Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Food Res Int ; 192: 114719, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147545

RESUMEN

Two firewood species (beech and olive) were used for grilling three meat types (lamb, pork, and veal) to assess their influence on the sensorial properties of meat. A multimethod approach was adopted, including sensory evaluation with consumers and two analytical techniques to characterize the volatile fraction (Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry [SPME-GC/MS] and electronic nose [e-nose]). The sensory session included three pairwise preference tests (one for each type of meat), an overall liking test, a Rate-All-That-Apply test, and a questionnaire on the interest and perceived value of using sustainably certified firewood in food preparation. The firewood species significantly affected the perception of a few crucial attributes. In particular, olive wood increased the roasted meat flavor perception in lamb and veal, while beech wood increased the perceived intensity of a vegetable/herbaceous flavor in veal. No effect of firewood was observed on preference within each pair of meat samples. Lamb was the significantly most liked meat by consumers, followed by pork; veal was the least liked meat type. Positive and negative drivers of preference were discussed. 36 volatile organic compounds were identified from SPME-GC/MS in meats. Congruently with sensory data, the two veal samples showed a greater distance in terms of volatile composition. Relative distances among samples on maps obtained from SPME-GC/MS and the e-nose were similar. This multi-method approach innovatively showed the potential of using firewood as a 'gastronomic' tool to sensorially characterize and valorize cooked meat.


Asunto(s)
Comportamiento del Consumidor , Culinaria , Cromatografía de Gases y Espectrometría de Masas , Gusto , Compuestos Orgánicos Volátiles , Madera , Animales , Humanos , Culinaria/métodos , Compuestos Orgánicos Volátiles/análisis , Adulto , Masculino , Madera/química , Femenino , Adulto Joven , Porcinos , Ovinos , Persona de Mediana Edad , Microextracción en Fase Sólida/métodos , Carne de Cerdo/análisis , Nariz Electrónica , Carne/análisis , Carne Roja/análisis , Olea/química , Odorantes/análisis , Preferencias Alimentarias
2.
Sci Rep ; 14(1): 19229, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164410

RESUMEN

A set of nine unique tobacco extract samples was analyzed using a self-developed electronic nose (E-nose) system, a commercial E-nose, and gas chromatography-mass spectrometry (GC-MS). The evaluation employed principal component analysis, statistical quality control, and soft independent modeling of class analogies (SIMCA). These multifaceted statistical methods scrutinized the collected data. Subsequently, a quality control model was devised to assess the stability of the sample quality. The results showed that the custom E-nose system could successfully distinguish between tobacco extracts with similar odors. After further training and the development of a quality control model for accepted tobacco extracts, it was possible to identify samples with normal and abnormal quality. To further validate our E-nose and extend its use within the tobacco industry, we collected and accurately classified the flavors of different tobacco leaf positions, with a remarkable accuracy rate of 0.9744. This finding facilitates the practical application of our E-nose system for the efficient identification of tobacco leaf positions.


Asunto(s)
Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas , Nicotiana , Hojas de la Planta , Nicotiana/química , Hojas de la Planta/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Análisis de Componente Principal , Control de Calidad , Aromatizantes/análisis
3.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123852

RESUMEN

Artificial olfaction, also known as an electronic nose, is a gas identification device that replicates the human olfactory organ. This system integrates sensor arrays to detect gases, data acquisition for signal processing, and data analysis for precise identification, enabling it to assess gases both qualitatively and quantitatively in complex settings. This article provides a brief overview of the research progress in electronic nose technology, which is divided into three main elements, focusing on gas-sensitive materials, electronic nose applications, and data analysis methods. Furthermore, the review explores both traditional MOS materials and the newer porous materials like MOFs for gas sensors, summarizing the applications of electronic noses across diverse fields including disease diagnosis, environmental monitoring, food safety, and agricultural production. Additionally, it covers electronic nose pattern recognition and signal drift suppression algorithms. Ultimately, the summary identifies challenges faced by current systems and offers innovative solutions for future advancements. Overall, this endeavor forges a solid foundation and establishes a conceptual framework for ongoing research in the field.


Asunto(s)
Nariz Electrónica , Gases , Gases/análisis , Humanos , Algoritmos , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación
4.
Talanta ; 279: 126551, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39018948

RESUMEN

This article presents the development of an artificial olfactory bulb (OB) using an electronic nose with thermally modulated metal-oxide sensors. Inspired by animal OBs, our approach employs thermal modulation to replicate the spatial encoding patterns of glomeruli clusters and subclusters. This new approach enhances the classification capabilities of traditional electronic noses and offers new insights for biomimetic olfaction. Molecular receptive range (MRR) analysis confirms that our artificial OB effectively mimics the glomerular distribution of animal OBs. Additionally, the incorporation of a short axon cell (SAC) network, inspired by the animal olfactory system, significantly improves lifetime sparseness and qualitative ability of the artificial OB through extensive lateral inhibition, providing a theoretical framework for enhanced olfactory performance.

5.
Food Chem X ; 23: 101543, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022783

RESUMEN

Dushan shrimp sour paste (DSSP), a traditional Guizhou condiment, and its unique flavor is determined by the fermentation microbiota. However, the relationship between the microbiota structure and its flavor remains unclear. This study identified 116 volatile flavor compounds using electronic nose and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) techniques, of which 19 were considered as key flavor compounds, mainly consisting of 13 esters and 1 alcohol. High-throughput sequencing technique, the bacterial community structure of nine groups of DSSPs was determined. Further analysis revealed Vagococcus, Lactococcus, and Tepidimicrobium as key bacteria involved in flavor formation. This study contributes to our understanding of the relationship between bacterial communities and the flavor formation, and provides guidance for screening starter culture that enhance the flavor of DSSP in industrial production.

6.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000905

RESUMEN

In the electronic nose (E-nose) systems, gas type recognition and accurate concentration prediction are some of the most challenging issues. This study introduced an innovative pattern recognition method of time-frequency attention convolutional neural network (TFA-CNN). A time-frequency attention block was designed in the network, aiming to excavate and effectively integrate the temporal and frequency domain information in the E-nose signals to enhance the performance of gas classification and concentration prediction tasks. Additionally, a novel data augmentation strategy was developed, manipulating the feature channels and time dimensions to reduce the interference of sensor drift and redundant information, thereby enhancing the model's robustness and adaptability. Utilizing two types of metal-oxide-semiconductor gas sensors, this research conducted qualitative and quantitative analysis on five target gases. The evaluation results showed that the classification accuracy could reach 100%, and the coefficient of the determination (R2) score of the regression task was up to 0.99. The Pearson correlation coefficient (r) was 0.99, and the mean absolute error (MAE) was 1.54 ppm. The experimental test results were almost consistent with the system predictions, and the MAE was 1.39 ppm. This study provides a method of network learning that combines time-frequency domain information, exhibiting high performance in gas classification and concentration prediction within the E-nose system.

7.
Food Chem ; 460(Pt 2): 140515, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067433

RESUMEN

Tea polyphenols transform under processing methods, but a systematic study on their changes in the same large-leaf tea cultivar is lacking. Here, Camellia sinensis var. assamica cv. Yunkang-10 leaves underwent six processing methods and were assessed using optimized nontargeted (UHPLC-Q-Exactive Orbitrap-MS) and targeted (UHPLC-QqQ-MS) polyphenomics, along with molecular networking analysis. 903 and 52 polyphenolic compounds (catechins, flavones and flavonols, and phenolic acids) were respectively relatively and absolutely quantified for the first time. Dark and black teas, with the lowest polyphenol content, differed from the other four tea types, although variations existed among these four teas. However, some flavonol and flavone aglycones (e.g. kaempferol, apigenin), as well as some phenolic acids (e.g. ellagic acid, gallic acid), exhibited higher levels in dark and black teas. Correlations between polyphenolic composition and electronic sensory characteristics were observed using E-tongue and E-eye. This study enriches understanding of polyphenol profiles in Chinese teas post diverse processing.

8.
Foods ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998469

RESUMEN

In this study, the flavor characteristics and physicochemical properties of salted egg yolk (SEY) under different cooking methods (steaming/baking/microwaving) were investigated. The microwave-treated SEY exhibited the highest levels of salt content, cooking loss, lightness, and b* value, as well as the highest content of flavor amino acids. A total of 31, 27, and 29 volatile compounds were detected after steaming, baking, and microwave treatments, respectively, covering 10 chemical families. The partial least squares discriminant analysis confirmed that 21 compounds, including octanol, pyrazine, 2-pentyl-furan, and 1-octen-3-ol, were the key volatile compounds affecting the classification of SEY aroma. The electronic nose revealed a sharp distinction in the overall flavor profile of SEY with varying heat treatments. However, no dramatic differences were observed in terms of fatty acid composition. Microwave treatment was identified as presenting a promising approach for enhancing the aroma profile of SEY. These findings contribute novel insights into flavor evaluation and the development of egg products as ingredients for thermal processing.

9.
J Microbiol Biotechnol ; 34(8): 1-7, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39049474

RESUMEN

Starter cultures used during the fermentation of malt wort can increase the sensory characteristics of the resulting beverages. This study aimed to explore the aroma composition and flavor recognition of malt wort beverages fermented with lactic acid bacteria (Levilactobacillus brevis WiKim0194) isolated from kimchi, using metabolomic profiling and electronic tongue and nose technologies. Four sugars and five organic acids were detected using high-performance liquid chromatography, with maltose and lactic acid present in the highest amounts. Additionally, etongue measurements showed a significant increase in the sourness (AHS), sweetness (ANS), and umami (NMS) sensors, whereas bitterness (SCS) significantly decreased. Furthermore, 20 key aroma compounds were identified using gas chromatography-mass spectrometry and 15 key aroma flavors were detected using an electronic nose. Vanillin, citronellol, and ß-damascenone exhibited significant differences in the flavor profile of the beverage fermented by WiKim0194, which correlated with floral, fruity, and sweet notes. Therefore, we suggest that an appropriate starter culture can improve sensory characteristics and predict flavor development in malt wort beverages.

10.
J Food Sci ; 89(8): 5016-5030, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980966

RESUMEN

To improve the classification and regression performance of the total volatile basic nitrogen (TVB-N) and acid value (AV) of different freshness fish meal samples detected by a metal-oxide semiconductor electronic nose (MOS e-nose), 402 original features, 62 manually extracted features, manually extracted and selected features by the RFRFE method, and the features extracted by the long short-term memory (LSTM) network were used as inputs to identify the freshness. The classification performance of the freshness grades and the estimation performance of the TVB-N and AV values of fish meal with different freshness were compared. According to the sensor response curve, preprocessing and feature extraction steps were first applied to the original data. Then, five classification algorithms and four regression algorithms were used for modeling. The results showed that a total of 30 features were extracted using the LSTM network, and the number of extracted features was significantly reduced. In the classification, the highest accuracy rate of 95.4% was obtained using the support vector machine method. In the regression, the least squares support vector regression method obtained the best root mean square error (RMSE). The coefficient of determination (R2), RMSE, and relative standard deviation (RSD) between the predicted value of TVBN and the actual value were 0.963, 11.01, and 7.9%, respectively. The R2, RMSE, and RSD between the predicted value of AV and the actual value were 0.972, 0.170, and 6.05%, respectively. The LSTM feature extraction method provided a new method and reference for feature extraction using an E-nose to identify other animal-derived material samples.


Asunto(s)
Nariz Electrónica , Productos Pesqueros , Semiconductores , Productos Pesqueros/análisis , Animales , Algoritmos , Nitrógeno/análisis , Metales/análisis , Máquina de Vectores de Soporte , Óxidos/química , Peces
11.
ACS Sens ; 9(7): 3531-3539, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38996224

RESUMEN

Metal-organic frameworks (MOFs) are a promising class of porous materials for the design of gas sensing arrays, which are often called electronic noses. Due to their chemical and structural tunability, MOFs are a highly diverse class of materials that align well with the similarly diverse class of volatile organic compounds (VOCs) of interest in many gas detection applications. In principle, by choosing the right combination of cross-sensitive MOFs, layered on appropriate signal transducers, one can design an array that yields detailed information about the composition of a complex gas mixture. However, despite the vast number of MOFs from which one can choose, gas sensing arrays that rely too heavily on distinct chemistries can be impractical from the cost and complexity perspective. On the other hand, it is difficult for small arrays to have the desired selectivity and sensitivity for challenging sensing applications, such as detecting weakly adsorbing gases with weak signals, or conversely, strongly adsorbing gases that readily saturate MOF pores. In this work, we employed gas adsorption simulations to explore the use of a variable pressure sensing array as a means of improving both sensitivity and selectivity as well as increasing the information content provided by each array. We studied nine different MOFs (HKUST-1, IRMOF-1, MgMOF-74, MOF-177, MOF-801, NU-100, NU-125, UiO-66, and ZIF-8) and four different gas mixtures, each containing nitrogen, oxygen, carbon dioxide, and exactly one of the hydrogen, methane, hydrogen sulfide, or benzene. We found that by lowering the pressure, we can limit the saturation of MOFs, and by raising the pressure, we can concentrate weakly adsorbing gases, in both cases, improving gas detection with the resulting arrays. In many cases, changing the system pressure yielded a better improvement in performance (as measured by the Kullback-Liebler divergence of gas composition probability distributions) than including additional MOFs. We thus demonstrated and quantified how sensing at multiple pressures can increase information content and cross-sensitivity in MOF-based arrays while limiting the number of unique materials needed in the device.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Gases/análisis , Gases/química , Compuestos Orgánicos Volátiles/análisis , Adsorción , Presión
12.
Food Chem X ; 22: 101443, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38846797

RESUMEN

Consumers rely on flavor characteristics to distinguish different types of Qingke Baijiu (QKBJ). Clarifying QKBJ's traits enhances its recognition and long-term growth. Thus, this study analyzed eight QKBJ samples from different regions of Tibet (Lhasa, Sannan, Shigatse, and Qamdo) using GC-MS, electronic nose and electronic tongue. The radar charts of the electronic tongue and electronic nose revealed highly similar profiles for all eight samples. Fifteen common compounds were found in all samples, with the main alcohol compounds being 3-Methyl-1-butanol, 1-hexanol, isobutanol, 1-butanol, 1-nonanol, and phenylethyl alcohol, imparting fruity, floral, and herbal aromas. However, the Sannan samples had higher total alcohol content than total ester content, emphasizing bitterness. Lhasa1 exhibited the most prominent sweetness, Lhasa2 the most noticeable sourness, and Qamdo the most pronounced umami. Lhasa3 and Lhasa4 had total acid content second only to total ester content. Tyd had the highest alkanes, while Lhasa had most aldehydes among samples.

13.
Food Chem X ; 22: 101505, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38883915

RESUMEN

In this study, we investigated the volatile flavor compounds and sensory perceptions of Yanbian-style sauced beef prepared from raw meats subjected to different treatments (hot fresh, chilled, and frozen beef). The results indicated that the treatment of raw beef significantly impacted the quality and flavor of sauced beef. Sauced chilled beef (CRSB) exhibited the highest content of fatty acids and total amino acids. A total of 48 volatile compounds were identified. Moreover, a relative odor activity value analysis identified hexanal, nonanal, heptanal, 1-octen-3-ol, and 2,3-octanedione as the characteristic flavor compounds in Yanbian-style sauced beef. The sensory evaluation demonstrated that CRSB was the most palatable and flavorful. Additionally, correlation loading plot analysis indicated strong correlations between sensory evaluation, fatty acids, amino acids, and volatile flavor compounds. These results suggest that chilled beef meat is the best raw material for the production of Yanbian-style sauced beef.

14.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893413

RESUMEN

Beer is a popular alcoholic beverage worldwide. However, limited research has been conducted on identifying key odor-active components in lager-type draft beers for the Chinese market. Therefore, this study aims to elucidate the odor characteristics of the four most popular draft beer brands through a sensory evaluation and an electronic nose. Subsequently, the four draft beers were analyzed through solid-phase microextraction and liquid-liquid extraction using a two-dimensional comprehensive gas chromatography-olfactometry-mass spectrometry analysis (GC×GC-O-MS). Fifty-five volatile odor compounds were detected through GC×GC-O-MS. Through an Aroma Extract Dilution Analysis, 22 key odor-active compounds with flavor dilution factors ≥ 16 were identified, with 11 compounds having odor activity values > one. An electronic nose analysis revealed significant disparities in the odor characteristics of the four samples, enabling their distinct identification. These findings help us to better understand the flavor characteristics of draft beer and the stylistic differences between different brands of products and provide a theoretical basis for objectively evaluating the quality differences between different brands of draft beer.


Asunto(s)
Cerveza , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Compuestos Orgánicos Volátiles , Cerveza/análisis , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , China , Microextracción en Fase Sólida/métodos , Humanos , Olfatometría , Nariz Electrónica , Extracción Líquido-Líquido/métodos , Aromatizantes/análisis
15.
Foods ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38890921

RESUMEN

Palm oil has a bad reputation due to the exploitation of farmers and the destruction of endangered animal habitats. Therefore, many consumers wish to avoid the use of palm oil. Decorative sugar contains a small amount of palm oil to prevent the sugar from melting on hot bakery products. High-oleic sunflower oil used as a substitute for palm oil was analyzed in this study via multispectral imaging and an electronic nose, two methods suitable for potential large-batch analysis of sugar/oil coatings. Multispectral imaging is a nondestructive method for comparing the wavelength reflections of the surface of a sample. Reference samples enabled the estimation of the quality of unknown samples, which were confirmed via acid value measurements. Additionally, for quality determination, volatile compounds from decorative sugars were measured with an electronic nose. Both applications provide comparable data that provide information about the quality of decorative sugars.

16.
J Med Food ; 27(8): 797-806, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38919153

RESUMEN

Mold contamination poses a significant challenge in the processing and storage of Chinese herbal medicines (CHM), leading to quality degradation and reduced efficacy. To address this issue, we propose a rapid and accurate detection method for molds in CHM, with a specific focus on Atractylodes macrocephala, using electronic nose (e-nose) technology. The proposed method introduces an eccentric temporal convolutional network (ETCN) model, which effectively captures temporal and spatial information from the e-nose data, enabling efficient and precise mold detection in CHM. In our approach, we employ the stochastic resonance (SR) technique to eliminate noise from the raw e-nose data. By comprehensively analyzing data from eight sensors, the SR-enhanced ETCN (SR-ETCN) method achieves an impressive accuracy of 94.3%, outperforming seven other comparative models that use only the response time of 7.0 seconds before the rise phase. The experimental results showcase the ETCN model's accuracy and efficiency, providing a reliable solution for mold detection in Chinese herbal medicine. This study contributes significantly to expediting the assessment of herbal medicine quality, thereby helping to ensure the safety and efficacy of traditional medicinal practices.


Asunto(s)
Atractylodes , Aprendizaje Profundo , Contaminación de Medicamentos , Medicamentos Herbarios Chinos , Hongos , Contaminación de Medicamentos/prevención & control , Hongos/efectos de los fármacos , Atractylodes/química , Nariz Electrónica
17.
ACS Sens ; 9(7): 3557-3572, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38857120

RESUMEN

This study presents a novel, ultralow-power single-sensor-based electronic nose (e-nose) system for real-time gas identification, distinguishing itself from conventional sensor-array-based e-nose systems, whose power consumption and cost increase with the number of sensors. Our system employs a single metal oxide semiconductor (MOS) sensor built on a suspended 1D nanoheater, driven by duty cycling─characterized by repeated pulsed power inputs. The sensor's ultrafast thermal response, enabled by its small size, effectively decouples the effects of temperature and surface charge exchange on the MOS nanomaterial's conductivity. This provides distinct sensing signals that alternate between responses coupled with and decoupled from the thermally enhanced conductivity, all within a single time domain during duty cycling. The magnitude and ratio of these dual responses vary depending on the gas type and concentration, facilitating the early stage gas identification of five gas types within 30 s via a convolutional neural network (classification accuracy = 93.9%, concentration regression error = 19.8%). Additionally, the duty-cycling mode significantly reduces power consumption by up to 90%, lowering it to 160 µW to heat the sensor to 250 °C. Manufactured using only wafer-level batch microfabrication processes, this innovative e-nose system promises the facile implementation of battery-driven, long-term, and cost-effective IoT monitoring systems.


Asunto(s)
Aprendizaje Profundo , Nariz Electrónica , Gases , Semiconductores , Gases/química , Gases/análisis , Suministros de Energía Eléctrica
18.
ACS Sens ; 9(6): 2925-2934, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38836922

RESUMEN

The biomimetic electronic nose (e-nose) technology is a novel technology used for the identification and monitoring of complex gas molecules, and it is gaining significance in this field. However, due to the complexity and multiplicity of gas mixtures, the accuracy of electronic noses in predicting gas concentrations using traditional regression algorithms is not ideal. This paper presents a solution to the difficulty by introducing a fusion network model that utilizes a transformer-based multikernel feature fusion (TMKFF) module combined with a 1DCNN_LSTM network to enhance the accuracy of regression prediction for gas mixture concentrations using a portable electronic nose. The experimental findings demonstrate that the regression prediction performance of the fusion network is significantly superior to that of single models such as convolutional neural network (CNN) and long short-term memory (LSTM). The present study demonstrates the efficacy of our fusion network model in accurately predicting the concentrations of multiple target gases, such as SO2, NO2, and CO, in a gas mixture. Specifically, our algorithm exhibits substantial benefits in enhancing the prediction performance of low-concentration SO2 gas, which is a noteworthy achievement. The determination coefficient (R2) values of 93, 98, and 99% correspondingly demonstrate that the model is very capable of explaining the variation in the concentration of the target gases. The root-mean-square errors (RMSE) are 0.0760, 0.0711, and 3.3825, respectively, while the mean absolute errors (MAE) are 0.0507, 0.0549, and 2.5874, respectively. These results indicate that the model has relatively small prediction errors. The method we have developed holds significant potential for practical applications in detecting atmospheric pollution detection and other molecular detection areas in complex environments.


Asunto(s)
Nariz Electrónica , Gases , Gases/química , Gases/análisis , Redes Neurales de la Computación , Algoritmos , Dióxido de Azufre/análisis , Inteligencia Artificial
19.
Heliyon ; 10(9): e30255, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707326

RESUMEN

This study investigated the physicochemical and flavor quality changes in fresh-cut papaya that was stored at 4 °C. Multivariate statistical analysis was used to evaluate the freshness of fresh-cut papaya. Aerobic plate counts were selected as a predictor of freshness of fresh-cut papaya, and a prediction model for freshness was established using partial least squares regression (PLSR), and support vector machine regression (SVMR) algorithms. Freshness of fresh-cut papaya could be well distinguished based on physicochemical and flavor quality analyses. The aerobic plate counts, as a predictor of freshness of fresh-cut papaya, significantly correlated with storage time. The SVMR model had a higher prediction accuracy than the PLSR model. Combining flavor quality with multivariate statistical analysis can be effectively used for evaluating the freshness of fresh-cut papaya.

20.
Food Sci Anim Resour ; 44(3): 570-585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38765286

RESUMEN

This study focused on understanding the effects of yeast and mold on the sensory properties of dry-cured ham aged at 20°C and 25°C. Debaryomyces hansenii isolated from Doenjang and fermented sausages, and Penicillium nalgiovense isolated from fermented sausages were utilized. The CIE a* tended to increase in all treatments as the aging period increased. At 6 weeks of aging, DFD25 showed a significantly higher CIE a* value than other treatments. The shear force tended to increase in all treatments as the aging period increased. At 6 weeks of aging, among the treatments aged at 25°C, DFD25 showed a low tendency to shear force. The PC1 of the electronic nose was 42.872%. At 25°C, the hexane content was higher and levels of ethanol, propan-2-one, 2,4,5-trimethylthiazole, and limonene were lower than that at 20°C. DFD25 showed significantly higher hexane content and significantly lower limonene content than other treatments. The PC1 of the electronic tongue was 84.529%. All treatments, except for the C starter, exhibited higher salt and lower sour levels at 25°C compared to 20°C when the same starter was used. The DFD25 showed the lowest sour taste and a higher tendency of umami than the other treatments. Sensory evaluation revealed that DFD25 had significantly higher scores for texture than C25, whereas no significant differences were observed in other aspects. Therefore, the used starters are considered suitable for aging at 25°C; among them, the DFD starter demonstrates superior qualities and enhanced commercial potential compared to the control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA