Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.348
Filtrar
1.
Biomaterials ; 312: 122719, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39088912

RESUMEN

Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.


Asunto(s)
Supervivencia Celular , Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Fenotipo , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/patología , Microambiente Tumoral/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo/métodos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Médula Ósea/patología , Médula Ósea/efectos de los fármacos , Nicho de Células Madre/efectos de los fármacos , Células de la Médula Ósea/citología , Masculino , Diferenciación Celular/efectos de los fármacos , Femenino
3.
Artículo en Inglés | MEDLINE | ID: mdl-39388391

RESUMEN

The establishment of organotypic preclinical models that accurately resemble the native tumor microenvironment at an anatomic human scale is highly desirable to level up in vitro platforms potential for screening candidate therapies. The bioengineering of anatomic-scaled three-dimensional (3D) models that emulate native tumor scale while recapitulating their cellular and matrix components remains, however, to be fully realized. In this focus, herein, we leveraged embedded 3D bioprinting for biofabricating pancreatic ductal adenocarcinoma (PDAC) in vitro models combining gelatin-methacryloyl and hyaluronic acid methacrylate extracellular matrix (ECM)-mimetic biomaterials with human pancreatic cancer cells and cancer-associated fibroblasts to generate in vitro models capable of emulating native tumor size (∼6 mm) and stromal elements. By using a viscoelastic continuous polymeric supporting bath, tumor-scale 3D models were rapidly generated (∼50 constructs/h) and easily recovered following in-bath visible light photocrosslinking. As a proof-of-concept, tissue-scale constructs displaying physiomimetic designs were biofabricated. These models also encompass the incorporation of a stromal compartment to better emulate the cellular components of the PDAC native tumor microenvironment (TME) and its stratified spatial organization. Cell-laden tumor-size constructs remained viable for up to 14 days and were responsive to Gemcitabine in a dose-dependent mode. Cancer-stroma models also exhibited increased drug resistance compared to their monotypic counterparts, highlighting the key role of stromal cells in chemotherapeutic resistance. Overall, we report for the first time the freeform biofabrication of PDAC models exhibiting anatomic scale, different structural complexities, and engineered cancer-stromal compartments, being highly valuable for preclinical screening of therapeutics.

4.
Front Pharmacol ; 15: 1438067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376603

RESUMEN

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.

5.
Regen Biomater ; 11: rbae113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39350956

RESUMEN

The decellularized extracellular matrix (dECM) has emerged as an effective medium for replicating the in vivo-like conditions of the tumor microenvironment (TME), thus enhancing the screening accuracy of chemotherapeutic agents. However, recent dECM-based tumor models have exhibited challenges such as uncontrollable morphology and diminished cell viability, hindering the precise evaluation of chemotherapeutic efficacy. Herein, we utilized a tailor-made microfluidic approach to encapsulate dECM from porcine liver in highly poly(lactic-co-glycolic acid) (PLGA) porous microspheres (dECM-PLGA PMs) to engineer a three-dimensional (3D) tumor model. These dECM-PLGA PMs-based microtumors exhibited significant promotion of hepatoma carcinoma cells (HepG2) proliferation compared to PLGA PMs alone, since the infusion of extracellular matrix (ECM) microfibers and biomolecular constituents within the PMs. Proteomic analysis of the dECM further revealed the potential effects of these bioactive fragments embedded in the PMs. Notably, dECM-PLGA PMs-based microtissues effectively replicated the drug resistance traits of tumors, showing pronounced disparities in half-maximal inhibitory concentration (IC50) values, which could correspond with certain aspects of the TME. Collectively, these dECM-PLGA PMs substantially surmounted the prevalent challenges of unregulated microstructure and suboptimal cell viability in conventional 3D tumor models. They also offer a sustainable and scalable platform for drug testing, holding promise for future pharmaceutical evaluations.

6.
Mater Today Bio ; 29: 101280, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39399243

RESUMEN

In vitro drug screening endeavors to replicate cellular states closely resembling those encountered in vivo, thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells in vivo. This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening. Initially, we delineate the biological functionalities of diverse ECM components, shedding light on their potential influences on disease model construction. Further, we elucidate the decellularization techniques and methodologies for fabricating cell models utilizing dECM substrates. Then, the article delves into the research strides made in employing dECM-based models for drug screening across a spectrum of ailments, including tumors, as well as heart, liver, lung, and bone diseases. Finally, the review summarizes the bottlenecks, hurdles, and promising research trajectories associated with the dECM materials for drug screening, alongside their prospective applications in personalized medicine. Together, by encapsulating the contemporary research landscape surrounding dECM materials in cell model construction and drug screening, this review underscores the vast potential of dECM materials in drug assessment and personalized therapy.

7.
Cell Stem Cell ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39353427

RESUMEN

Directed differentiation of stem cells toward chondrogenesis in vitro and in situ to regenerate cartilage suffers from off-target differentiation and hypertrophic tendency. Here, we generated a cartilaginous organoid system from human expanded pluripotent stem cells (hEPSCs) carrying a COL2A1mCherry and COL10A1eGFP double reporter, enabling real-time monitoring of chondrogenesis and hypertrophy. After screening 2,040 FDA-approved drugs, we found that α-adrenergic receptor (α-AR) antagonists, especially phentolamine, stimulated chondrogenesis but repressed hypertrophy, while α2-AR agonists reduced chondrogenesis and induced hypertrophy. Phentolamine prevented cartilage degeneration in hEPSC cartilaginous organoid and human cartilage explant models and stimulated microfracture-activated endogenous skeletal stem cells toward hyaline-like cartilage regeneration without fibrotic degeneration in situ. Mechanistically, α2-AR signaling induced hypertrophic degeneration via cyclic guanosine monophosphate (cGMP)-dependent secretory leukocyte protease inhibitor (SLPI) production. SLPI-deleted cartilaginous organoid was degeneration resistant, facilitating large cartilage defect healing. Ultimately, targeting α2-AR/SLPI was a promising and clinically feasible strategy to regenerate cartilage via promoting chondrogenesis and repressing hypertrophy.

8.
Biomed Pharmacother ; 180: 117517, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39357326

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since its emergence in Wuhan, China, in late 2019. Natural product inhibitors targeting the interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2 (ACE2), crucial for viral attachment and cellular entry, are of significant interest as potential antiviral agents. In this study a library of nitrile- and sulfur-containing natural product derived compounds were used for virtual drug screening against the RBD of the SARS-CoV-2 spike protein. The top 18 compounds from docking were tested for their efficacy to inhibit virus entry. In vitro experiments revealed that compounds 9, 14, and 15 inhibited SARS-CoV-2 pseudovirus and live virus entry in HEK-ACE2 and Vero E6 host cells at low micromolar IC50 values. Cell viability assays showed these compounds exerted low cytotoxicity towards MRC5, Vero E6, and HEK-ACE2 cell lines. Microscale thermophoresis revealed all three compounds strongly bound to the RBDs of SARS-CoV-2, SARS-CoV-2 XBB, SARS-CoV-1, MERS-CoV, and HCoV-HKU1, with their Kd values increasing as RBD sequence similarity decreased. Molecular docking studies indicated compounds 9, 14, and 15 bound to the SARS-CoV-2 spike protein RBD and interacted with hotspot amino acid residues required for the RBD-ACE2 interaction and cellular infection. These three nitrile-containing candidates, particularly compound 15, should be considered for further development as potential pan-coronavirus entry inhibitors.

9.
Front Immunol ; 15: 1413858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253075

RESUMEN

Breast cancer is the most common malignant tumor in women. Due to the high heterogeneity of breast cancer cells, traditional in vitro research models still have major limitations. Therefore, it is urgent to establish an experimental model that can accurately simulate the characteristics of human breast cancer. Breast cancer organoid technology emerged as the times required, that is, to construct tissue analogs with organ characteristics by using a patient's tumor tissue through 3D culture in vitro. Since the breast cancer organoid can fully preserve the histology and genetic characteristics of the original tumor, it provides a reliable model for preclinical drug screening, establishment of breast cancer organoid biobanks, research into the mechanisms of tumor development, and determination of cancer targets. It has promoted personalized treatment for clinical breast cancer patients. This article mainly focuses on recent research progress and applications of organoid technology in breast cancer, discussing the current limitations and prospects of breast cancer organoid technology.


Asunto(s)
Neoplasias de la Mama , Organoides , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Organoides/patología , Femenino , Animales , Medicina de Precisión/métodos
10.
Heliyon ; 10(16): e36495, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253173

RESUMEN

Zebrafish is a highly advantageous model animal for drug screening and toxicity evaluation thanks to its amenability to optical imaging (i.e., transparency), possession of organ structures similar to humans, and the ease with which disease models can be established. However, current zebrafish drug screening technologies and devices suffer from limitations such as low level of automation and throughput, and low accuracy caused by the heterogeneity among individual zebrafish specimens. To address these issues, we herein develop a high-throughput zebrafish drug screening system. This system is capable of maintaining optimal culturing conditions and simultaneously monitoring and analyzing the movement of 288 zebrafish larvae under various external conditions, such as drug combinations. Moreover, to eliminate the effect of heterogeneity, locomotion of participating zebrafish is assessed and grouped before experiments. It is demonstrated that in contrast to the experimental results without pre-selection, which shows ∼20 % damaged motor function (i.e., degree of attenuation), the drug-induced variations among zebrafish with equivalent mobility reaches ∼80 %. Overall, our high-throughput zebrafish drug screening system overcomes current limitations by improving automation, throughput, and accuracy, resulting in enhanced detection of drug-induced variations in zebrafish motor function.

11.
J Natl Cancer Cent ; 4(3): 195-202, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281720

RESUMEN

Primary liver cancer is a leading cause of death worldwide. To create advanced treatments for primary liver cancer, studies have utilized models such as 2D cell culture and in vivo animal models. Recent developments in cancer organoids have created the possibility for 3D in vitro cultures that recapitulates the cancer cell structure and operation as well as the tumor microenvironment (TME). However, before organoids can be directly translated to clinical use, tissue processing and culture medium must be standardized with unified protocols to decrease variability in results. Herein, we present the wide variety of published methodologies used to derive liver cancer organoids from patient tumor tissues. Additionally, we summarize validation methodologies for organoids in terms of marker expression levels with immunohistochemistry as well as the presence of mutations and variants through RNA-sequencing. Primary liver cancer organoids have exciting applications allowing for faster drug testing at a larger scale. Primary liver cancer organoids also assisit in uncovering new mechanisms. Through the coculture of different immune cells and cancer organoids, organoids are now better able to recapitulate the liver cancer TME. In addition, it further aids in the investigation of drug development and drug resistance. Lastly, we posit that the usage of liver cancer organoids in animal models provides researchers a methodology to overcome the current limitations of culture systems.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125136, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39299075

RESUMEN

Thrombin plays a critical role in hemostasis and hemolysis, and is a significant biomarker for blood-related diseases. Detection and inhibitors screening of thrombin are essential in medical research. In this study, we developed a fluorescent sensor based on the interaction between quantum dots (QDs) and fibrinogen (Fib) for thrombin detection and its inhibitors screening. Upon the presence of thrombin, the fibrinogen of soluble QDs-Fib were converted into insoluble fibrin precipitate, causing a change of fluorescence intensity in the supernatant. Under optimized conditions, our method exhibited an excellent linearity (R2 ≥0.99) over the range of 2∼100 U/L with a limit of detection (LOD) as low as 0.29 U/L. Moreover, we employed this method to screen for thrombin inhibitors using dabigatran as an exemplary direct thrombin inhibitor (DTI), even at concentrations as low as 1 nM. Finally, the established method was successfully used to screen thrombin inhibitors in 23 different extracts from Eupolyphaga sinensis walker. The method provided not only a sensitive, specific and high throughput assay for the detection of thrombin activity in biological samples, but also a reliable strategy for the screening of thrombin inhibitors in complex matrices.

13.
Eur Urol Focus ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232905

RESUMEN

BACKGROUND AND OBJECTIVE: Bladder cancer (BLCa) remains a prevalent malignancy with high recurrence rates and limited treatment options. In recent years, patient-derived organoids (PDOs) have emerged as a promising platform for studying cancer biology and therapeutic responses in a personalized manner. Using drug screening, PDOs facilitate the identification of novel therapeutic agents and translational treatment strategies. Moreover, their ability to model patient-specific responses to treatments holds promise for predicting clinical outcomes and guiding treatment decisions. This exploratory review aims to investigate the potential of PDOs in advancing BLCa research and treatment, with an emphasis on translational clinical approaches. Furthermore, we analyze the feasibility of deriving PDOs from minimally invasive blood and urine samples. METHODS: In addition to exploring hypothetical applications of PDOs for predicting patient outcomes and their ability to model different stages of BLCa, we conducted a comprehensive PubMed search on already published data as well as comprehensive screening of currently ongoing trials implementing PDOs in precision medicine in cancer patients irrespective of the tumor entity. KEY FINDINGS AND LIMITATIONS: While the research on BLCa PDOs is advancing rapidly, data on both BLCa PDO research and their clinical application are scarce. Owing to this fact, a narrative review format was chosen for this publication. CONCLUSIONS AND CLINICAL IMPLICATIONS: BLCa PDOs have the potential to influence the domain of precision medicine and enhance personalized cancer treatment strategies. However, standardized protocols for PDO generation, their ideal clinical application, as well as their impact on outcomes remain to be determined. PATIENT SUMMARY: In this review, we discuss the current state and future needs for the use of patient-derived organoids, small three-dimensional avatars of tumor cells, in bladder cancer. Patient-derived bladder cancer organoids offer a more personalized approach to studying and treating bladder cancer, providing a model that closely resembles the patient's own tumor. These organoids can help researchers identify new treatment options and predict how individual patients may respond to standard therapies. By using minimally invasive samples such as blood and urine, patients can participate in research studies more easily, potentially leading to improved outcomes in bladder cancer treatment.

14.
Neurochem Int ; 180: 105859, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265701

RESUMEN

Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, ß-secretase, γ-secretase, α-synuclein, Aß protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.

15.
Biomater Transl ; 5(1): 21-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220668

RESUMEN

In recent years, advances in microfabrication technology and tissue engineering have propelled the development of a novel drug screening and disease modelling platform known as organoid-on-a-chip. This platform integrates organoids and organ-on-a-chip technologies, emerging as a promising approach for in vitro modelling of human organ physiology. Organoid-on-a-chip devices leverage microfluidic systems to simulate the physiological microenvironment of specific organs, offering a more dynamic and flexible setting that can mimic a more comprehensive human biological context. However, the lack of functional vasculature has remained a significant challenge in this technology. Vascularisation is crucial for the long-term culture and in vitro modelling of organoids, holding important implications for drug development and personalised medical approaches. This review provides an overview of research progress in developing vascularised organoid-on-a-chip models, addressing methods for in vitro vascularisation and advancements in vascularised organoids. The aim is to serve as a reference for future endeavors in constructing fully functional vascularised organoid-on-a-chip platforms.

16.
Acta Pharm Sin B ; 14(8): 3362-3384, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220863

RESUMEN

Drug discovery is a sophisticated process that incorporates scientific innovations and cutting-edge technologies. Compared to traditional bioactivity-based screening methods, encoding and display technologies for combinatorial libraries have recently advanced from proof-of-principle experiments to promising tools for pharmaceutical hit discovery due to their high screening efficiency, throughput, and resource minimization. This review systematically summarizes the development history, typology, and prospective applications of encoding and displayed technologies, including phage display, ribosomal display, mRNA display, yeast cell display, one-bead one-compound, DNA-encoded, peptide nucleic acid-encoded, and new peptide-encoded technologies, and examples of preclinical and clinical translation. We discuss the progress of novel targeted therapeutic agents, covering a spectrum from small-molecule inhibitors and nonpeptidic macrocycles to linear, monocyclic, and bicyclic peptides, in addition to antibodies. We also address the pending challenges and future prospects of drug discovery, including the size of screening libraries, advantages and disadvantages of the technology, clinical translational potential, and market space. This review is intended to establish a comprehensive high-throughput drug discovery strategy for scientific researchers and clinical drug developers.

17.
Angew Chem Int Ed Engl ; : e202409282, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324755

RESUMEN

Drug efflux - a process primarily facilitated by efflux pumps such as multidrug resistance proteins (MRPs) - plays a pivotal role in cellular resistance to chemotherapy resistance. Conventional approaches to assess drug efflux are predominantly conducted in vitro and often lack pump specificity. Here we report the bioorthogonal reporter inhibiting efflux (BRIEF) strategy, which enables the recording of pump-specific drug efflux in living cells. In BRIEF, a specific substrate is engineered as a bioorthogonal efflux probe (BEP) for specific pumps. The cellular concentration and protein labeling level of the probe can be augmented when the test drug is transported by the same pumps.  Serendipitously, we discovered that per-O-acetylated unnatural monosaccharides, initially designed for metabolic glycan labeling, are exported by some MRPs. Using Ac4GlcNAl as a BEP, we studied the structure-efflux relationship of flavonoids and identified small molecules, including tannic acid, cholesterol and gallic acid, as novel MRP substrates in high-throughput screening. Tannic acid, known for anti-tumor and anti-SARS-CoV-2 properties, showed increased efficacy upon MRP inhibition. Additionally, BRIEF was adapted to assess p-glycoprotein-mediated efflux using Rhodamine 123 as a BEP, leveraging its light-activatable proximity labeling ability. BRIEF provides a versatile approach to investigate drug efflux and enhance chemotherapy strategies.

18.
Biosensors (Basel) ; 14(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39329817

RESUMEN

Lactate is a critical regulatory factor secreted by tumors, influencing tumor development, metastasis, and clinical prognosis. Precise analysis of tumor-cell-secreted lactate is pivotal for early cancer diagnosis. This study describes a paper-based microfluidic chip to enable the detection of lactate levels secreted externally by living cells. Under optimized conditions, the lactate biosensor can complete the assay in less than 30 min. In addition, the platform can be used to distinguish lactate secretion levels in different cell lines and can be applied to the screening of antitumor drugs. Through enzymatic chemical conversion, this platform generates fluorescent signals, enabling qualitative assessment under a handheld UV lamp and quantitative analysis via grayscale intensity measurements using ImageJ (Ver. 1.50i) software. The paper-based platform presented in this study is rapid and highly sensitive and does not necessitate other costly and intricate instruments, thus making it applicable in resource-constrained areas and serving as a valuable tool for investigating cell lactate secretion and screening various anti-cancer drugs.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Ácido Láctico , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Humanos , Papel , Línea Celular Tumoral
19.
Med ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39341206

RESUMEN

Organoids are three-dimensional (3D) cultures, normally derived from stem cells, that replicate the complex structure and function of human tissues. They offer a physiologically relevant model to address important questions in cancer research. The generation of patient-derived organoids (PDOs) from various human cancers allows for deeper insights into tumor heterogeneity and spatial organization. Additionally, interrogating non-tumor stromal cells increases the relevance in studying the tumor microenvironment, thereby enhancing the relevance of PDOs in personalized medicine. PDOs mark a significant advancement in cancer research and patient care, signifying a shift toward more innovative and patient-centric approaches. This review covers aspects of PDO cultures to address the modeling of the tumor microenvironment, including extracellular matrices, air-liquid interface and microfluidic cultures, and organ-on-chip. Specifically, the role of PDOs as preclinical models in gene editing, molecular profiling, drug testing, and biomarker discovery and their potential for guiding personalized treatment in clinical practice are discussed.

20.
Cell Stem Cell ; 31(10): 1524-1542.e4, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39305899

RESUMEN

Sarcomas are rare malignancies with over 100 distinct histological subtypes. Their rarity and heterogeneity pose significant challenges to identifying effective therapies, and approved regimens show varied responses. Novel, personalized approaches to therapy are needed to improve patient outcomes. Patient-derived tumor organoids (PDTOs) model tumor behavior across an array of malignancies. We leverage PDTOs to characterize the landscape of drug resistance and sensitivity in sarcoma, collecting 194 specimens from 126 patients spanning 24 distinct sarcoma subtypes. Our high-throughput organoid screening pipeline tested single agents and combinations, with results available within a week from surgery. Drug sensitivity correlated with clinical features such as tumor subtype, treatment history, and disease trajectory. PDTO screening can facilitate optimal drug selection and mirror patient outcomes in sarcoma. We could identify at least one FDA-approved or NCCN-recommended effective regimen for 59% of the specimens, demonstrating the potential of our pipeline to provide actionable treatment information.


Asunto(s)
Resistencia a Antineoplásicos , Sarcoma , Humanos , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/patología , Femenino , Masculino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Persona de Mediana Edad , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA