Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 307(Pt 1): 135689, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35839988

RESUMEN

Microbial electron output capacity is critical for organic contaminants biodegradation. Herein, original C. freundii JH could oxidate formate in anaerobic respiration, but lack the ability to degrade sulfamethoxazole (SMX). While the incorporation of Pd(0) could effectively improve the electron output via improving the combination between flavins and c-type cytochromes (c-Cyts), increasing the activities of key enzymes (formate dehydrogenase, hydrogenase, F0F1-ATPases), etc. More importantly, the presence of Pd(0) caused the NADH dehydrogenase (complex I) nearly in idle, and triggered the decrease of NADH/NAD+ ratio and increase of H+-efflux transmembrane gradient, eventually resulting in the electrons diverting from CoQ-involved long respiratory chain (decreasing from 91.67% to 36.25%) to FDH/Hases-based hydrogen-producing short chain (increasing from 22.44% to 84.88%), which further intensified the electron output. Above changes effectively launched and guaranteed the high-level SMX degradation by palladized C. freundii JH, alleviating the ecotoxicity of SMX in aquatic and terrestrial environments. These conclusions provided the new view to regulate the microbial electron output behaviors.


Asunto(s)
Formiato Deshidrogenasas , Hidrogenasas , Adenosina Trifosfatasas/metabolismo , Citocromos/metabolismo , Transporte de Electrón , Electrones , Flavinas/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiatos , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , Sulfametoxazol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA