage as raw water and promoted the high enrichment of anammox bacteria by controlling the MLVSS of flocs to 1000-1500 mg/L and increasing the concentration of filler sludge. The measures to reduce the concentration of flocculent sludge increased the proliferation rate of the biofilm and provided sufficient substrate for AnAOB. After 102 days of operation, the abundance of Candidatus Brocadia increased from 0.43% during inoculation to 23.56% in phase VI. The ability of the microbial community to utilize energy metabolism and produce ATP was significantly improved, and the appropriate distribution of anammox bacteria and nitrifying, denitrifying bacteria in the ecological niche led to its high enrichment. In summary, this study proposes a strategy to promote the high enrichment of anammox bacteria in mainstream domestic sewage without adding any chemicals.
RESUMEN
Constructed wetlands (CWs), crucial for the rural decentralized wastewater treatment, have encountered limitations in nutrient removal efficiency and require extensive land area. This study has constructed a novel overlapping horizontal subsurface flow CWs (OLCWs). Remarkably, OLCWs with mixed lightweight fillers (M-OLCWs) exhibited a significant enhancement in total nitrogen (TN) removal efficiency (88-91 %) in different hydraulic loading rates compared to single filler OLCWs (48-62 %). This significant enhancement can be attributed to the lightweight fillers, which have higher abundances and diversity of nitrogen related microorganisms. The treatment dynamics revealed that the second stage exhibited an excellent TN removal efficiency (73-75 %) attributed to sufficient dissolved oxygen concentration by water drops reoxygenation. The research reveals that M-OLCWs, by utilizing water drops reoxygenation and lightweight fillers, not only enhance pollutant treatment efficiency but also reduce required land area, thereby offering a sustainable solution for rural decentralized wastewater treatment.
Asunto(s)
Nitrógeno , Oxígeno , Aguas Residuales , Purificación del Agua , Humedales , Aguas Residuales/química , Purificación del Agua/métodos , Oxígeno/química , Eliminación de Residuos Líquidos/métodos , Agua/química , Contaminantes Químicos del AguaRESUMEN
Oil and gas activities are sources of marine microplastics (MPs) but have received less attention globally. This study assessed the distribution characteristics and ecological risks of MPs in 31 sediment samples and effluent samples of 5 oil and gas platforms related to offshore oil and gas activities in the Bohai Sea. The results showed that the mean abundance of MPs in sediment, produced water, and domestic sewage was 205.7 ± 151.5 items/kg d.w., 18 ± 11 items/L, and 26 ± 39 items/L, respectively. The MPs in sediments and effluents were dominated by transparent, rayon, and fibers <1 mm. Oil and gas activities may influence the abundance of MPs in the sediments. The sediments in the area were at a low level of risk, but some samples exhibited indexes beyond low levels. The mass of MPs carried by the effluents from oil and gas platforms in the Bohai Sea was less than that of other sources.
Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Microplásticos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Microplásticos/análisis , Medición de Riesgo , Industria del Petróleo y Gas , Yacimiento de Petróleo y Gas , Océanos y MaresRESUMEN
Source separation and decentralized domestic wastewater treatment represent effective strategies to enhance sewage treatment performance and facilitate water reuse economically. The Living Machine (LM) system has gained widespread adoption for decentralized sewage treatment. While underwater light source has been demonstrated to enhance the treatment performance of open aerobic reactors in LM systems, its influence on the treatment efficiency of a fully multistage LM system remains underreported. In this study, an underwater lamp-added LM system (ULLM) with eight reactors was constructed and investigated. The introduction of underwater light source obviously improved the removal capacity of chemical oxygen demand (COD) and NH4+-N, which was 96.1% and 61.6%, respectively. The diversity of algae, zooplankton, and aquatic animals was notably higher in the light-treated reactors than in the control group (CK) without underwater light source, and substantial alteration in the microbial community of the light-treated reactors was observed compared with CK reactors. At the phylum level, Proteobacteria and Nitrospirae enriched in the underwater light-treated reactors, while Bacteroidetes and Actinobacteria exhibited a decrease after light exposure. At the genus level, Nitrospira and Rhodanobacter were enriched in the ULLM system. Importantly, the prevalence of these two dominant genera was sustained until the final operational stage, indicating their potential key roles in enhancing wastewater treatment performance. The addition of underwater light source proves to be an effective strategy for augmenting the treatment efficiency of the multistage living machine systems, resulting in substantial improvements in pollutant removal. These findings contribute valuable insights into optimizing LM systems for decentralized wastewater treatment.
Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Purificación del Agua/métodos , Aguas del AlcantarilladoRESUMEN
Subsurface wastewater infiltration systems (SWISs) are suggested to be a cost-effective and environmentally friendly method for sewage treatment. However, a comprehensive summary of the relevant mechanisms and optimization methods for nitrogen (N) removal in SWIS is currently lacking. In this review, we first summarize the N transformation mechanisms in SWIS. The impact of operational parameters on the N removal efficiency is then delineated. To enhance pollutant removal and minimize resource wastage, it is advisable to maintain a wet-dry ratio of 1:1 and a hydraulic loading rate of 8-10 cm/day. The organic load should be determined based on influent characteristics to optimize the balance between sewage treatment and nitrous oxide (N2O) emission. Finally, various strategies and modifications have been suggested to enhance pollutant removal efficiency and reduce N2O emissions in SWIS, such as artificial aeration, supply electron donors, and well-designed structures. Overall, greater emphasis should be placed on the design and management of SWIS to optimize their co-benefits while effectively controlling N pollution. PRACTITIONER POINTS: SWISs are often considered black boxes with their efficiency depending on hydraulic characteristics, biological characteristics, and substrate properties. Biological nitrification coupled with denitrification is considered to be the major N removal process. Increasing the reduction of N2O to the inert N2 form is a potential mechanism to mitigate global warming. Strategies such as artificial aeration, supply electron donors, and well-designed structures are suggested to improve N removal performance.
Asunto(s)
Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales , Nitrógeno/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Óxido NitrosoRESUMEN
The integration of high-rate activated sludge (HRAS), an effective carbon redirection technology, with partial nitritation/anammox (PN/A) is a novel AB treatment process for municipal wastewater. In this study, an airlift HRAS reactor was operated in the continuous inflow mode for 200 d at a wastewater treatment plant. The balance between potential PN/A system stability and peak HRAS performance under decreasing hydraulic retention time (HRT) was optimized. Energy consumption and recovery and CO2 emissions were calculated. The results showed that the optimal HRT suitable with the PN/A process was 3 h, achieving 2-3 g/L mixed liquor volatile suspended solid, 67.8 % chemical oxygen demand (COD) recovery, 81 % total COD removal efficiency, 2.27 ± 1.03 g COD/L/d organic loading rate, 62 % aeration reduction, and 0.24 kWh/m3 power recovery potential. Such findings hold practical value and contribute to the development of the optimal AB process capable of achieving energy autonomy and carbon neutrality.
Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Purificación del Agua , Purificación del Agua/métodos , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Eliminación de Residuos Líquidos/métodos , Factores de Tiempo , Nitrógeno , Dióxido de Carbono , Oxidación-Reducción , CiudadesRESUMEN
Due to limited land availability in municipal wastewater treatment plants, integrated fixed-film activated sludge (IFAS) technology offers significant advantages in improving nitrogen removal performance and treatment capacity. In this study, two systems, IFAS and Anaerobic-Anoxic-Oxic Activated sludge process (AAO), were compared by adjusting parameters such as hydraulic retention time (HRT), nitrifying solution recycle ratio, sludge recycle ratio, and dissolved oxygen (DO). The objective was to investigate pollutant removal capacity and differences in microbial community composition between the two systems. The study showed that, at an HRT of 12 h, the IFAS system exhibited an average increase of 5.76%, 8.85%, and 12.79% in COD, NH4+-N, and TN removal efficiency respectively, compared to the AAO system at an HRT of 16 h. The TP concentration in the IFAS system reached 0.82 mg/L without the use of additives. The IFAS system demonstrated superior effluent results under lower operating conditions of HRT, nitrification solution recycle ratio, and DO. The 16S rDNA analysis revealed higher abundance of denitrification-related associated flora, including Proteobacteria, Bacteroidetes, and Planctomycetota, in the IFAS system compared to the AAO system. Similarities were observed between microorganisms attached to the media and activated sludge in the anaerobic, anoxic, and oxic tanks. q-PCR analysis indicated that the incorporation of filler material in the IFAS system resulted in similar abundance of nitrifying bacteria genes on the biofilm as in the oxic tank. Additionally, denitrifying genes showed higher levels due to aeration scouring and the presence of alternating aerobic-anaerobic environments on the biofilm surface, enhancing nitrogen removal efficiency.
Asunto(s)
Reactores Biológicos , Nitrógeno , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Nitrógeno/análisis , Reactores Biológicos/microbiología , Anaerobiosis , Nitrificación , Desnitrificación , Aguas Residuales/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Oxígeno/análisis , Oxígeno/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismoRESUMEN
Domestic sewage tailwater (DSTW) reuse for crop irrigation is considered a promising practice to reduce water demand, mitigate water pollution, and substitute chemical fertilization. The level of the above environmental benefits of this water reuse strategy, especially when applied to paddy wetlands, remains unclear. In this study, soil column experiments were conducted to investigate the nitrogen and phosphorus fate in paddy wetlands subjected to different tailwater irrigation and drainage strategies, specifically, (i) TW1 and TW2 for regular or enhanced irrigation-drainage without N fertilization, (ii) TW3 and TW4 for regular irrigation with base or tillering N fertilizer, (iii) conventional fertilization N210, and (iv) no-fertilization controls N0. The results showed that the total nitrogen (TN), nitrate (NO3-), and total phosphorus (TP) removal rates from the paddies irrigated by DSTW ranged between 51.92 and 59.34%, 68.1 and 83.42%, and 85.69 and 86.98% respectively. Ammonia emissions from the DSTW-irrigated treatments were reduced by 14.6~47.2% compared to those paddies subjected to conventional fertilization (N210), similarly for TN emissions, with the exception of the TW2 treatment. Overall, it is established that the paddy wetland could effectively remove residual N and P from surface water runoffs, while the partial substitution of chemical fertilization by DSTW could be confirmed. The outcome of this study demonstrates that DSTW irrigation is a promising strategy for sustainable rice production with a minimized environmental impact.
Asunto(s)
Oryza , Aguas del Alcantarillado , Humedales , Monitoreo del Ambiente , Nitrógeno , Fósforo , AguaRESUMEN
Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.
Asunto(s)
Compuestos de Amonio , Purificación del Agua , Aguas del Alcantarillado , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Desnitrificación , Fósforo , Reactores Biológicos , Nitrificación , Nutrientes , NitrógenoRESUMEN
Ofloxacin (OFL) is a typical fluoroquinolone antibiotic widely detected in rural domestic sewage, however, its effects on the performance of aerobic biofilm systems during sewage treatment process remain poorly understood. We carried out an aerobic biofilm experiment to explore how the OFL with different concentrations affects the pollutant removal efficiency of rural domestic sewage. Results demonstrated that the OFL negatively affected pollutant removal in aerobic biofilm systems. High OFL levels resulted in a decrease in removal efficiency: 9.33% for chemical oxygen demand (COD), 18.57% for ammonium (NH4+-N), and 8.49% for total phosphorus (TP) after 35 days. The findings related to the chemical and biological properties of the biofilm revealed that the OFL exposure triggered oxidative stress and SOS responses, decreased the live cell number and extracellular polymeric substance content of biofilm, and altered bacterial community composition. More specifically, the relative abundance of key genera linked to COD (e.g., Rhodobacter), NH4+-N (e.g., Nitrosomonas), and TP (e.g., Dechlorimonas) removal was decreased. Such the OFL-induced decrease of these genera might result in the down-regulation of carbon degradation (amyA), ammonia oxidation (hao), and phosphorus adsorption (ppx) functional genes. The conventional pollutants (COD, NH4+-N, and TP) removal was directly affected by biofilm resistance, functional genes, and bacterial community under OFL exposure, and the bacterial community played a more dominant role based on partial least-squares path model analysis. These findings will provide valuable insights into understanding how antibiotics impact the performance of aerobic biofilm systems during rural domestic sewage treatment.
Asunto(s)
Contaminantes Ambientales , Ofloxacino , Ofloxacino/farmacología , Aguas del Alcantarillado/microbiología , Matriz Extracelular de Sustancias Poliméricas , Bacterias/genética , Biopelículas , Fósforo , Nitrógeno , Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodosRESUMEN
The application of soil infiltration systems (SISs) in rural domestic sewage (RDS) is limited due to suboptimal denitrification resulting from factors such as low C/N (<5). This study introduced filler-enhanced SISs and investigated parameter impacts on pollutant removal efficiency and greenhouse gas (GHG) emission reduction. The results showed that Mn sand-pyrite SISs, with hydraulic load ratios of 0.003 m3/m2·h and dry-wet ratios of 3:1, achieved excellent removal efficiency of COD (92.7 %), NH4+-N (95.8 %), and TN (76.4 %). Moreover, N2O and CH4 emission flux were 0.046 and 0.019 mg/m2·d, respectively. X-ray photoelectron spectroscopy showed that the relative concentrations of Mn(â ¡) in Mn sand and Fe(â ¢) and SO42- in pyrite increased after the experiment. High-throughput sequencing indicated that denitrification was mainly performed by Thiobacillus. This study demonstrated that RDS treatment using the enhanced SIS resulted in efficient denitrification and GHG reduction.
Asunto(s)
Gases de Efecto Invernadero , Hierro , Suelo , Sulfuros , Desnitrificación , Compuestos Férricos , Manganeso , Nitrógeno/química , Aguas del Alcantarillado , Suelo/químicaRESUMEN
The decomposition of organic macromolecules in sewage currently benefits substantially from hydrolysis-acidification. The full use of its qualities can help domestic sewage to biodegrade more quickly, which promotes the subsequent aerobic reactions. This study evaluated the hydrolysis-acidification performance of granular sludge and filler in residential sewage. Both forms were highly effective at producing volatile fatty acids (VFAs) at the beginning of the reaction, but the granular sludge gradually disintegrated over time, particularly at low temperatures. The production of VFAs decreased (68.08 mg/L), and the effluent dissolved organic nitrogen (DON) increased (6.23 mg/L). However, the effluent of fillers remained at a lower level (1.3 mg/L) and produced more VFAs (74.13 mg/L). High-throughput sequencing revealed that the filler included a greater quantity of hydrolytic-acidifying bacteria than the granular sludge, which resulted in higher performance. In this study, the optimal form of utilizing hydrolytic acidifying bacteria was discussed to provide a theoretical basis to improve the full utilization of organic matter in domestic sewage and the removal of as much total nitrogen as possible.
Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Hidrólisis , Reactores Biológicos/microbiología , Bacterias , Ácidos Grasos Volátiles , Nitrógeno , Concentración de Iones de Hidrógeno , Eliminación de Residuos Líquidos/métodosRESUMEN
The dissolved oxygen content in water is an important indicator for assessing the quality of the water environment, and maintaining a certain amount of dissolved oxygen is essential for the healthy development of the ecological environment. When a water body is anoxic, the activity of anaerobic microorganisms increases and organic matter is decomposed to produce a large number of blackening and odorizing substances, resulting in black and odorous water bodies, which is a very common and typical phenomenon in China. Presently, there is still a relatively universal occurrence of illicitly connected stormwater and sewage pipes in the urban drainage pipe network in China, which makes oxygen-consuming substances be directly discharged into rivers through stormwater pipes and consume the dissolved oxygen in the water bodies, resulting in an oxygen deficiency of the water. This induces seasonal or year-round black and stink phenomena in urban rivers. Hence, identifying high oxygen-consuming substances, which lays the foundation for the subsequent removal of oxygen-consuming substances, is essential. Through a series of comparisons of water quality indicators and analysis of organic characteristics, it was found that the oxygen consumption capacity of domestic sewage was higher than that of industrial wastewater in the selected area of this study, and the oxygen-consuming substances of domestic sewage were small molecular amino acids. By comparing 20 conventional free amino acids, it was found that seven of them consumed oxygen easily, and compared with chemical oxygen consumption, biological oxygen consumption was in a leading position.
Asunto(s)
Oxígeno , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Aguas Residuales , Calidad del Agua , AminoácidosRESUMEN
The integration of anoxic filter and aerobic rotating biological contactor shows promise in treating rural domestic sewage. It offers high efficiency, low sludge production, and strong shock resistance. However, further optimization is needed for odor control, pollutant removal, and power consumption. In this study, the investigation on a one-pump-drive lab-scale device of retention anoxic filter (RAF) integrated with hydraulic rotating bio-contactor (HRBC) and its optimal operation mode were conducted. During the 50-day operation, optimal operation parameters were investigated. These parameters included a 175 % reflux ratio (RR), 5-h hydraulic retention time in the RAF (HRTRAF), and 2.5-h hydraulic retention time in the HRBC (HRTHRBC). Those conditions characterized a micro-aerobic environment (DO: 0.6-0.8 mg/L) in RAF, inducing improved deodorization (89.3 % sulfide removal) and denitrification (85.9 % nitrate removal) simultaneously. During the operation period, 84.79 ± 3.87 % COD, 82.71± 2.06 % NH4+-N, 74.83 ± 2.06 % TN, 91.68± 2.12 % S2-, and 89.04 ± 1.68 % TON were removed in RAF-HRBC. Based on large amount of operational data, organic loading rate curves of RAF-HRBC were validated and calibrated as a crucial reference to aid in full-scale designs and applications. The richness of microbial community was improved in both RAF and HRBC. In the RAF, the autotrophic sulfide-oxidizing nitrate-reducing bacteria (a-son) and heterotrophic sulfide-oxidizing nitrate-reducing bacteria (h-son) were selectively enriched, which intensified the sulfide removal and denitrification process. In the two-stage HRBC system, the 1st stage RBC was primarily composed of organics degraders, while the 2nd stage RBC consisted mainly of ammonium oxidizers. Overall, the integrated RAF-HRBC process holds significant potential for simultaneously improving pollutant removal and in-situ odor mitigation in decentralized domestic sewage treatment. This process specifically contributes to enhancing environmental sustainability and operational efficiency.
RESUMEN
The objective of this work was to develop a polymeric structure for a biofiltration unit of domestic effluents through microbiological immobilization, capable of promoting the efficient removal of pollutants, meeting local/national Brazilian standards and/or legislation while providing low environmental impact on their production. Four different structures were tested, namely, polypropylene casings without filling material (TF1); polypropylene casings filled with expanded polystyrene grains (TF2); polypropylene casings, filled with polyurethane foam (TF3); and polypropylene casings, filled with polyvinyl chloride pellets (TF4). A flow of 0.216 m3 d-1 was applied to the system, and the biofilters operated in sequential batches with a hydraulic retention time of 6 h. The efficiency potential of the four immobilization structures was verified regarding biochemical and chemical oxygen demand, total ammoniacal nitrogen and total phosphorus. Microbiological analysis of the formed biofilm, performed with the 16S library sequencing method, with amplification of the 16S rRNA V3 and V3-V4 genomic regions, showed a high diversity of microbiological colonization in the four immobilization structures, with better results and consequently greater community stability in TF2. It is recommended using the filter bed made up of unfilled casings, followed by the one filled with expanded polystyrene grains.
Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Brasil , Poliestirenos , ARN Ribosómico 16S , Polipropilenos , Reactores Biológicos , Biopelículas , Nitrógeno/químicaRESUMEN
In order to promote the improvement of the rural living environment, the treatment of rural domestic sewage has attracted much attention in China. Meanwhile, the rural regions' sewage discharge standards are becoming increasingly stringent. However, the standard compliance rate of total phosphorus (TP) is very low, and TP has become the main limiting pollutant for the water pollutants discharge standards of rural domestic sewage treatment facilities. In this study, waste eggshell (E) was employed as a calcium source, and waste peanut shell (C) was employed as a carbon source to prepare calcium-modified biochar adsorbent materials (E-C). The resulting E-C adsorbent materials demonstrated efficient phosphate (P) adsorption from aqueous solutions over the initial pH range of 6-9 and had adsorption selectivity. At an eggshell and peanut shell mass ratio of 1:1 and a pyrolysis temperature of 800 °C, the experimental maximum adsorption capacity was 191.1 mg/g. The pseudo second-order model and Langmuir model were best at describing the adsorption process. The dominant sorption mechanism for P is that Ca(OH)2 is loaded on biochar with P to form Ca5(PO4)3OH precipitate. E-C was found to be very effective for the treatment of rural domestic sewage. The removal rate of TP in rural domestic sewage was 91-95.9%. After adsorption treatment, the discharge of TP in rural sewage met the second-grade (TP < 3 mg/L) and even first-grade (TP < 2 mg/L). This study provides an experimental basis for efficient P removal by E-C adsorbent materials and suggests possible applications in rural domestic sewage.
RESUMEN
Per- and polyfluoroalkyl substances (PFAS) are widespread, persistent environmental contaminants that have been linked to various health issues. Comprehensive PFAS analysis often relies on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC HRMS) and molecular fragmentation (MS/MS). However, the selection and fragmentation of ions for MS/MS analysis using data-dependent analysis results in only the topmost abundant ions being selected. To overcome these limitations, All Ions fragmentation (AIF) can be used alongside data-dependent analysis. In AIF, ions across the entire m/z range are simultaneously fragmented; hence, precursor-fragment relationships are lost, leading to a high false positive rate. We introduce IonDecon, which filters All Ions data to only those fragments correlating with precursor ions. This software can be used to deconvolute any All Ions files and generates an open source DDA formatted file, which can be used in any downstream nontargeted analysis workflow. In a neat solution, annotation of PFAS standards using IonDecon and All Ions had the exact same false positive rate as when using DDA; this suggests accurate annotation using All Ions and IonDecon. Furthermore, deconvoluted All Ions spectra retained the most abundant peaks also observed in DDA, while filtering out much of the artifact peaks. In complex samples, incorporating AIF and IonDecon into workflows can enhance the MS/MS coverage of PFAS (more than tripling the number of annotations in domestic sewage). Deconvolution in complex samples of All Ions data using IonDecon did retain some false fragments (fragments not observed when using ion selection, which were not isotopes or multimers), and therefore DDA and intelligent acquisition methods should still be acquired when possible alongside All Ions to decrease the false positive rate. Increased coverage of PFAS can inform on the development of regulations to address the entire PFAS problem, including both legacy and newly discovered PFAS.
RESUMEN
There are continuous reports about the pollution of the secondary water supply systems (SWSSs), among which domestic sewage leakage is the most serious. In this study, a pilot experiment lasting 70 days was conducted to explore the changes in physicochemical water quality and the microbial profiles in SWSSs polluted by different doses of domestic sewage through qPCR and high-throughput sequencing methods. The results showed that when domestic sewage entered the simulated water storage tank, a large amount of organic matter brought by domestic sewage quickly consumed chlorine disinfectants. High pollution levels (pollution index ≥ 1/1000) were accompanied by significant increases in turbidity and ammonia nitrogen concentration (p < 0.05) and by abnormal changes in sensory properties. Although different microbial community structures were found only at high pollution levels, qPCR results showed that the abundance of the bacterial 16S rRNA gene and some pathogenic gene markers in the polluted tank increased with the pollution level, and the specific gene marker of pathogens could be detected even at imperceptible pollution levels. In particular, the high detection frequency and abundance of Escherichia coli and Enterococcus faecails in polluted tank water samples demonstrated that they can be used for early warning. Moreover, it seems that the microorganisms that came with the domestic sewage lost their cultivability soon after entering SWSSs but could recover their activities during stagnation. In addition, the biofilm biomass in the polluted tank with high pollution levels increased faster at the initial stage, while after a longer contact time, it tended to remain at the same level as the control tank. This study emphasized the high microbial risk introduced by sewage water leakage even at imperceptible levels and could provide scientific suggestions for early warning and prevention of pollution to SWSSs.