Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.191
Filtrar
1.
J Comput Chem ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970400

RESUMEN

A recent work by Marks et al. on the formation of carbamic acid in NH 3 $$ {}_3 $$ -CO 2 $$ {}_2 $$ interstellar ices pointed out its stability in the gas phase and the concomitant production of its dimer. Prompted by these results and the lack of information on these species, we have performed an accurate structural, energetic and spectroscopic investigation of carbamic acid and its dimer. For the former, the structural and spectroscopic characterization employed composite schemes based on coupled cluster (CC) calculations that account for the extrapolation to the complete basis set limit and core correlation effects. A first important outcome is the definitive confirmation of the nonplanarity of carbamic acid, then followed by an accurate estimate of its rotational and vibrational spectroscopy parameters. As far as the carbamic acid dimer is concerned, the investigation started from the identification of its most stable forms. For them, structure and vibrational properties have been evaluated using density functional theory, while a composite scheme rooted in CC theory has been employed for the energetic characterization. Our results allowed us to provide a better interpretation of the feature observed in the recent experiment mentioned above.

2.
Front Mol Biosci ; 11: 1402910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952719

RESUMEN

The study of energy transduction in eukaryotic cells has been divided between Bioenergetics and Physiology, reflecting and contributing to a variety of Bioenergetic myths considered here: 1) ATP production = energy production, 2) energy transduction is confined to mitochondria (plus glycolysis and chloroplasts), 3) mitochondria only produce heat when required, 4) glycolysis is inefficient compared to mitochondria, and 5) mitochondria are the main source of reactive oxygen species (ROS) in cells. These myths constitute a 'mitocentric' view of the cell that is wrong or unbalanced. In reality, mitochondria are the main site of energy dissipation and heat production in cells, and this is an essential function of mitochondria in mammals. Energy transduction and ROS production occur throughout the cell, particularly the cytosol and plasma membrane, and all cell membranes act as two-dimensional energy conduits. Glycolysis is efficient, and produces less heat per ATP than mitochondria, which might explain its increased use in muscle and cancer cells.

3.
Biophys Chem ; 313: 107289, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39002247

RESUMEN

G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin1A receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1-4 kT, and timescales of 1-10 µs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and µs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.

4.
J Physiol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970772
5.
Heliyon ; 10(12): e32774, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975087

RESUMEN

Finger millet, an important 'Nutri-Cereal' and climate-resilient crop, is cultivated as a marginal crop in calcareous soils. Calcareous soils have low organic carbon content, high pH levels, and poor structure. Such a situation leads to poor productivity of the crop. Site-specific nutrient management (SSNM), which focuses on supplying optimum nutrients when a crop is needed, can ensure optimum production and improve the nutrient and energy use efficiency of crops. Moreover, developing an appropriate SSNM technique for this crop could offer new insights into nutrient management practices, particularly for calcareous soils. A field experiment was conducted during the rainy seasons of 2020 and 2021 in calcareous soil at Dr. Rajendra Prasad Central Agricultural University, Pusa, India. The experiment consisted of 8 treatments, viz. control, nitrogen (N)/phosphorus (P)/potassium (K)-omission, 75 %, 100 %, and 125 % recommended fertilizer dose (RFD), and 100 % recommended P and K + 30 kg ha-1 N as basal + rest N as per GreenSeeker readings. From this study, it was observed that the GreenSeeker-based SSNM resulted in the maximum grain yield (2873 kg ha-1), net output energy (96.3 GJ ha-1), and agronomic efficiency of N (30.6 kg kg-1), P (68.9 kg kg-1), and K (68.9 kg kg-1). The application of 125 % RFD resulted in ∼7 % lower yield than that under GreenSeeker-based nutrient management. Approximately 12 % greater energy use efficiency and 21-36 % greater nutrient use efficiency were recorded under GreenSeeker-based nutrient management than under 125 % RDF. The indigenous supplies of N, P, and K were found to be 14.31, 3.00, and 18.51 kg ha-1, respectively. Thus, 100 % of the recommended P and K + 30 kg ha-1 N as basal + rest N according to GreenSeeker readings can improve the yield, nutrient use efficiency, and energy balance of finger millet in calcareous soils.

6.
Sports Biomech ; : 1-24, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990163

RESUMEN

Establishing the links between running technique and economy remains elusive due to high inter-individual variability. Clustering runners by technique may enable tailored training recommendations, yet it is unclear if different techniques are equally economical and whether clusters are speed-dependent. This study aimed to identify clusters of runners based on technique and to compare cluster kinematics and running economy. Additionally, we examined the agreement of clustering partitions of the same runners at different speeds. Trunk and lower-body kinematics were captured from 84 trained runners at different speeds on a treadmill. We used Principal Component Analysis for dimensionality reduction and agglomerative hierarchical clustering to identify groups of runners with a similar technique, and we evaluated cluster agreement across speeds. Clustering runners at different speeds independently produced different partitions, suggesting single speed clustering can fail to capture the full speed profile of a runner. The two clusters identified using data from the whole range of speeds showed differences in pelvis tilt and duty factor. In agreement with self-optimisation theories, there were no differences in running economy, and no differences in participants' characteristics between clusters. Considering inter-individual technique variability may enhance the efficacy of training designs as opposed to 'one size fits all' approaches.

7.
Ecol Evol Physiol ; 97(3): 157-163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875139

RESUMEN

AbstractTwo prominent theories of aging, one based on telomere dynamics and the other on mass-specific energy flux, propose biological time clocks of senescence. The relationship between these two theories, and the biological clocks proposed by each, remains unclear. Here, we examine the relationships between telomere shortening rate, mass-specific metabolic rate, and lifespan among vertebrates (mammals, birds, fishes). Results show that telomere shortening rate increases linearly with mass-specific metabolic rate and decreases nonlinearly with increasing body mass in the same way as mass-specific metabolic rate. Results also show that both telomere shortening rate and mass-specific metabolic rate are similarly related to lifespan and that both strongly predict differences in lifespan, although the slopes of the relationships are less than linear. On average, then, telomeres shorten a fixed amount per unit of mass-specific energy flux. So the mitotic clock of telomere shortening and the energetics-based clock described by metabolic rate can be viewed as alternative measures of the same biological clock. These two processes may be linked, we speculate, through the process of cell division.


Asunto(s)
Envejecimiento , Relojes Biológicos , Telómero , Animales , Telómero/metabolismo , Envejecimiento/genética , Envejecimiento/fisiología , Relojes Biológicos/fisiología , Relojes Biológicos/genética , Acortamiento del Telómero , Longevidad/genética , Longevidad/fisiología , Metabolismo Energético/fisiología , Vertebrados/genética , Vertebrados/fisiología
8.
Ecol Evol Physiol ; 97(3): 129-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875140

RESUMEN

AbstractTemperate reptiles are often considered to be low-energy systems, with their discrete use of time and energy making them model systems for the study of time-energy budgets. However, the semifrequent replacement and sloughing of the epidermis is a ubiquitous feature of squamate reptiles that is often overlooked when accounting for time and energy budgets in these animals. We used open-flow respirometry to measure both the energetic effort of ecdysis and the duration of the associated metabolic upregulation (likely related to behavioral changes often reported for animals in shed) in wild-caught timber rattlesnakes (Crotalus horridus). We hypothesized that total effort of skin biosynthesis and physical removal would be related to body mass and expected the duration of the process to remain static across individuals at a fixed temperature (25°C). We provide both the first measurements of the cost of skin biosynthesis and physical removal in a reptile and the highest-resolution estimate of process duration recorded to date. We found that skin biosynthesis, but not the cost of physical removal of the epidermis, was related to body mass. Shed cycle duration was consistent across individuals, taking nearly 4 wk from process initiation to physical removal of the outermost epidermal layer. Total energetic effort of ecdysis was of sizeable magnitude, requiring ∼3% of the total annual energy budget of a timber rattlesnake. Energetic effort for a 500-g snake was equivalent to the amount of metabolizable energy acquired from the consumption of approximately two adult mice. Ecdysis is a significant part of the time-energy budgets of snakes, necessitating further attention in studies of reptilian energetics.


Asunto(s)
Crotalus , Metabolismo Energético , Muda , Animales , Metabolismo Energético/fisiología , Crotalus/metabolismo , Muda/fisiología , Masculino , Femenino
9.
Conserv Biol ; : e14313, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887868

RESUMEN

Mobile organisms like seabirds can provide important nutrient flows between ecosystems, but this connectivity has been interrupted by the degradation of island ecosystems. Island restoration (via invasive species eradications and the restoration of native vegetation) can reestablish seabird populations and their nutrient transfers between their foraging areas, breeding colonies, and adjacent nearshore habitats. Its diverse benefits are making island restoration increasingly common and scalable to larger islands and whole archipelagos. We identified the factors that influence breeding seabird abundances throughout the Chagos Archipelago in the Indian Ocean and conducted predictive modeling to estimate the abundances of seabirds that the archipelago could support under invasive predator eradication and native vegetation restoration scenarios. We explored whether the prey base exists to support restored seabird populations across the archipelago, calculated the nitrogen that restored populations of seabirds might produce via their guano, and modeled the cascading conservation gains that island restoration could provide. Restoration was predicted to increase breeding pairs of seabirds to over 280,000, and prey was predicted to be ample to support the revived seabird populations. Restored nutrient fluxes were predicted to result in increases in coral growth rates, reef fish biomasses, and parrotfish grazing and bioerosion rates. Given these potential cross-ecosystem benefits, our results support island restoration as a conservation priority that could enhance resilience to climatic change effects, such as sea-level rise and coral bleaching. We encourage the incorporation of our estimates of cross-ecosystem benefits in prioritization exercises for island restoration.


Restauración en islas para reconstruir las poblaciones de aves marinas y amplificar la funcionalidad de los arrecifes de coral Resumen Los organismos móviles como las aves marinas pueden proporcionar flujos importantes de nutrientes entre los ecosistemas, aunque esta conectividad ha sido interrumpida por la degradación de los ecosistemas isleñas. La restauración de islas (por medio de la erradicación de especies invasoras y la restauración de la vegetación nativa) puede reestablecer las poblaciones de aves marinas y su transferencia de nutrientes entre las áreas de forrajeo, las colonias reproductoras y los hábitats adyacentes a la costa. Los diferentes beneficios de la restauración de islas hacen que sea cada vez más común y escalable a islas más grandes y archipiélagos completos. Identificamos los factores que influyen sobre la abundancia de aves reproductoras en todo el archipiélago de Chagos en el Océano Índico y realizamos un modelo predictivo para estimar la abundancia de aves que podría soportar el archipiélago bajo escenarios de la erradicación de un depredador invasor y la restauración de la vegetación nativa. Exploramos si existe la base de presas para soportar las poblaciones restauradas de aves marinas en el archipiélago, calculamos el nitrógeno que las poblaciones restauradas podrían producir mediante el guano y modelamos la conservación en cascada que podría proporcionar la restauración de la isla. Se pronosticó que la restauración incrementaría las parejas reproductoras a más de 280,000 y que las presas serían las suficientes para soportar las poblaciones restauradas de aves marinas. También se pronosticó que los flujos restaurados de nutrientes resultarían en un incremento de la tasa de crecimiento de los corales, la biomasa de los peces del arrecife y las tasas de bio­erosión y de alimentación de los peces loro. Dados estos beneficios potenciales entre los ecosistemas, nuestros resultados respaldan a la restauración de islas como una prioridad de conservación que podría incrementar la resiliencia a los efectos del cambio climático, como el incremento en el nivel del mar y el blanqueamiento de los corales. Promovemos que se incorporen nuestras estimaciones de los beneficios transecosistémicos dentro de los ejercicios de priorización para la restauración de islas.

10.
Liver Int ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888238

RESUMEN

Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.

11.
J Exp Biol ; 227(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38853583

RESUMEN

Speeds that minimize energetic cost during steady-state walking have been observed during lab-based investigations of walking biomechanics and energetics. However, in real-world scenarios, humans walk in a variety of contexts that can elicit different walking strategies, and may not always prioritize minimizing energetic cost. To investigate whether individuals tend to select energetically optimal speeds in real-world situations and how contextual factors influence gait, we conducted a study combining data from lab and real-world experiments. Walking kinematics and context were measured during daily life over a week (N=17) using wearable sensors and a mobile phone. To determine context, we utilized self-reported activity logs, GPS data and follow-up exit interviews. Additionally, we estimated energetic cost using respirometry over a range of gait speeds in the lab. Gross and net cost of transport were calculated for each participant, and were used to identify energetically optimal walking speed ranges for each participant. The proportion of real-world steady-state stride speeds within these ranges (gross and net) were identified for all data and for each context. We found that energetically optimal speeds predicted by gross cost of transport were more predictive of walking speeds used during daily life than speeds that would minimize net cost of transport. On average, 82.2% of all steady-state stride speeds were energetically optimal for gross cost of transport for all contexts and participants, while only 45.6% were energetically optimal for net cost of transport. These results suggest that while energetic cost is a factor considered by humans when selecting gait speed in daily life, it is not the sole determining factor. Context contributes to the observed variability in movement parameters both within and between individuals.


Asunto(s)
Metabolismo Energético , Caminata , Humanos , Masculino , Femenino , Adulto , Fenómenos Biomecánicos , Caminata/fisiología , Adulto Joven , Marcha/fisiología , Velocidad al Caminar/fisiología , Persona de Mediana Edad
12.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854143

RESUMEN

Older adults and neurological populations tend to walk with slower speeds, more gait variability, and a higher metabolic cost. This higher metabolic cost could be related to their increased gait variability, but this relationship is still unclear. The purpose of this study was to determine how increased step length variability affects the metabolic cost of waking. Eighteen healthy young adults completed a set of 5-minute trials of treadmill walking at 1.20 m/s while we manipulated their step length variability. Illuminated rectangles were projected onto the surface of a treadmill to cue step length variabilities of 0, 5 and 10% (coefficient of variation). Actual step lengths and their variability were tracked with reflective markers on the feet, while metabolic cost was measured using indirect calorimetry. Changes in metabolic cost across habitual walking (no projections) and the three variability conditions were analyzed using a linear mixed effects model. Metabolic power was largest in the 10% condition (4.30 ± 0.23 W/kg) compared to 0% (4.16 ± 0.18 W/kg) and habitual (3.98 ± 0.25 W/kg). The participant's actual step length variability did not match projected conditions for 0% (3.10%) and 10% (7.03%). For every 1% increase in step length variability, there is an 0.7% increase in metabolic cost. Our results demonstrate an association between the metabolic cost of walking and gait step length variability. This suggests that increased gait variability contributes to a portion of the increased cost of walking seen in older adults and neurological populations.

13.
J Therm Biol ; 123: 103894, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879912

RESUMEN

The present research focuses on the seasonal changes in the energy content and metabolic patterns of red porgy (Pagrus pagrus) sampled in a fish farm in North Evoikos Gulf (Greece). The study was designed in an effort to evaluate the influence of seasonality in several physiological feauteres of high commercial importance that may affect feed intake and growth. We determined glycogen, lipids and proteins levels, and cellular energy allocation (CEA) as a valuable marker of exposure to stress, which integrates available energy (Ea) and energy consumption (Ec). Metabolic patterns and aerobic oxidation potential were based on the determination of glucose transporter (GLU), carnitine transporter (CTP), L-lactate dehydrogenase (L-LDH), citrate synthase (CS), cytochrome C oxidase subunit IV isoform 1 (COX1) and 3-hydroxyacyl CoA dehydrogenase (HOAD) relative gene expression. To integrate metabolic patterns and gene expression, L-LDH, CS, COX and HOAD activities were also determined. For further estimation of biological stores oxidized during seasonal acclimatization, we determined the blood levels of glucose, lipids and lactate. The results indicated seasonal changes in energy content, different patterns in gene expression and reorganization of metabolic patterns during cool acclimatization with increased lipid oxidation. During warm acclimatization, however, energy consumption was mostly based on carbohydrates oxidation. The decrease of Ec and COX1 activity in the warm exposed heart seem to be consistent with the OCLTT hypothesis, suggesting that the heart may be one of the first organs to be limited during seasonal warming. Overall, this study has profiled changes in energetics and metabolic patterns occurring at annual temperatures at which P. pagrus is currently farmed, suggesting that this species is living at the upper edge of their thermal window, at least during summer.

14.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38864567

RESUMEN

Dietary net energy for maintenance (NEm) and gain (NEg) can be estimated using calculations based on live performance or adjusted-final body weight, which is calculated based on carcass characteristics. These values are commonly referred to as performance-adjusted (pa) NEm (paNEm) and NEg (paNEg). The NEm and NEg of a diet can also be estimated by adding recovered energy (RE) with heat production (HP) derived from an automated head chamber system (AHCS), which we will term gas-adjusted (ga) NEm (gaNEm) and NEg (gaNEg). Furthermore, HP from the Brouwer equation requires an estimate of urinary nitrogen (UN) excretion, which can be calculated based on N intake, blood urea N, UN concentration, and urine creatinine, or it could be zeroed. Alternatively, HP can be calculated using an alternative equation based on the respiratory quotient. Demonstrating agreement between pa and ga derived dietary energy values provides an opportunity to validate using the AHCS for energetic experiments and this comparison has not been conducted previously. Accordingly, the objective of this experiment was to assess the agreement between live and carcass paNEm and paNEg with gaNEm and gaNEg, where HP was calculated using 4 different approaches. Estimates of HP were not different (P = 0.99) between the 4 approaches employed, indicating that all options investigated are appropriate. Live paNEm and paNEg had a higher agreement (Lin's concordance correlation coefficient [CCC] = 0.91) with gaNEm and gaNEg than carcass values (CCC ≤ 0.84). These results suggest that researchers can implement the AHCS to provide good estimates of dietary energy values in finishing beef cattle that are unrestrained.


Automated head chamber systems (AHCS) implemented into beef cattle research allow estimation of gas flux, heat production (HP), and calculated gas-adjusted dietary net energy for maintenance (gaNEm) and gain (gaNEg) values when paired with recovered energy. However, a comparison between AHCS-derived values and performance-adjusted NEm (paNEm) and NEg (paNEg) from either live performance (live paNEm and paNEg) or carcass data (carcass paNEm and paNEg) has not been conducted. Accordingly, the objectives of this experiment were to evaluate the agreement between gaNEm and gaNEg, estimated using different approaches for calculating HP, with live paNEm and paNEg or carcass paNEm and paNEg. Accounting for urinary nitrogen or methane when calculating HP does not appreciably influence HP estimates or subsequent calculations to estimate dietary NEm and NEg. There was excellent agreement between live paNEm and gaNEm, and between paNEg and gaNEg. Measures of precision, accuracy, and agreement were lower for carcass than for live-derived values when compared to gaNEm and gaNEg but were still acceptable. These results suggest that researchers can implement the AHCS to provide estimates of HP, gas flux, and estimates of dietary energy values in unrestrained finishing beef cattle-fed diets ranging in crude protein content (10.8% to 12.5%). Additional research is warranted on the use of the AHCS to conduct energetic studies across varying diets and production systems, particularly grazing systems.


Asunto(s)
Alimentación Animal , Dieta , Metabolismo Energético , Animales , Bovinos/fisiología , Dieta/veterinaria , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Ingestión de Energía , Masculino
15.
J Appl Physiol (1985) ; 137(1): 85-98, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841756

RESUMEN

Similar to nonamputees, female athletes with unilateral transtibial amputation (TTA) using running-specific leg prostheses (RSPs) may have worse running economy and higher rates of running-related injury than male athletes. Optimizing RSP configuration for female athletes could improve running economy and minimize biomechanical asymmetry, which has been associated with running-related injury. Nine females with a TTA ran at 2.5 m/s while we measured metabolic rates and ground reaction forces. Subjects used an RSP with a manufacturer-recommended stiffness category, one category less stiff and two categories less stiff than recommended. Use of an RSP two categories less stiff resulted in 3.0% lower net metabolic power (P = 0.04), 7.8% lower affected leg stiffness (P = 6.01 × 10-4), increased contact time asymmetry (P = 0.04), and decreased stance average vertical ground reaction force asymmetry (P = 0.04) compared with a recommended stiffness category RSP. Lower RSP stiffness (kN/m) values were associated with lower net metabolic power (P = 0.02), lower affected leg stiffness (P = 1.36 × 10-4), longer affected leg contact time (P = 1.46 × 10-4), and similar affected leg peak and stance-average vertical ground reaction force compared with higher RSP stiffness values. Subjects then used the RSP stiffness category that elicited the lowest net metabolic power with 100 g, 200 g, and 300 g added distally. We found no significant effects of added mass on net metabolic power, biomechanics, or asymmetry. These results suggest that female runners with a TTA could decrease metabolic power during running while minimizing biomechanical asymmetries, which have been associated with running-related injury, by using an RSP two categories less stiff than manufacturer recommended.NEW & NOTEWORTHY Females with unilateral transtibial amputation can improve running performance through reductions in net metabolic power by using a running-specific prosthesis (RSP) that is less stiff than manufacturer-recommended. Lower RSP stiffness values are associated with greater leg stiffness and contact time asymmetry, and lower stance-average vertical ground reaction force asymmetry. However, we found that adding mass to the RSP did not affect net metabolic power and stance-phase biomechanical asymmetries during running.


Asunto(s)
Amputación Quirúrgica , Miembros Artificiales , Pierna , Carrera , Humanos , Femenino , Carrera/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Pierna/fisiología , Amputados , Adulto Joven , Diseño de Prótesis , Atletas , Persona de Mediana Edad , Metabolismo Energético/fisiología
16.
Res Sq ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854001

RESUMEN

Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk, and venous thrombosis is a cause of sudden death in PD, suggesting targeting the Pink1/Parkin pathway in the periphery has therapeutic potential.

17.
World J Crit Care Med ; 13(2): 91397, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38855276

RESUMEN

Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.

18.
Mar Pollut Bull ; 204: 116523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815474

RESUMEN

Ocean acidification and heatwaves caused by rising CO2 affect bivalves and other coastal organisms. Intertidal bivalves are vital to benthic ecosystems, but their physiological and metabolic responses to compound catastrophic climate events are unknown. Here, we examined Manila clam (Ruditapes philippinarum) responses to low pH and heatwaves. Biochemical and gene expression demonstrated that pH and heatwaves greatly affect physiological energy enzymes and genes expression. In the presence of heatwaves, Manila clams expressed more enzymes and genes involved in physiological energetics regardless of acidity, even more so than in the presence of both. In this study, calcifying organisms' biochemical and molecular reactions are more susceptible to temperature rises than acidity. Acclimation under harsh weather conditions was consistent with thermal stress increase at lower biological organization levels. These substantial temporal biochemical and molecular patterns illuminate clam tipping points. This study helps us understand how compound extreme weather and climate events affect coastal bivalves for future conservation efforts.


Asunto(s)
Bivalvos , Agua de Mar , Animales , Bivalvos/fisiología , Agua de Mar/química , Concentración de Iones de Hidrógeno , Cambio Climático , Océanos y Mares , Ecosistema , Clima Extremo
20.
J Biomech ; 168: 112132, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718594

RESUMEN

Minimizing lumbar spine flexion during lifting requires greater lower extremity joint motion. However, the effects of these kinematic changes on lumbar and lower extremity joint kinetics are unknown. Further, it is unclear whether the distribution of biomechanical demands throughout the lumbar spine and lower extremity during lumbar spine flexion restricted lifting are modulated by task factors like lift origin height and object mass. This study examined the influence of restricting lumbar spine flexion during lifting on the distribution of biomechanical demands, operationalized as mechanical energy expenditure (MEE), across the lumbar spine and lower extremity joints during lifting tasks. Twenty participants performed a series of lifting tasks that varied by lift origin height, object mass and presence or absence of lumbar spine motion restricting harness. MEE was quantified for the lumbar spine and lower extremity joints and summed across all joints to represent the total MEE. Distributions of MEE were compared across combinations of the three task factors. Total MEE was greater when lifting with restricted spine motion (p < 0.001). MEE was redistributed away from the lumbar spine and predominantly to the hips in the spine restricted conditions (p < 0.001). The nature and magnitude of this effect was modulated by lift origin height for the lumbar spine (p < 0.001) and hips (p < 0.001). Findings demonstrated that biomechanical demands can be shifted from the lumbar spine to the lower extremity when lifting with restricted spine flexion, which might help mitigate overuse injuries through coordinative variability.


Asunto(s)
Metabolismo Energético , Elevación , Vértebras Lumbares , Humanos , Vértebras Lumbares/fisiología , Masculino , Femenino , Metabolismo Energético/fisiología , Fenómenos Biomecánicos/fisiología , Adulto , Rango del Movimiento Articular/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA