Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36671551

RESUMEN

The source of embryonic nutrition for development varies across teleost fishes. A parentotrophy index (ratio of neonate: ovulated egg dry mass) is often used to determine provisioning strategy, but the methodologies used vary across studies. The variation in source and preservation of tissue, staging of embryos, and estimation approach impedes our ability to discern between methodological and biological differences in parentotrophy indices inter- and intra-specifically. The threshold value used to distinguish between lecithotrophy and parentotrophy (0.6-1) differs considerably across studies. The lack of a standardised approach in definition and application of parentotrophy indices has contributed to inconsistent classifications of provisioning strategy. Consistency in both methodology used to obtain a parentotrophy index, and in the classification of provisioning strategy using a threshold value are essential to reliably distinguish between provisioning strategies in teleosts. We discuss alternative methods for determining parentotrophy and suggest consistent standards for obtaining and interpreting parentotrophy indices.


Asunto(s)
Estructuras Embrionarias , Peces , Animales
2.
J Exp Biol ; 223(Pt 13)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32527960

RESUMEN

Cartilaginous fish have a comparatively short intestine known as the spiral intestine that consists of a helical spiral of intestinal mucosa. However, morphological and functional development of the spiral intestine has not been fully described. Unlike teleosts, cartilaginous fish are characterized by an extremely long developmental period in ovo or in utero; for example, in the oviparous cloudy catshark (Scyliorhinus torazame), the developing fish remains inside the egg capsule for up to 6 months, suggesting that the embryonic intestine may become functional prior to hatching. In the present study, we describe the morphological and functional development of the spiral intestine in the developing catshark embryo. Spiral formation of embryonic intestine was completed at the middle of stage 31, prior to 'pre-hatching', which is a developmental event characterized by the opening of the egg case at the end of the first third of development. Within 48 h of the pre-hatching event, egg yolk began to flow from the external yolk sac into the embryonic intestine via the yolk stalk. At the same time, there was a rapid increase in mRNA expression of the peptide transporter pept1 and neutral amino acid transporter slc6a19 Secondary folds in the intestinal mucosa and microvilli on the apical membrane appeared after pre-hatching, further supporting the onset of nutrient absorption in the developing intestine at this time. We demonstrate the acquisition of intestinal nutrient absorption at the pre-hatching stage of an oviparous elasmobranch.


Asunto(s)
Elasmobranquios , Animales , Peces , Mucosa Intestinal
3.
J Exp Biol ; 222(Pt 3)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30630961

RESUMEN

The mineralized eggshell of Reptilia was a major innovation in the evolution of the amniotic egg. Inorganic components strengthen the eggshell and are a potential source of nutrients to developing embryos. Embryos of oviparous reptiles do extract calcium from eggshells but vary interspecifically in exploitation of this resource. The pattern of embryonic calcium nutrition of the corn snake, Pantherophis guttatus, is similar to a diversity of squamate species: embryos obtain most calcium from yolk, yet also mobilize calcium from the eggshell. We tested the hypothesis that embryonic development is not dependent on eggshell calcium by manipulating calcium availability. We peeled away the outer calcareous layer of the eggshell of recently oviposited eggs; control eggs were left intact. Eggs were sampled periodically and calcium content of egg compartments (embryo, yolk, eggshell) was measured. We also analyzed skeletal development and size of hatchlings. There was no difference in survivorship or length of incubation between treatments. However, hatchlings from intact eggs contained more calcium and were larger in mass and length than siblings from peeled eggs. There were no observable differences in ossification but hatchlings from intact eggs had larger skeletal elements (skull, vertebrae). Our results indicate that mobilization of eggshell calcium is not a requirement for embryonic development of P. guttatus and that embryos augment yolk calcium by extracting calcium from the eggshell. This pattern of embryonic calcium nutrition would favor embryos with a greater capacity to mobilize calcium from the eggshell by promoting growth and thereby potentially enhancing hatchling fitness.


Asunto(s)
Calcio/metabolismo , Colubridae/crecimiento & desarrollo , Colubridae/metabolismo , Cáscara de Huevo/metabolismo , Animales , Colubridae/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario
4.
J Morphol ; 279(9): 1336-1345, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30117621

RESUMEN

Teleosts possess unique features of the female reproductive system compared with the rest of vertebrates, features that define the characteristics of their viviparity. Viviparity involves new maternal-embryonic relationships detailing the most diverse structures during gestation that include embryonic nutrition. In order to analyze the morphological features of the complex nutrition in viviparous teleosts during intraovarian gestation, this study utilizes the goodeid Xenotoca eiseni as a model. Ovarian gestation in X. eiseni, as in all goodeids, is intraluminal; the early embryo moves from the follicle to the ovarian lumen where gestation continues. The scarce yolk in the oocytes implies that the initial lecithotrophy is replaced by matrotrophy, with nutrients provided via maternal tissues. The nutrients are absorbed by the embryo mainly by trophotaenia, extensions of the embryonic intestine into the ovarian lumen. This histological study analyses the structures involved in these two types of nutrition and when they occur during gestation in X. eiseni. The morphology displayed in this study demonstrated the extended simultaneity of lecithotrophy and matrotrophy during gestation with the progressive reduction of lecithotrophy and increase of matrotrophy. Similarly, it describes the development of complex embryonic structures for metabolic exchange with the maternal tissues associated with matrotrophy; specifically the branchial placenta and mainly the trophotaenia.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Ciprinodontiformes/embriología , Viviparidad de Animales no Mamíferos/fisiología , Animales , Ciprinodontiformes/anatomía & histología , Embrión no Mamífero/anatomía & histología , Femenino , Neurulación , Ovario/anatomía & histología , Embarazo
5.
Curr Environ Health Rep ; 5(1): 125-133, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29417450

RESUMEN

PURPOSE OF REVIEW: Developmental toxicity assessments often focus on structural outcomes and overlook subtle metabolic differences which occur during the early embryonic period. Deviant embryonic nutrition can result in later-life disease, including diabetes, obesity, and cardiovascular disease. Prior to placenta-mediated nutrient exchange, the human embryo requires maternally supplied nutritional substrates for growth, called yolk. Here, we compare the biology of the human and zebrafish yolk and review examples of toxicant-mediated perturbation of yolk defects, composition, and utilization. RECENT FINDINGS: Zebrafish embryos, like human embryos, have a protruding yolk sac that serves as a nutritional cache. Aberrant yolk morphology is a common qualitative finding in fish embryotoxicity studies, but quantitative assessment and characterization provides an opportunity to uncover mechanistic targets of toxicant effects on embryonic nutrition. The zebrafish and the study of its yolk sac is an excellent model for uncovering toxicant disruptions to early embryonic nutrition and has potential to discover mechanistic insights into the developmental origins of health and disease.


Asunto(s)
Modelos Animales de Enfermedad , Yema de Huevo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Fenómenos Fisiológicos de la Nutrición/efectos de los fármacos , Toxicología/métodos
6.
J Morphol ; 278(4): 574-591, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28168721

RESUMEN

Embryos of oviparous reptiles develop on the surface of a large mass of yolk, which they metabolize to become relatively large hatchlings. Access to the yolk is provided by tissues growing outward from the embryo to cover the surface of the yolk. A key feature of yolk sac development is a dedicated blood vascular system to communicate with the embryo. The best known model for yolk sac development and function of oviparous amniotes is based on numerous studies of birds, primarily domestic chickens. In this model, the vascular yolk sac forms the perimeter of the large yolk mass and is lined by a specialized epithelium, which takes up, processes and transports yolk nutrients to the yolk sac blood vessels. Studies of lizard yolk sac development, dating to more than 100 years ago, report characteristics inconsistent with this model. We compared development of the yolk sac from oviposition to near hatching in embryonic series of three species of oviparous scincid lizards to consider congruence with the pattern described for birds. Our findings reinforce results of prior studies indicating that squamate reptiles mobilize and metabolize the large yolk reserves in their eggs through a process unknown in other amniotes. Development of the yolk sac of lizards differs from birds in four primary characteristics, migration of mesoderm, proliferation of endoderm, vascular development and cellular diversity within the yolk sac cavity. Notably, all of the yolk is incorporated into cells relatively early in development and endodermal cells within the yolk sac cavity align along blood vessels which course throughout the yolk sac cavity. The pattern of uptake of yolk by endodermal cells indicates that the mechanism of yolk metabolism differs between lizards and birds and that the evolution of a fundamental characteristic of embryonic nutrition diverged in these two lineages. Attributes of the yolk sac of squamates reveal the existence of phylogenetic diversity among amniote lineages and raise new questions concerning the evolution of the amniotic egg. J. Morphol. 278:574-591, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Lagartos/embriología , Óvulo/fisiología , Saco Vitelino/embriología , Animales , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/irrigación sanguínea , Femenino , Hematopoyesis , Neovascularización Fisiológica , Oviposición/fisiología , Filogenia , Tamaño de la Muestra , Saco Vitelino/irrigación sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA