Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119821, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159684

RESUMEN

Resistance to endocrine therapy is a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Obesity is associated with the clinical response to ER-positive breast cancers; however, the mechanism underlying obesity-induced resistance to endocrine therapy in ER-positive breast cancers remains unclear. In this study, we investigated the molecular mechanisms underlying obesity-induced resistance to tamoxifen (TAM), an anti-estrogen agent, in the ER-positive breast cancer cell line MCF-7 using differentiated adipocyte-conditioned medium (D-CM). Treatment of the cells with D-CM promoted TAM resistance by reducing TAM-induced apoptosis. The expression levels of the ERα target genes were higher in D-CM-treated cells than those in untreated ones. In contrast, when the cells were cultured in the presence of TAM, the expression levels were decreased, with or without D-CM. Moreover, the expression of the markers for cancer stem-like cells (CSCs) and mammosphere formation was enhanced by co-treating with D-CM and TAM, compared with TAM alone. The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was activated in MCF-7 cells by D-CM treatment, even in the presence of TAM. Inhibition of the PI3K/Akt/mTOR pathway decreased the expression levels of the CSC markers, suppressed mammosphere formation, and resensitized to TAM via inducing apoptosis in D-CM-treated cells. These results indicate that the conditioned medium of differentiated adipocytes promoted TAM resistance by inducing the CSC phenotype through activation of the PI3K/Akt/mTOR pathway in ER-positive breast cancer cells. Thus, the PI3K/Akt/mTOR pathway may be a therapeutic target in obese patients with ER-positive breast cancers.


Asunto(s)
Adipocitos , Neoplasias de la Mama , Resistencia a Antineoplásicos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Medios de Cultivo Condicionados/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Células MCF-7 , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Estrógenos/metabolismo , Apoptosis/efectos de los fármacos , Antineoplásicos Hormonales/farmacología
2.
Breast Cancer ; 31(5): 898-908, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38862868

RESUMEN

BACKGROUND: The mechanism of late recurrence (LR) of estrogen receptor (ER)-positive breast cancer remains unclear, as previous studies have separately investigated "gene expression profiles" and "clinicopathological factors." Thus, this study aimed to evaluate the predictive capability of LR by combining the two independent factors of gene expression profiles (42-gene classifier: 42GC) and clinicopathological factors (Clinical Treatment Score post-5 years: CTS5) in multiple large cohorts. METHODS: We analyzed microarray CEL file data downloaded from public databases of 28 global cohorts. A total of 2,454 patients with ER-positive breast cancer were analyzed for 42GC, and 1,263 of these, with complete clinicopathological data were analyzed for CTS5. RESULTS: In the analysis of recurrent patients, the 42GC LR and CTS5 low-risk group tended to have LR. Notably, in the analysis of patients with and without recurrence, the highest LR rate beyond 5 years was observed in the CTS5 high-risk group. The combination of the 42GC and CTS5 high-risk groups showed the highest LR rate (16.9%), significantly exceeding that of the 42GC non-LR (NLR) and CTS5 low-risk combination (5.41%) (p = 0.038, odds ratio = 3.53). Furthermore, incorporating a third factor, 95GC, potentially reduced the number of patients prioritized for extended hormonal therapy for approximately one-quarter of patients. CONCLUSIONS: Results confirmed that the two factors, gene expression profiles and clinicopathological factors, affect the time of recurrence. It also showed that the biological predisposition for LR (CTS5 low-risk) differed from the high LR rate (CTS5 high-risk). In clinical practice, patients with the 42GC LR and CTS5 high-risk combination should be prioritized for extended hormonal therapy. The addition of CTS5 and 95GC to 42GC allows for better risk classification of LR.


Asunto(s)
Neoplasias de la Mama , Perfilación de la Expresión Génica , Recurrencia Local de Neoplasia , Receptores de Estrógenos , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Receptores de Estrógenos/metabolismo , Persona de Mediana Edad , Transcriptoma , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Adulto , Pronóstico , Regulación Neoplásica de la Expresión Génica
3.
Cancers (Basel) ; 16(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927964

RESUMEN

The PI3K/AKT/mTOR signalling pathway is one of the most frequently activated pathways in breast cancer and also plays a central role in the regulation of several physiologic functions. There are major efforts ongoing to exploit precision medicine by developing inhibitors that target the three kinases (PI3K, AKT, and mTOR). Although multiple compounds have been developed, at present, there are just three inhibitors approved to target this pathway in patients with advanced ER-positive, HER2-negative breast cancer: everolimus (mTOR inhibitor), alpelisib (PIK3CA inhibitor), and capivasertib (AKT inhibitor). Like most targeted cancer drugs, resistance poses a major problem in the clinical setting and is a factor that has frequently limited the overall efficacy of these agents. Drug resistance can be categorised into intrinsic or acquired resistance depending on the timeframe it has developed within. Whereas intrinsic resistance exists prior to a specific treatment, acquired resistance is induced by a therapy. The majority of patients with ER-positive, HER2-negative advanced breast cancer will likely be offered an inhibitor of the PI3K/AKT/mTOR pathway at some point in their cancer journey, with the options available depending on the approval criteria in place and the cancer's mutation status. Within this large cohort of patients, it is likely that most will develop resistance at some point, which makes this an area of interest and an unmet need at present. Herein, we review the common mechanisms of resistance to agents that target the PI3K/AKT/mTOR signalling pathway, elaborate on current management approaches, and discuss ongoing clinical trials attempting to mitigate this significant issue. We highlight the need for additional studies into AKT1 inhibitor resistance in particular.

4.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791297

RESUMEN

Globally, breast cancer is a significant cause of mortality. Recent research focused on identifying compounds regulating the transient receptor potential vanilloid 1 (TRPV1) ion channel activity for the possibility of developing cancer therapeutics. In this study, the antiproliferative properties and mechanisms of action through TRPV1 of Maclura pomifera, a dioecious tree native to the south-central USA, have been investigated. Male and female extracts of spring branch tissues and leaves (500 µg/mL) significantly reduced the viability of MCF-7 and T47D cells by 75-80%. M. pomifera extracts induced apoptosis by triggering intracellular calcium overload via TRPV1. Blocking TRPV1 with the capsazepine antagonist and pretreating cells with the BAPTA-AM chelator boosted cell viability, revealing that M. pomifera phytochemicals activate TRPV1. Both male and female M. pomifera extracts initiated apoptosis through multiple pathways, the mitochondrial, ERK-induced, and endoplasmic reticulum-stress-mediated apoptotic pathways, demonstrated by the expression of activated caspase 3, caspase 9, caspase 8, FADD, FAS, ATF4, and CHOP, the overexpression of phosphorylated PERK and ERK proteins, and the reduction of BCL-2 levels. In addition, AKT and pAKT protein expressions were reduced in female M. pomifera-treated cells, revealing that female plant extract also inhibits PI3K/Akt signaling pathways. These results suggest that phytochemicals in M. pomifera extracts could be promising for developing breast cancer therapeutics.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Proliferación Celular , Extractos Vegetales , Receptores de Estrógenos , Canales Catiónicos TRPV , Humanos , Apoptosis/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Proliferación Celular/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Línea Celular Tumoral , Células MCF-7 , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
5.
Transl Res ; 271: 68-78, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38795691

RESUMEN

BACKGROUND: Progesterone receptor (PR) serves as a crucial prognostic and predictive marker in breast cancer. Nonetheless, the interplay between PR and the tumor immune microenvironment remains inadequately understood. This investigation employs bioinformatics analyses, mouse models, and clinical specimens to elucidate the impact of PR on immune microenvironment and identify potential targets for immunotherapy, furnishing valuable guidance for clinical practice. METHODS: Analysis of immune infiltration score by Xcell between PR-positive and PR-negative breast cancer tumors. Construction of overexpression mouse progesterone receptor (mPgr) EMT-6 cell was to explore the tumor immune microenvironment. Furthermore, anti- Lymphocyte-activation gene 3 (LAG3) therapy aimed to investigate whether PR could influence the effectiveness of immune treatments. RESULTS: Overexpression mPgr inhibited tumor growth in vitro, but promoted tumor growth in Balb/c mouse. Flow cytometry showed that the proportion and cytotoxicity of CD8+T cells in tumor of overexpressing mPgr group were significantly reduced. The significant reduction in overexpressing mPgr group was found in the proportions of LAG3+CD8+ T cells and LAG3+ Treg T cells. Anti-LAG3 treatment resulted in reduced tumor growth in EV group mouse rather than in overexpressing mPgr group. Patents derived tumor fragment (PDTF) also showed higher anti-tumor ability of CD3+T cell in patents' tumor with PR <20% after anti-human LAG3 treatment in vitro. CONCLUSIONS: The mPgr promotes tumor growth by downregulating the infiltration and function of cytotoxic cell. LAG3 may be a target of ER-positive breast cancer immunotherapy. The high expression of PR hinders the sensitivity to anti-LAG3 treatment.


Asunto(s)
Antígenos CD , Neoplasias de la Mama , Regulación hacia Abajo , Proteína del Gen 3 de Activación de Linfocitos , Ratones Endogámicos BALB C , Receptores de Progesterona , Femenino , Animales , Receptores de Progesterona/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Humanos , Línea Celular Tumoral , Antígenos CD/metabolismo , Antígenos CD/genética , Ratones , Microambiente Tumoral/inmunología , Linfocitos T CD8-positivos/inmunología
6.
Cancer Med ; 13(3): e7004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400679

RESUMEN

BACKGROUND: Embryonic pluripotency markers are recognized for their role in ER- BC aggressiveness, but their significance in ER+ BC remains unclear. This study aims to investigate the prevalence of expression of pluripotency markers in ER+ BC and their effect on survival and prognostic indicators. METHODS: We analyzed data of ER+ BC patients from three large cancer datasets to assess the expression of three pluripotency markers (NANOG, SOX-2, and OCT4), and the stem cell marker ALDH1A1. Additionally, we investigated associations between gene expression, through mRNA-Seq analysis, and overall survival (OS). The prevalence of mutational variants within these genes was explored. Using immunohistochemistry (IHC), we examined the expression and associations with clinicopathologic prognostic indicators of the four markers in 81 ER+ BC patients. RESULTS: Through computational analysis, NANOG and ALDH1A1 genes were significantly upregulated in ER+ BC compared to ER- BC patients (p < 0.001), while POU5F1 (OCT4) was downregulated (p < 0.001). NANOG showed an adverse impact on OS whereas ALDH1A1 was associated with a highly significant improved survival in ER+ BC (p = 4.7e-6), except for the PR- and HER2+ subgroups. Copy number alterations (CNAs) ranged from 0.4% to 1.6% in these genes, with the highest rate detected in SOX2. In the IHC study, approximately one-third of tumors showed moderate to strong expression of each of the four markers, with 2-4 markers strongly co-expressed in 56.8% of cases. OCT-4 and ALDH1A1 showed a significant association with a high KI-67 index (p = 0.009 and 0.008, respectively), while SOX2 showed a significant association with perinodal fat invasion (p = 0.017). CONCLUSION: Pluripotency markers and ALDH1A1 are substantially expressed in ER+ BC tumors with different, yet significant, associations with prognostic and survival outcomes. This study suggests these markers as targets for prospective clinical validation studies of their prognostic value and their possible therapeutic roles.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Estudios Prospectivos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Estrógenos , Células Madre Embrionarias/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Retinal-Deshidrogenasa/genética
7.
Int J Lab Hematol ; 46(3): 546-554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38296772

RESUMEN

BACKGROUND: Estrogen receptor (ER)-positive (ER+) breast cancer accounts for approximately 75% of all breast cancers. Tamoxifen, a selective estrogen receptor modulator, is the standard adjuvant treatment. Although better tolerated than aromatase inhibitors, tamoxifen increases the risk of venous thromboembolism (VTE) 1.4-fold. AIM: To assess the hemostatic imbalance induced by tamoxifen in adjuvant treatment of ER+ breast cancer. METHOD: Twenty-five patients in remission from ER+ breast cancer under tamoxifen were included. One hundred and thirty one age- and BMI-matched healthy controls were included to establish reference ranges of thrombin generation assay (TGA) parameters. TGA was performed in the absence and presence of exogenous activated protein C (APC) to calculate the normalized APC sensitivity ratio (nAPCsr), a marker of APC resistance. RESULTS: All TG parameters except the endogenous thrombin potential (ETP) (-APC) were significantly impacted by tamoxifen (p < 0.001). In absence of APC, regardless of TGA parameters, at least 50% of results were outside the reference ranges except for ETP, which was above the upper reference limit in only two individuals. The most impacted parameter was the Peak Height with 52% (-APC) and 80% (+APC) of results above the upper reference range limit, respectively. The nAPCsr was significantly higher in tamoxifen users (mean ± standard deviation = 3.18 ± 0.91) compared to the control group (2.19 ± 0.92, p < 0.0001). CONCLUSION: This observational study showed that patients in remission from ER+ breast cancer taking tamoxifen had altered thrombin generation, as well as an acquired APC resistance. Moreover, this is the first study using the validated ETP-based APC resistance assay in tamoxifen-treated patients.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Tamoxifeno , Humanos , Tamoxifeno/uso terapéutico , Tamoxifeno/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Persona de Mediana Edad , Receptores de Estrógenos/metabolismo , Adulto , Anciano , Hemostasis/efectos de los fármacos , Trombina/metabolismo , Trombina/biosíntesis , Antineoplásicos Hormonales/efectos adversos , Antineoplásicos Hormonales/uso terapéutico , Estudios de Casos y Controles
8.
Genes (Basel) ; 15(1)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254989

RESUMEN

The heterogeneity and intricate cellular architecture of complex cellular ecosystems play a crucial role in the progression and therapeutic response of cancer. Understanding the regulatory relationships of malignant cells at the invasive front of the tumor microenvironment (TME) is important to explore the heterogeneity of the TME and its role in disease progression. In this study, we inferred malignant cells at the invasion front by analyzing single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data of ER-positive (ER+) breast cancer patients. In addition, we developed a software pipeline for constructing intercellular gene regulatory networks (IGRNs), which help to reduce errors generated by single-cell communication analysis and increase the confidence of selected cell communication signals. Based on the constructed IGRN between malignant cells at the invasive front of the TME and the immune cells of ER+ breast cancer patients, we found that a high expression of the transcription factors FOXA1 and EZH2 played a key role in driving tumor progression. Meanwhile, elevated levels of their downstream target genes (ESR1 and CDKN1A) were associated with poor prognosis of breast cancer patients. This study demonstrates a bioinformatics workflow of combining scRNA-seq and ST data; in addition, the study provides the software pipelines for constructing IGRNs automatically (cIGRN). This strategy will help decipher cancer progression by revealing bidirectional signaling between invasive frontline malignant tumor cells and immune cells, and the selected signaling molecules in the regulatory network may serve as biomarkers for mechanism studies or therapeutic targets.


Asunto(s)
Neoplasias de la Mama , Ecosistema , Humanos , Femenino , Perfilación de la Expresión Génica , Transcriptoma/genética , Neoplasias de la Mama/genética , Genes cdc , Microambiente Tumoral/genética
9.
Breast Cancer Res ; 26(1): 3, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173005

RESUMEN

BACKGROUND: Neoadjuvant endocrine therapy (NET) in oestrogen receptor-positive (ER+) /HER2-negative (HER2-) breast cancer allows real-time evaluation of drug efficacy as well as investigation of the biological and molecular changes that occur after estrogenic deprivation. Clinical and pathological evaluation after NET may be used to obtain prognostic and predictive information of tumour response to decide adjuvant treatment. In this setting, clinical scales developed to evaluate response after neoadjuvant chemotherapy are not useful and there are not validated biomarkers to assess response to NET beyond Ki67 levels and preoperative endocrine prognostic index score (mPEPI). METHODS: In this prospective study, we extensively analysed radiological (by ultrasound scan (USS) and magnetic resonance imaging (MRI)) and pathological tumour response of 104 postmenopausal patients with ER+ /HER2- resectable breast cancer, treated with NET for a mean of 7 months prior to surgery. We defined a new score, tumour cellularity size (TCS), calculated as the product of the residual tumour cellularity in the surgical specimen and the tumour pathological size. RESULTS: Our results show that radiological evaluation of response to NET by both USS and MRI underestimates pathological tumour size (path-TS). Tumour size [mean (range); mm] was: path-TS 20 (0-80); radiological-TS by USS 9 (0-31); by MRI: 12 (0-60). Nevertheless, they support the use of MRI over USS to clinically assess radiological tumour response (rad-TR) due to the statistically significant association of rad-TR by MRI, but not USS, with Ki67 decrease (p = 0.002 and p = 0.3, respectively) and mPEPI score (p = 0.002 and p = 0.6, respectively). In addition, we propose that TCS could become a new tool to standardize response assessment to NET given its simplicity, reproducibility and its good correlation with existing biomarkers (such as ΔKi67, p = 0.001) and potential added value. CONCLUSION: Our findings shed light on the dynamics of tumour response to NET, challenge the paradigm of the ability of NET to decrease surgical volume and point to the utility of the TCS to quantify the scattered tumour response usually produced by endocrine therapy. In the future, these results should be validated in independent cohorts with associated survival data.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Antígeno Ki-67 , Reproducibilidad de los Resultados , Receptores de Estrógenos/análisis , Receptor ErbB-2
10.
Breast Cancer Res Treat ; 203(3): 613-625, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37924380

RESUMEN

PURPOSE: Endocrine therapy is the anti-tumor therapy for human breast cancer but endocrine resistance was a major burden. It has been reported that Palbociclib and fulvestrant can be used in combination for the treatment of patients who are experiencing endocrine resistance. However, the underlying mechanism is unclear. In this study, we aimed to investigate the mechanism by which Palbocicilib affected ER-positive breast cancer, combined with fulvestrant. METHODS: We first detected the effect of palbociclib on cell survival, growth and cycle distribution separately by MTT, colony formation and flow cytometry. Then SNHG17 was screened as palbociclib-targeted LncRNA by LncRNA-seq, and the SNHG17-targeted mRNAs were selected by mRNA-seq for further determination. Subsequently, the underlying mechanism by which palbociclib promoted the cytotoxicity of fulvestrant was confirmed by qRT-PCR, western blot, and immunoprecipitation. Eventually, the xenograft model and immunohistochemistry experiments were used to validate the sensitization effect of palbociclib on fulvestrant and its mechanism in vivo. RESULTS: Palbociclib significantly enhanced the cytotoxicity of fulvestrant in fulvestrant-resistant breast cancer cell lines. Interestingly, this might be related to the lncRNA SNHG17 and the Hippo signaling pathway. And our subsequent western blotting experiments confirmed that overexpressing SNHG17 induced the down-regulation of LATS1 and up-regulated YAP expression. Furthermore, we found that the increased sensitivity of breast cancer cells was closely associated with the LATS1-mediated degradation of ER-α. The following animal experiments also indicated that overexpressing SNHG17 obviously impaired the anti-cancer effect of co-treatment of palbociclib and fulvestrant accompanied by decreased LATS1 and increased ER-α levels. CONCLUSION: Palbociclib might sensitize the cytotoxicity of fulvestrant in ER-positive breast cancer cells by down-regulating SNHG17 expression, and then resulted in the LATS1-inactivated oncogene YAP and LATS1-mediated degradation of ER-α.


Asunto(s)
Neoplasias de la Mama , Piperazinas , Piridinas , ARN Largo no Codificante , Animales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , ARN Largo no Codificante/genética , Receptores de Estrógenos/metabolismo , Proteínas Serina-Treonina Quinasas , Ubiquitinas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
11.
Eur J Hybrid Imaging ; 7(1): 23, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38105347

RESUMEN

PURPOSE: To compare the diagnostic performance of 18F-fluorodeoxyglucose (18F-FDG) and 18F-fluoroestradiol (18F-FES) positron emission tomography/computed tomography (PET/CT) for initial staging of estrogen receptor (ER) positive breast cancer. METHODS: Twenty-eight patients with ER-positive breast cancer underwent 18F-FDG and 18F-FES PET/CT for initial staging. Diagnostic performance and concordance rates were analyzed for both radiotracers. Semiquantitative parameters of maximum standardized uptake value (SUVmax) and tumor-to-normal ratio (T/N ratio) were compared using Wilcoxon signed-rank test. Factors potentially affecting the degree of radiotracer uptake were analyzed by multi-level linear regression analysis. RESULTS: The overall diagnostic performance of 18F-FES was comparable to 18F-FDG, except for higher specificity and NPV, with sensitivity, specificity, PPV, NPV, and accuracy of 87.56%, 100%, 100%, 35.14%, and 88.35%, respectively, for 18F-FES and 83.94%, 30.77%, 94.74%, 11.43%, and 95.37%, respectively, for 18F-FDG. Diagnostic performance of strong ER expression was better in 18F-FES but worse for 18F-FDG. There was a correlation of mucinous cell type and Allred score 7-8 with 18F-FES uptake, with correlation coefficients of 26.65 (19.28, 34.02), 5.90 (- 0.005, 11.81), and p-value of < 0.001, 0.05, respectively. Meanwhile, luminal B and Ki-67 were related to 18F-FDG uptake, with correlation coefficients of 2.76 (1.10, 0.20), 0.11 (0.01, 0.2), and p-value of 0.018, 0.025, respectively. CONCLUSION: Diagnostic performance of 18F-FES is comparable to 18F-FDG, but better for strongly ER-positive breast cancer. Combination of 18F-FES and 18F-FDG would potentially overcome the limitations of each tracer with more accurate staging.

12.
Exp Biol Med (Maywood) ; 248(17): 1507-1517, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688505

RESUMEN

Breast cancer (BC) continues to be the most common cancer in the women worldwide. Since estrogen receptor (ER)-positive BC accounts for the majority of newly diagnosed cases, endocrine therapy is advised to utilize either tamoxifen (Tam) or aromatase inhibitors. The use of Tam as a monotherapy or in conjunction with an aromatase inhibitor following two or three years of endocrine therapy has long been recommended. When used adjuvantly, Tam medication reduces BC mortality and relapses, while it extends survival times in metastatic BC when used in conjunction with other treatments. Unfortunately, the efficiency of Tam varies considerably. This study was conducted to explore the influence of genetic polymorphisms in CYP2C19 gene on Tam's pharmacogenetics and pharmacokinetics in estrogen-positive BC patients. Data from healthy, unrelated individuals (n = 410; control group) and ER-positive BC patients (n = 430) receiving 20 mg of Tam per day were recruited. Steady-state plasma concentrations of Tam and its three metabolites were quantified using the high-performance liquid chromatography in the patients. The CYP2C19 polymorphisms were genotyped using an Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR) approach. More than 65% of healthy individuals were extensive metabolizers (*1/*1) for CYP2C19, whereas more than 70% of ER-positive BC patients were rapid and ultrarapid metabolizers (*1/17*, *17/17*). The polymorphism CYP2C19*17 is significantly associated with higher 4-hydroxytamoxifen (4-OH-Tam). Patients with the *17/*17 genotype exhibited 1- to 1.5-fold higher 4-OH-Tam, which was also high in patients with the *1/*2 and *2/*2 genotypes.


Asunto(s)
Neoplasias de la Mama , Citocromo P-450 CYP2C19 , Tamoxifeno , Femenino , Humanos , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Estrógenos , Pakistán , Tamoxifeno/uso terapéutico
13.
Ann Oncol ; 34(11): 970-986, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37683978

RESUMEN

The 18th St Gallen International Breast Cancer Conference held in March 2023, in Vienna, Austria, assessed significant new findings for local and systemic therapies for early breast cancer with a focus on the evaluation of multimodal treatment options. The emergence of more effective, innovative agents in both the preoperative (primary or neoadjuvant) and post-operative (adjuvant) settings has underscored the pivotal role of a multidisciplinary approach in treatment decision making, particularly when selecting systemic therapy for an individual patient. The importance of multidisciplinary discussions regarding the clinical benefits of interventions was explicitly emphasized by the consensus panel as an integral part of developing an optimal treatment plan with the 'right' degree of intensity and duration. The panelists focused on controversies surrounding the management of common ductal/no special type and lobular breast cancer histology, which account for the vast majority of breast tumors. The expert opinion of the panelists was based on interpretations of available data, as well as current practices in their professional environments, personal and socioeconomic factors affecting patients, and cognizant of varying reimbursement and accessibility constraints around the world. The panelists strongly advocated patient participation in well-designed clinical studies whenever feasible. With these considerations in mind, the St Gallen Consensus Conference aims to offer guidance to clinicians regarding appropriate treatments for early-stage breast cancer and assist in balancing the realistic trade-offs between treatment benefit and toxicity, enabling patients and clinicians to make well-informed choices through a shared decision-making process.


Asunto(s)
Neoplasias de la Mama , Carcinoma Lobular , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Terapia Combinada , Terapia Neoadyuvante , Adyuvantes Inmunológicos/uso terapéutico
14.
Adv Sci (Weinh) ; 10(25): e2206663, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37404090

RESUMEN

Endocrine therapy is the frontline treatment for estrogen receptor (ER) positive breast cancer patients. However, the primary and acquired resistance to endocrine therapy drugs remain as a major challenge in the clinic. Here, this work identifies an estrogen-induced lncRNA, LINC02568, which is highly expressed in ER-positive breast cancer and functional important in cell growth in vitro and tumorigenesis in vivo as well as endocrine therapy drug resistance. Mechanically, this work demonstrates that LINC02568 regulates estrogen/ERα-induced gene transcriptional activation in trans by stabilizing ESR1 mRNA through sponging miR-1233-5p in the cytoplasm. Meanwhile, LINC02568 contributes to tumor-specific pH homeostasis by regulating carbonic anhydrase CA12 in cis in the nucleus. The dual functions of LINC02568 together contribute to breast cancer cell growth and tumorigenesis as well as endocrine therapy drug resistance. Antisense oligonucleotides (ASO) targeting LINC02568 significantly inhibits ER-positive breast cancer cell growth in vitro and tumorigenesis in vivo. Furthermore, combination treatment with ASO targeting LINC02568 and endocrine therapy drugs or CA12 inhibitor U-104 exhibits synergistic effects on tumor growth. Taken together, the findings reveal the dual mechanisms of LINC02568 in regulating ERα signaling and pH homeostasis in ER-positive breast cancer, and indicated that targeting LINC02568 might represent a potential therapeutic avenue in the clinic.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Receptores de Estrógenos/uso terapéutico , ARN Largo no Codificante/genética , Línea Celular Tumoral , Estrógenos/uso terapéutico , Resistencia a Antineoplásicos/genética , Carcinogénesis
15.
Genomics Inform ; 21(2): e20, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37415453

RESUMEN

Aromatase inhibitors (AI) are drugs that are widely used in treating estrogen receptor (ER)-positive breast cancer patients. Drug resistance is a major obstacle to aromatase inhibition therapy. There are diverse reasons behind acquired AI resistance. This study aims at identifying the plausible cause of acquired AI resistance in patients administered with non-steroidal AIs (anastrozole and letrozole). We used genomic, transcriptomic, epigenetic, and mutation data of breast invasive carcinoma from The Cancer Genomic Atlas database. The data was then separated into sensitive and resistant sets based on patients' responsiveness to the non-steroidal AIs. A sensitive set of 150 patients and a resistant set of 172 patients were included for the study. These data were collectively analyzed to probe into the factors that might be responsible for AI resistance. We identified 17 differentially regulated genes (DEGs) among the two groups. Then, methylation, mutation, miRNA, copy number variation, and pathway analyses were performed for these DEGs. The top mutated genes (FGFR3, CDKN2A, RNF208, MAPK4, MAPK15, HSD3B1, CRYBB2, CDC20B, TP53TG5, and MAPK8IP3) were predicted. We also identified a key miRNA - hsa-mir-1264 regulating the expression of CDC20B. Pathway analysis revealed HSD3B1 to be involved in estrogen biosynthesis. This study reveals the involvement of key genes that might be associated with the development of AI resistance in ER-positive breast cancers and hence may act as a potential prognostic and diagnostic biomarker for these patients.

16.
ACS Nano ; 17(12): 11855-11868, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294705

RESUMEN

Proteolysis-targeting chimera (PROTAC) is an emerging technique for degrading disease-related proteins. However, the current PROTACs suffer from inadequate solubility and lack of organ targeting, which has hampered their druggability. Herein, we report direct and sustained delivery of PROTACs using microneedle patches to the diseased tissues. In this study, we use an estrogen receptor alpha (ERα)-degrading PROTAC, ERD308, to treat ER-positive breast cancer. A pH-sensitive micelle, MPEG-poly(ß-amino ester) (MPEG-PAE), is used to encapsulate ERD308 along with an FDA-approved CDK4/6 inhibitor, Palbociclib (Pal), before loading into biodegradable microneedle patches. These patches enable prolonged drug release into deep tumors, maintaining therapeutic levels for at least 4 days, with an excellent drug retention rate of over 87% in tumors. ERD308 released from the microneedle patches can sufficiently degrade ERα in MCF7 cells. Co-administration of ERD308 and Palbociclib exhibits excellent efficacy by over 80% tumor reduction as well as a good safety profile. Our work demonstrates the feasibility and proof-of-concept therapeutic potential of using microneedle patches to directly deliver PROTACs into tumors.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Humanos , Femenino , Receptor alfa de Estrógeno/metabolismo , Quimera Dirigida a la Proteólisis , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos/métodos , Proteolisis
17.
Mod Pathol ; 36(10): 100254, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37380057

RESUMEN

Tumor-associated stroma in breast cancer (BC) is complex and exhibits a high degree of heterogeneity. To date, no standardized assessment method has been established. Artificial intelligence (AI) could provide an objective morphologic assessment of tumors and stroma, with the potential to identify new features not discernible by visual microscopy. In this study, we used AI to assess the clinical significance of (1) stroma-to-tumor ratio (S:TR) and (2) the spatial arrangement of stromal cells, tumor cell density, and tumor burden in BC. Whole-slide images of a large cohort (n = 1968) of well-characterized luminal BC cases were examined. Region and cell-level annotation was performed, and supervised deep learning models were applied for automated quantification of tumor and stromal features. S:TR was calculated in terms of surface area and cell count ratio, and the S:TR heterogeneity and spatial distribution were also assessed. Tumor cell density and tumor size were used to estimate tumor burden. Cases were divided into discovery (n = 1027) and test (n = 941) sets for validation of the findings. In the whole cohort, the stroma-to-tumor mean surface area ratio was 0.74, and stromal cell density heterogeneity score was high (0.7/1). BC with high S:TR showed features characteristic of good prognosis and longer patient survival in both the discovery and test sets. Heterogeneous spatial distribution of S:TR areas was predictive of worse outcome. Higher tumor burden was associated with aggressive tumor behavior and shorter survival and was an independent predictor of worse outcome (BC-specific survival; hazard ratio: 1.7, P = .03, 95% CI, 1.04-2.83 and distant metastasis-free survival; hazard ratio: 1.64, P = .04, 95% CI, 1.01-2.62) superior to absolute tumor size. The study concludes that AI provides a tool to assess major and subtle morphologic stromal features in BC with prognostic implications. Tumor burden is more prognostically informative than tumor size.

18.
Cell Signal ; 108: 110723, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37216999

RESUMEN

Tamoxifen (Tam) has been the first-line therapy for estrogen receptor-positive breast cancer since its FDA-approval in 1998. Tam-resistance, however, presents a challenge and the mechanisms that drive it have yet to be fully elucidated. The non-receptor tyrosine kinase BRK/PTK6 is a promising candidate as previous research has shown that BRK knockdown resensitizes Tam-resistant breast cancer cells to the drug. However, the specific mechanisms that drive its importance to resistance remain to be investigated. Here, we investigate the role and mechanism of action of BRK in Tam-resistant (TamR), ER+, and T47D breast cancer cells using phosphopeptide enrichment and high throughput phopshoproteomics analysis. We conducted BRK-specific shRNA knockdown in TamR T47D cells and compared phosphopeptides identified in these cells with their Tam-resistant counterpart and parental, Tam-sensitive cells (Par). A total of 6492 STY phosphosites were identified. Of these sites, 3739 high-confidence pST sites and 118 high-confidence pY sites were analyzed for significant changes in phosphorylation levels to identify pathways that were differentially regulated in TamR versus Par and to investigate changes in these pathways when BRK is knocked down in TamR. We observed and validated increased CDK1 phosphorylation at Y15 in TamR cells compared to BRK-depleted TamR cells. Our data suggest that BRK is a potential Y15-directed CDK1 regulatory kinase in Tam-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Proteínas Tirosina Quinasas , Tamoxifeno , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Fosforilación , Transducción de Señal , Tamoxifeno/uso terapéutico , Tirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo
19.
Discov Oncol ; 14(1): 28, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36853387

RESUMEN

Circumvention of apoptosis by the elevation of antiapoptotic proteins is an important cause of carcinogenesis. The induction of antiapoptotic genes, including B-cell CLL/lymphoma 2 (BCL2), BCL2 related protein A1 (BCL2A1), BCL2 like 1 (BCL2L1), BCL2L2, and myeloid cell leukemia 1 (MCL1), has been observed in multiple cancers, including breast cancer. However, the underlying mechanisms of their overexpression are still being investigated. Here, we revealed that BCL2, BCL2A1, BCL2L2, and MCL1 but not BCL2L1 were overexpressed in estrogen receptor (ER)-positive breast cancer cells and clinical biopsies. Stimulation with estrogen in ER-positive cell lines resulted in a dose-dependent increase in BCL2, BCL2A1, BCL2L2, and MCL1 mRNA levels. Molecular investigation revealed that nuclear factor kappa B (NF-κB) recruited histone acetyltransferase p300 and nuclear receptor coactivator 3 (NCOA3) to form a transcriptional complex. This complex docked the promoters of BCL2, BCL2A1, BCL2L2, and MCL1 and activated their expression. Interestingly, estrogen exposure dose-dependently activated NCOA3. Depletion of the NCOA3-p300-NF-κB components or blockage of NCOA3 function with inhibitors (gossypol and bufalin) in ER-positive cells suppressed BCL2, BCL2A1, BCL2L2, and MCL1 expression, while also decreasing cell viability, colony formation, cell invasion, and tumor growth. Collectively, our results demonstrate an upstream signaling that activates four antiapoptotic genes in ER-positive breast cancer cells. Importantly, our results also imply that targeting NCOA3 or blocking the assembly of the NCOA3-p300-NF-κB complex may be promising therapeutic strategies for treating ER-positive breast cancer.

20.
Front Immunol ; 14: 1308807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259466

RESUMEN

Due to the therapeutic resistance of endocrine therapy and the limited efficacy of immune checkpoint inhibitors in estrogen receptor (ER)-positive breast cancer (BRCA), there is an urgent need to develop novel prognostic markers and understand the regulation of the tumor immune microenvironment (TIME). As a matricellular protein, CYR61 has been shown to either promote or suppress cancer progression depending on cancer types. However, how CYR61 functions in ER-positive BRCA remains elusive. In this study, we comprehensively analyzed the expression of CYR61 in BRCA based on the TCGA and METABRIC databases. Our findings showed that the expression of CYR61 is downregulated in different subtypes of BRCA, which is associated with elevated promoter methylation levels and predicts bad clinical outcomes. By comparing the high or low CYR61 expression groups of ER-positive BRCA patients, we found that CYR61 is intimately linked to the expression of genes involved in tumor-suppressive pathways, such as the TGF-ß and TNF signaling pathways, and genes related to cytokine-receptor interaction that may regulate cancer immunity. Moreover, reduced CYR61 expression is associated with an altered TIME that favors cancer progression. Finally, experimental analyses ascertained that CYR61 is downregulated in clinical BRCA tissues compared to matched normal breast tissues. Furthermore, CYR61 is able to impede the proliferation and colony formation of ER-positive BRCA cells. In summary, our study reveals that CYR61 could serve as a novel prognostic marker for ER-positive BRCA, and function as an inhibitor of cancer progression by both acting on cancer cells and remodeling the TIME.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Pronóstico , Mama , Citocinas , Receptores de Estrógenos , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA