Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Biol Rep ; 51(1): 1014, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325209

RESUMEN

BACKGROUND: The aim of the study is to investigate the relationship between Methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) polymorphisms, 5 serum related molecular levels and the risk of adverse pregnancies in different genders. METHODS: Patients aged from 22 to 38 with a history of adverse pregnancy treated in our genetic eugenics clinic of Henan Provincial People's Hospital are selected. The controls aged from 20 to 34 undergoing eugenics examinations in our genetic eugenics clinic that had no history of adverse pregnancy and at least one healthy child are selected. Sanger sequencing and Chemiluminescence Microparticle Immuno Assay (CMIA) are used for detecting the mutations of MTHFR and MTRR and the 5 serum molecular serum levels. RESULTS: In the female group, MTHFR 677 C > T is associated with Recurrent spontaneous abortion (RSA) (P = 0.0017), Chromosomal abnormality (CA) (P = 0.0053), Cleft lip and palate (CLP) (P = 0.0326) and Brain dysplasia (BD) (P = 0.0072); MTHFR 1298 A > C is associated with Infertility (P = 0.0026) and BD (P = 0.0382); MTRR 66 A > G is associated with CLP (P = 0.0131). In the male group, MTHFR 677 C > T is associated with RSA (P = 0.0003), Infertility (P = 0.0013), CA (P = 0.0027) and BD (P = 0.0293). In the female group, the genotype of MTHFR 677 C > T is associated with RSA (P = 0.0017), CA (P = 0.0014) and BD (P = 0.0021); MTHFR 1298 A > C is associated with Infertility (P = 0.0081) and MTRR 66 A > G is associated with Infertility (P = 0.0309). In the male group, the genotype of MTHFR 677 C > T is associated with RSA (P = 0.0008), Infertility (P = 0.0096) and CA (P = 0.0165) and MTRR 66 A > G is associated with Infertility (P = 0.0158) and congenital heart disease (CHD) (P = 0.0218). In the male group, there is statistically significant difference of the serum Homocysteine (Hcy) levels (P < 0.0001) between adverse pregnancy group and controls. In the female group, there is statistically significant difference of the serum vitamin D levels (P = 0.0015) between adverse pregnancy group and controls. CONCLUSIONS: Polymorphic variants in MTHFR and MTRR, serum Folic acid (FA), Hcy and B12 levels in the male group and vitamin D levels in the female group are associated differentially with adverse pregnancy.


Asunto(s)
Ferredoxina-NADP Reductasa , Metilenotetrahidrofolato Reductasa (NADPH2) , Polimorfismo de Nucleótido Simple , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Femenino , Ferredoxina-NADP Reductasa/genética , Embarazo , Adulto , Polimorfismo de Nucleótido Simple/genética , Masculino , Predisposición Genética a la Enfermedad , Adulto Joven , Genotipo , Aborto Habitual/genética , Aborto Habitual/sangre , Estudios de Casos y Controles
2.
Front Pharmacol ; 14: 1087654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969877

RESUMEN

Background: Curcumae Radix (CW) is traditionally used to treat primary dysmenorrea (PD). However, the mechanisms of action of CW in the treatment of PD have not yet been comprehensively resolved. Objective: To investigate the therapeutic effects of CW on PD and its possible mechanisms of action. Methods: An isolated uterine spastic contraction model induced by oxytocin was constructed in an in vitro pharmacodynamic assay. An animal model of PD induced by combined estradiol benzoate and adrenaline hydrochloride-assisted stimulation was established. After oral administration of CW, a histopathological examination was performed and biochemical factor levels were measured to evaluate the therapeutic effect of CW on PD. The chemical compositions of the drug-containing serum and its metabolites were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Network pharmacology and serum untargeted metabolomics were used to predict the mechanism of CW treatment for PD, and the predicted results were validated by RT-qPCR, WB, and targeted fatty acid (FA) metabolism. Results: In vitro, CW can relax an isolated uterus by reducing uterine motility. In vivo, the results showed that CW attenuated histopathological damage in the uterus and regulated PGF2α, PGE2, ß-EP, 5-HT, and Ca2+ levels in PD rats. A total of 66 compounds and their metabolites were identified in the drug-containing serum, and the metabolic pathways of these components mainly included hydrogenation and oxidation. Mechanistic studies showed that CW downregulated the expression of key genes in the 5-HTR/Ca2+/MAPK pathway, such as 5-HTR2A, IP3R, PKC, cALM, and ERK. Similarly, CW downregulated the expression of key proteins in the 5-HTR/Ca2+/MAPK pathway, such as p-ERK/ERK. Indirectly, it ameliorates the abnormal FA metabolism downstream of this signaling pathway in PD rats, especially the metabolism of arachidonic acid (AA). Conclusion: The development of PD may be associated with the inhibition of the 5-HTR/Ca2+/MAPK signaling pathway and FA metabolic pathways, providing a basis for the subsequent exploitation of CW.

3.
Metabolism ; 143: 155526, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36822494

RESUMEN

BACKGROUND: Folate (FA) is an essential cofactor in the one-carbon (1C) metabolic pathway and participates in amino acid metabolism, purine and thymidylate synthesis, and DNA methylation. FA metabolism has been reported to play an important role in viral replications; however, the roles of FA metabolism in the antiviral innate immune response are unclear. OBJECTIVE: To evaluate the potential regulatory role of FA metabolism in antiviral innate immune response, we establish the model of FA deficiency (FAD) in vitro and in vivo. The molecular and functional effects of FAD on 2'-5'-oligoadenylate synthetases (OAS)-associated antiviral innate immunity pathways were assessed; and the potential relationship between FA metabolism and the axis of adenosine deaminases acting on RNA 3 (ADAR3)/endogenous double-stranded RNA (dsRNA)/OAS was further explored in the present study, as well as the potential translatability of these findings in vivo. METHODS: FA-free RPMI 1640 medium and FA-free feed were used to establish the model of FAD in vitro and in vivo. And FA and homocysteine (Hcy) concentrations in cell culture supernatants and serum were used for FAD model evaluation. Ribonucleoprotein immunoprecipitation assay was used to enrich endogenous dsRNA, and dot-blot was further used for quantitative analysis of endogenous dsRNA. Western-blot assay, RNA isolation and quantitative real-time PCR, immunofluorescence assay, and other molecular biology techniques were used for exploring the potential mechanisms. RESULTS: In this study, we observed that FA metabolism negatively regulated OAS-mediated antiviral innate immune response. Mechanistically, FAD induced ADAR3, which interacted with endogenous dsRNA, to inhibit deaminated adenosine (A) being converted into inosine (I), leading to the cytoplasmic accumulation of dsRNA. Furthermore, endogenous dsRNA accumulated in cytoplasm triggered the host immune activation, thus promoting the expression of OAS2 to suppress the replication of viruses. Additionally, injection of 8-Azaadenosine to experimental animals, an A-to-I editing inhibitor, efficiently enhanced OAS-mediated antiviral innate immune response to reduce the viral burden in vivo. CONCLUSIONS: Taken together, our present study provided a new perspective to illustrate a relationship between FA metabolism and the axis of ADAR3/endogenous dsRNA/OAS, and a new insight for the treatment of RNA viral infectious diseases by targeting the axis of ADAR3/endogenous dsRNA/OAS.


Asunto(s)
Antivirales , ARN Bicatenario , Animales , Adenosina , Antivirales/farmacología , Inmunidad Innata , Proteínas de Unión al ARN/metabolismo , Adenosina Desaminasa/metabolismo
4.
J Lipid Res ; 64(1): 100305, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273647

RESUMEN

Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice. Furthermore, we were interested in how impaired PPARγ signaling affects the development of inflammation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT) of Hsl knockout mice and if DAG and ceramide accumulation contribute to adipose tissue inflammation and ER stress. Ultrastructural analysis showed a markedly dilated ER in both eWAT and iWAT upon loss of HSL. In addition, Hsl knockout mice exhibited macrophage infiltration and increased F4/80 mRNA expression, a marker of macrophage activation, in eWAT, but not in iWAT. We show that treatment with rosiglitazone, a PPARγ agonist, attenuated macrophage infiltration and ameliorated inflammation of eWAT, but expression of ER stress markers remained unchanged, as did DAG and ceramide levels in eWAT. Taken together, we show that HSL loss promoted ER stress in both eWAT and iWAT of Hsl knockout mice, but inflammation and macrophage infiltration occurred mainly in eWAT. Also, PPARγ activation reversed inflammation but not ER stress and DAG accumulation. These data indicate that neither reduction of DAG levels nor ER stress contribute to the reversal of eWAT inflammation in Hsl knockout mice.


Asunto(s)
PPAR gamma , Esterol Esterasa , Ratones , Animales , Rosiglitazona/farmacología , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lipólisis/fisiología , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo
5.
Front Neurosci ; 16: 1030512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507355

RESUMEN

Long-chain acyl-coenzyme A synthetases (ACSLs) are a family of CoA synthetases that activate fatty acid (FA) with chain lengths of 12-20 carbon atoms by forming the acyl-AMP derivative in an isozyme-specific manner. This family mainly includes five members (ACSL1, ACSL3, ACSL4, ACSL5, and ACSL6), which are thought to have specific and different functions in FA metabolism and oxidative stress of mammals. Accumulating evidence shows that the dysfunction of ACSLs is likely to affect cell proliferation and lead to metabolic diseases in multiple organs and systems through different signaling pathways and molecular mechanisms. Hence, a central theme of this review is to emphasize the therapeutic implications of ACSLs in nervous system disorders.

6.
Microbiol Spectr ; 10(6): e0351122, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445133

RESUMEN

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, the leading cause of acute and chronic infections in immunocompromised patients, frequently with high morbidity and mortality rates. The xenobiotic response element (XRE) family proteins are the second most common transcriptional regulators (TRs) in P. aeruginosa. However, only a few XRE-like TRs have been reported to regulate multiple bacterial cellular processes, encompassing virulence, metabolism, antibiotic synthesis or resistance, stress responses, and phage infection, etc. Our understanding of what roles these XRE-like small regulatory proteins play in P. aeruginosa remains limited. Here, we aimed to decipher the role of a putative XRE-type transcriptional regulator (designated LfsT) from a prophage region on the chromosome of a clinical P. aeruginosa isolate, P8W. Southern blot and reverse transcription quantitative PCR (RT-qPCR) assays demonstrated that LfsT controlled host sensitivity to the phage PP9W2 and was essential for efficient phage replication. In addition, electrophoretic mobility shift assays (EMSAs) and transcriptional lacZ fusion analyses indicated that LfsT repressed the lysogenic development and promoted the lytic cycle of phage PP9W2 by binding to the promoter regions of the gp71 gene (encoding a CI-like repressor) and several vital phage genes. Combined with RNA-seq and a series of phenotypic validation tests, our results showed that LfsT bound to the flexible palindromic sites within the promoters upstream of several genes in the bacterial genome, regulating fatty acid (FA) metabolism, spermidine (SPD) transport, as well as the type III secretion system (T3SS). Overall, this study reveals novel regulatory roles of LfsT in P. aeruginosa, improving our understanding of the molecular mechanisms behind bacterium-phage interactions. IMPORTANCE This work elucidates the novel roles of a putative XRE family TR, LfsT, in the intricate regulatory systems of P. aeruginosa. We found that LfsT bound directly to the core promoter regions upstream of the start codons of numerous genes involved in various processes, including phage infection, FA metabolism, SPD transport, and the T3SS, regulating as the repressor or activator. The identified partial palindromic motif NAACN(5,8)GTTN recognized by LfsT suggests extensive effects of LfsT on gene expression by maintaining preferential binding to nucleotide sites under evolutionary pressure. In summary, these findings indicate that LfsT enhances metabolic activity in P. aeruginosa, while it reduces host resistance to the phage. This study helps us better understand the coevolution of bacteria and phages (e.g., survival comes at a cost) and provides clues for designing novel antimicrobials against P. aeruginosa infections.


Asunto(s)
Pseudomonas aeruginosa , Xenobióticos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Profagos/genética , Elementos de Respuesta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacología
7.
J Lipid Res ; 63(6): 100223, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537528

RESUMEN

The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.


Asunto(s)
Ácidos Grasos , Neoplasias , Ácidos Grasos/metabolismo , Glicerofosfolípidos/química , Metabolismo de los Lípidos , Transducción de Señal
9.
Contrast Media Mol Imaging ; 10(3): 194-202, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25201079

RESUMEN

Dissolution-dynamic nuclear polarization (dissolution-DNP) for magnetic resonance (MR) spectroscopic imaging has recently emerged as a novel technique for noninvasive studies of the metabolic fate of biomolecules in vivo. Since acetate is the most abundant extra- and intracellular short-chain fatty acid, we focused on [1-(13) C]acetate as a promising candidate for a chemical probe to study the myocardial metabolism of a beating heart. The dissolution-DNP procedure of Na[1-(13) C]acetate for in vivo cardiac applications with a 3 T MR scanner was optimized in pigs during bolus injection of doses of up to 3 mmol. The Na[1-(13) C]acetate formulation was characterized by a liquid-state polarization of 14.2% and a T1Eff in vivo of 17.6 ± 1.7 s. In vivo Na[1-(13) C]acetate kinetics displayed a bimodal shape: [1-(13) C]acetyl carnitine (AcC) was detected in a slice covering the cardiac volume, and the signal of (13) C-acetate and (13) C-AcC was modeled using the total area under the curve (AUC) for kinetic analysis. A good correlation was found between the ratio AUC(AcC)/AUC(acetate) and the apparent kinetic constant of metabolic conversion, from [1-(13) C]acetate to [1-(13) C]AcC (kAcC ), divided by the AcC longitudinal relaxation rate (r1 ). Our study proved the feasibility and the limitations of administration of large doses of hyperpolarized [1-(13) C]acetate to study the myocardial conversion of [1-(13) C]acetate in [1-(13) C]acetyl-carnitine generated by acetyltransferase in healthy pigs.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Miocardio/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Acetato de Sodio/metabolismo , Acetilcarnitina/biosíntesis , Animales , Isótopos de Carbono/química , Modelos Animales de Enfermedad , Masculino , Acetato de Sodio/química , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA