Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Comput Med Imaging Graph ; 116: 102410, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38905961

RESUMEN

Trabecular bone analysis plays a crucial role in understanding bone health and disease, with applications like osteoporosis diagnosis. This paper presents a comprehensive study on 3D trabecular computed tomography (CT) image restoration, addressing significant challenges in this domain. The research introduces a backbone model, Cascade-SwinUNETR, for single-view 3D CT image restoration. This model leverages deep layer aggregation with supervision and capabilities of Swin-Transformer to excel in feature extraction. Additionally, this study also brings DVSR3D, a dual-view restoration model, achieving good performance through deep feature fusion with attention mechanisms and Autoencoders. Furthermore, an Unsupervised Domain Adaptation (UDA) method is introduced, allowing models to adapt to input data distributions without additional labels, holding significant potential for real-world medical applications, and eliminating the need for invasive data collection procedures. The study also includes the curation of a new dual-view dataset for CT image restoration, addressing the scarcity of real human bone data in Micro-CT. Finally, the dual-view approach is validated through downstream medical bone microstructure measurements. Our contributions open several paths for trabecular bone analysis, promising improved clinical outcomes in bone health assessment and diagnosis.


Asunto(s)
Hueso Esponjoso , Aprendizaje Profundo , Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Imagenología Tridimensional/métodos , Hueso Esponjoso/diagnóstico por imagen
2.
Neural Netw ; 172: 106136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266472

RESUMEN

Interictal epileptiform discharges (IED) as large intermittent electrophysiological events are associated with various severe brain disorders. Automated IED detection has long been a challenging task, and mainstream methods largely focus on singling out IEDs from backgrounds from the perspective of waveform, leaving normal sharp transients/artifacts with similar waveforms almost unattended. An open issue still remains to accurately detect IED events that directly reflect the abnormalities in brain electrophysiological activities, minimizing the interference from irrelevant sharp transients with similar waveforms only. This study then proposes a dual-view learning framework (namely V2IED) to detect IED events from multi-channel EEG via aggregating features from the two phases: (1) Morphological Feature Learning: directly treating the EEG as a sequence with multiple channels, a 1D-CNN (Convolutional Neural Network) is applied to explicitly learning the deep morphological features; and (2) Spatial Feature Learning: viewing the EEG as a 3D tensor embedding channel topology, a CNN captures the spatial features at each sampling point followed by an LSTM (Long Short-Term Memories) to learn the evolution of these features. Experimental results from a public EEG dataset against the state-of-the-art counterparts indicate that: (1) compared with the existing optimal models, V2IED achieves a larger area under the receiver operating characteristic (ROC) curve in detecting IEDs from normal sharp transients with a 5.25% improvement in accuracy; (2) the introduction of spatial features improves performance by 2.4% in accuracy; and (3) V2IED also performs excellently in distinguishing IEDs from background signals especially benign variants.


Asunto(s)
Epilepsia , Humanos , Epilepsia/diagnóstico , Electroencefalografía/métodos , Redes Neurales de la Computación , Curva ROC
3.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36592061

RESUMEN

Drug-drug interaction (DDI) prediction identifies interactions of drug combinations in which the adverse side effects caused by the physicochemical incompatibility have attracted much attention. Previous studies usually model drug information from single or dual views of the whole drug molecules but ignore the detailed interactions among atoms, which leads to incomplete and noisy information and limits the accuracy of DDI prediction. In this work, we propose a novel dual-view drug representation learning network for DDI prediction ('DSN-DDI'), which employs local and global representation learning modules iteratively and learns drug substructures from the single drug ('intra-view') and the drug pair ('inter-view') simultaneously. Comprehensive evaluations demonstrate that DSN-DDI significantly improved performance on DDI prediction for the existing drugs by achieving a relatively improved accuracy of 13.01% and an over 99% accuracy under the transductive setting. More importantly, DSN-DDI achieves a relatively improved accuracy of 7.07% to unseen drugs and shows the usefulness for real-world DDI applications. Finally, DSN-DDI exhibits good transferability on synergistic drug combination prediction and thus can serve as a generalized framework in the drug discovery field.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Interacciones Farmacológicas , Descubrimiento de Drogas , Biología Computacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA