Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 949
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39331095

RESUMEN

 The pig (Sus scrofa) is the most widely used large animal model in Europe, with cardiovascular research being one of the main areas of application. Adequate refinement of interventional studies in this field, meeting the requirements of Russell and Burch's 3 R concept, can only be performed if blood-contacting medical devices are hemocompatible. Because most medical devices for cardiovascular interventional procedures are developed for humans, they are tested only for compatibility with human blood. The aim of this study was therefore to determine whether there are differences in behavior of human and porcine platelets from commercial hybrid pigs when they come into contact with borosilicate glass, which was used as an exemplary thrombogenic material. For this purpose, changes in platelet count, platelet volume and platelet expression of the activation markers CD61, CD62P and CD63 were measured using a modified chandler loop-system simulating the fluidic effects of the bloodflow. Commercial hybrid pig and human platelets showed significant adhesions to borosilicate glass but the commercial hybrid pigs platelets showed a significantly higher tendency to adhere to borosilicate glass. In contrast to human platelets the platelets of commercial hybrid pigs showed significant activation after 4 to 8 minutes exposure to borosilicate glass and there were differences among the ratios of surface and activation markers in between the platelets of both species.

2.
Biomolecules ; 14(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39334897

RESUMEN

Introducing genetic material into hard-to-transfect mammalian cell lines and primary cells is often best achieved through retroviral infection. An ideal retroviral vector should offer a compact, selectable, and screenable marker while maximizing transgene delivery capacity. However, a previously published retroviral vector featuring an EGFP/Puromycin fusion protein failed to meet these criteria in our experiments. We encountered issues such as low infection efficiency, weak EGFP fluorescence, and selection against infected cells. To address these shortcomings, we developed a novel retroviral vector based on the Moloney murine leukemia virus. This vector includes a compact bifunctional EGFP and Puromycin resistance cassette connected by a 2A peptide. Our extensively tested vector demonstrated superior EGFP expression, efficient Puromycin selection, and no growth penalty in infected cells compared with the earlier design. These benefits were consistent across multiple mammalian cell types, underscoring the versatility of our vector. In summary, our enhanced retroviral vector offers a robust solution for efficient infection, reliable detection, and effective selection in mammalian cells. Its improved performance and compact design make it an ideal choice for a wide range of applications involving precise genetic manipulation and characterization in cell-based studies.


Asunto(s)
Vectores Genéticos , Proteínas Fluorescentes Verdes , Virus de la Leucemia Murina de Moloney , Retroviridae , Vectores Genéticos/genética , Humanos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Virus de la Leucemia Murina de Moloney/genética , Retroviridae/genética , Animales , Puromicina/farmacología , Células HEK293 , Transgenes , Ratones
3.
Front Cell Dev Biol ; 12: 1460061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39324068

RESUMEN

Mitochondrial quality control is finely tuned by mitophagy, the selective degradation of mitochondria through autophagy, and mitochondrial biogenesis. Removal of damaged mitochondria is essential to preserve cellular bioenergetics and prevent detrimental events such as sustained mitoROS production, pro-apoptotic cytochrome c release or mtDNA leakage. The array of tools available to study mitophagy is very limited but in constant development. Almost a decade ago, we developed a method to assess mitophagy flux using MitoTracker Deep Red in combination with lysosomal inhibitors. Now, using the novel tandem-fluorescence reporter mito-QC (mCherry-GFP-FIS1101-152) that allows to differentiate between healthy mitochondria (mCherry+GFP+) and mitolysosomes (mCherry+GFP-), we have developed a robust and quantitative method to assess mitophagy by flow cytometry. This approach has been validated in ARPE-19 cells using PINK1/Parkin-dependent (CCCP) and PINK1/Parkin-independent (DFP) positive controls and complementary techniques. Furthermore, we show that the mito-QC reporter can be multiplexed, especially if using spectral flow cytometry, to simultaneously study other cellular parameters such as viability or ROS production. Using this technique, we evaluated and characterized two prospective mitophagy inducers and further dissected their mechanism of action. Finally, using mito-QC reporter mice, we developed a protocol to measure mitophagy levels in the retina ex vivo. This novel methodology will propel mitophagy research forward and accelerate the discovery of novel mitophagy modulators.

4.
Curr Protoc ; 4(9): e70008, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264225

RESUMEN

Protoplast sorting and purification methods are powerful tools enabling the enrichment of cellular subpopulations for basic and applied studies in plant sciences. Fluorescence-activated protoplast sorting (FAPS) is an efficient method to isolate specific protoplast populations based on innate features (size and autofluorescence) or expression of fluorescent proteins. FAPS-based methods have recently been deployed in single-cell purification for single-cell RNA sequencing-based transcriptional profiling studies. Protoplast sorting methods integrated with the ability to culture and recover whole plants add value to functional genomics and gene editing applications. Enriching cells expressing nucleases linked to fluorescent proteins can maximize knockout or knockin editing efficiencies and minimize toxic and off-target effects. Here, we report the protocol for protoplast preparation, sterile cell sorting, culture, and downstream regeneration of plants from canola protoplasts. This protocol can be successfully applied to all totipotent protoplast methods that can regenerate into whole plants. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Preparation of transfected canola protoplasts for sorting Basic Protocol 2: Fluorescence-activated protoplast sorting Basic Protocol 3: Bead culture of sorted protoplasts and recovery of plantlets.


Asunto(s)
Brassica napus , Citometría de Flujo , Protoplastos , Regeneración , Protoplastos/metabolismo , Brassica napus/genética , Brassica napus/citología , Brassica napus/metabolismo , Citometría de Flujo/métodos
5.
Sci Rep ; 14(1): 20936, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251619

RESUMEN

Malassezia is a lipophilic commensal yeast that resides mainly on the mammalian skin and is also found to associate with the internal organs. Dysbiosis of Malassezia is related to several diseases and often escapes detection as it is difficult to culture and maintain. Malassezia cell wall differs from other budding yeasts like S. cerevisiae due to the difference in the lipid content and is difficult to transform. In this study, we present a methodology to stain Malassezia's nucleus and perform cell cycle studies. However, staining presents a challenge due to its exceptionally thick cell wall with high lipid content, hindering conventional methods. Our novel methodology addresses this challenge and enables the staining of the Malassezia nucleus with a low background. This would allow researchers to visualize the overall nuclear health specifically nuclear morphology and analyze DNA content, crucial for cell cycle progression. By employing DNA-specific dyes like DAPI or Hoechst, we can observe the nuclear structure, and using PI we can differentiate cells in distinct cell cycle phases using techniques like flow cytometry. This novel staining methodology unlocks the door for in-depth cell cycle analysis in Malassezia which has challenged us through ages being refractory to genetic manipulations, paving the way for a deeper understanding of this commensal fungus and its potential role in human health.


Asunto(s)
Ciclo Celular , Núcleo Celular , Malassezia , Coloración y Etiquetado , Núcleo Celular/metabolismo , Humanos , Coloración y Etiquetado/métodos , Citometría de Flujo/métodos , Pared Celular/metabolismo
6.
J Biol Chem ; 300(10): 107637, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122004

RESUMEN

Tissues are formed and shaped by cells of many different types and are orchestrated through countless interactions. Deciphering a tissue's biological complexity thus requires studying it at cell-level resolution, where molecular and biochemical features of different cell types can be explored and thoroughly dissected. Unfortunately, the lack of comprehensive methods to identify, isolate, and culture each cell type from many tissues has impeded progress. Here, we present a method for the breadth of cell types composing the human breast. Our goal has long been to understand the essence of each of these different breast cell types, to reveal the underlying biology explaining their intrinsic features, the consequences of interactions, and their contributions to the tissue. This biological exploration has required cell purification, deep-RNA sequencing, and a thorough dissection of the genes and pathways defining each cell type. While the molecular analysis is presented in an adjoining article, we present here an exhaustive cellular dissection of the human breast and explore its cellular composition and histological organization. Moreover, we introduce a novel FACS antibody panel and rigorous gating strategy capable of isolating each of the 12 major breast cell types to purity. Finally, we describe the creation of primary cell models from nearly every breast cell type-some the first of their kind-and submit these as critical tools for studying the dynamic cellular interactions within breast tissues and tumors. Together, this body of work delivers a unique perspective of the breast, revealing insights into its cellular, molecular, and biochemical composition.

7.
Biology (Basel) ; 13(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39194510

RESUMEN

Recycling histone proteins from parental chromatin, a process known as parental histone transfer, is an important component in chromosome replication and is essential for epigenetic inheritance. We review recent advances in our understanding of the recycling mechanism of parental histone H3-H4 tetramers (parH3:H4tet), emphasizing the pivotal role of the DNA replisome. In particular, we highlight the function of the MCM2-7 helicase subunit Mcm2 as a histone H3-H4 tetramer chaperone. Disruption of this histone chaperone's functions affects mouse embryonic stem cell differentiation and can lead to embryonic lethality in mice, underscoring the crucial role of the replisome in maintaining epigenomic stability.

8.
Methods Mol Biol ; 2846: 215-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141239

RESUMEN

Histone post-translational modifications (PTMs) influence the overall structure of the chromatin and gene expression. Over the course of cell differentiation, the distribution of histone modifications is remodeled, resulting in cell type-specific patterns. In the past, their study was limited to abundant cell types that could be purified in necessary numbers. However, studying these cell type-specific dynamic changes in heterogeneous in vivo settings requires sensitive single-cell methods. Current advances in single-cell sequencing methods remove these limitations, allowing the study of nonpurifiable cell types. One complicating factor is that some of the most biologically interesting cell types, including stem and progenitor cells that undergo differentiation, only make up a small fraction of cells in a tissue. This makes whole-tissue analysis rather inefficient. In this chapter, we present a sort-assisted single-cell Chromatin ImmunoCleavage sequencing technique (sortChIC) to map histone PTMs in single cells. This technique combines the mapping of histone PTM location in combination with surface staining-based enrichment, to allow the integration of established strategies for rare cell type enrichment. In general terms, this will enable researchers to quantify local and global chromatin changes in dynamic complex biological systems and can provide additional information on their contribution to lineage and cell-type specification in physiological conditions and disease.


Asunto(s)
Cromatina , Código de Histonas , Histonas , Procesamiento Proteico-Postraduccional , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Histonas/metabolismo , Humanos , Cromatina/metabolismo , Cromatina/genética , Animales , Citometría de Flujo/métodos
9.
Cytometry A ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152710

RESUMEN

Logic-gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry-based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof-of-concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic-gated cell therapeutics.

10.
Methods Mol Biol ; 2818: 115-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126470

RESUMEN

Mammalian meiosis is a highly specialized cell division process, resulting in the production of genetically unique haploid cells. However, the molecular mechanisms governing meiosis remain largely unknown, primarily due to the difficulty in isolating pure sub-populations of spermatocytes. Definitive molecular, biochemical, and functional investigations of the meiosis process require the isolation of these individual homogeneous sub-populations of spermatocytes. Here, we present an approach that enables the purification of homogeneous spermatocytes from mouse testis at desired sub-stages. This approach consists of two strategic steps. The first is to synchronize spermatogenesis, aiming to minimize the diversity and complexity of testicular germ cells. The second involves utilizing mouse models with germ cell-specific fluorescent markers to differentiate the desired subtype from other cells in the testis. By employing fluorescence-activated cell sorting (FACS), this approach yields highly pure populations of spermatocytes at each sub-stage. When combined with other massively parallel sequencing techniques and in vitro cell culture methods, this approach will enhance our comprehension of the molecular mechanisms underlying mammalian meiosis and promote in vitro gametogenesis.


Asunto(s)
Separación Celular , Citometría de Flujo , Meiosis , Espermatocitos , Espermatogénesis , Testículo , Animales , Masculino , Espermatocitos/citología , Espermatocitos/metabolismo , Ratones , Testículo/citología , Testículo/metabolismo , Citometría de Flujo/métodos , Separación Celular/métodos
11.
Methods Mol Biol ; 2845: 109-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115661

RESUMEN

The endoplasmic reticulum (ER) serves as a central hub for protein synthesis, folding, and lipid biosynthesis in eukaryotic cells. Maintaining ER homeostasis is essential for optimal cellular function, and one mechanism that has garnered attention is endoplasmic reticulum-specific autophagy, or ER-phagy. ER-phagy selectively removes specific ER portions, playing a pivotal role in cellular health and adaptation to environmental stressors. ER-phagy can be induced by diverse cellular conditions such as amino acid starvation, disruption of ER quality control mechanisms, and accumulation of misfolded ER protein, highlighting cellular adaptability and the significance of ER-phagy in stress responses. Clinically relevant mutations in ER-phagy receptors are implicated in various diseases, underlining the fundamental importance of ER-phagy in ER homeostasis. Here, we provide comprehensive protocols and general considerations while investigating ER-phagy using three fundamental techniques-Western blotting, immunofluorescence, and flow cytometry-commonly used in ER-phagy detection and quantitation.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Citometría de Flujo , Retículo Endoplásmico/metabolismo , Humanos , Citometría de Flujo/métodos , Western Blotting/métodos , Animales , Técnica del Anticuerpo Fluorescente/métodos
12.
Int J Legal Med ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995400

RESUMEN

Most of the sexual assault casework samples are of mixed sources. Forensic DNA laboratories are always in the requirement of a precise technique for the efficient separation of sperm and non-sperm DNA from mixed samples. Since the introduction of the differential extraction technique in 1985, it has seen significant advancements in the form of either chemicals used or modification of incubation times. Several automated and semi-automated techniques have also adopted the fundamentals of conventional differential extraction techniques. However, lengthy incubation, several manual steps, and carryover over non-sperm material in sperm fraction are some of the major limitations of this technique. Advanced cell separation techniques have shown huge promise in separating sperm cells from a mixture based on their size, shape, composition, and membrane structure and antigens present on sperm membranes. Such advanced techniques such as DEParray, ADE, FACS, LCM, HOT and their respective pros and cons have been discussed in this article. As current-day forensic techniques should be as per the line of Olympic slogan i.e., faster, higher, stronger, the advanced cell separation techniques show a huge potential to be implemented in the casework samples.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38982697

RESUMEN

OBJECTIVE: Enicostemma hyssopifolium (E. hyssopifolium) contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of E. hyssopifolium on HPV18-containing HeLa cells. METHODS: The methanol extract of E. hyssopifolium whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 µg/mL) to IC50 were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR. RESULTS: A significant dose-dependent anti-proliferative activity (IC50 - 108.25±2 µg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 µg/mL of extract was found to result in a higher percent of cell cycle arrest at G0/G1 and G2M phases with more early apoptosis, while 160 µg/mL resulted in more cell cycle arrest at SUBG0 and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 µg/mL of extract (tail moments-19.536 ± 17.8), while 80 µg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 µg/mL of extract, while 80 µg/mL did not show a significant reduction. CONCLUSION: The 160 µg/mL methanol extract of E. hyssopifolium demonstrated highly significant anti-cancer molecular effects in HeLa cells.

14.
Anim Reprod Sci ; 268: 107560, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029370

RESUMEN

Intracytoplasmic sperm injection (ICSI) remains inefficient in cattle. One reason could lie in the injection of oocytes with sperm that have not undergone molecular changes associated with in vivo capacitation and fertilizing ability. This study aimed to enhance the efficiency of bovine intracytoplasmic sperm injection (piezo-ICSI) by employing fluorescent-activated cell sorting (FACS) to select the sperm population before injection based on capacitation markers. First, we evaluated the effects of incubating thawed sperm for 2 hours with different capacitating inductors: heparin, methyl-beta-cyclodextrin (MßCD), and dibutyryl cyclic AMP (dbcAMP), alone or in combinations in a basal capacitating (C) medium (Sp-TALP). Sperm capacitation and quality markers were evaluated by flow cytometry, revealing heparin as the most effective inducer of sperm capacitation changes. It, therefore, this treatment was chosen as the sperm pretreatment for FACS-piezo-ICSI. Two cell populations showing high capacitating levels (Heparin-HCL) and low capacitating levels (Heparin-LCL) of the markers associated with sperm capacitation i(Ca2+) levels and acrosome integrity were selected by FACS and used for sperm injection. Pronuclear formation was significantly higher when ICSI was performed with Heparin-HCL sperm than with Heparin-LCL and the control group (Heparin unsorted) groups (50 %, 10 %, and 20 %, respectively). Furthermore, injecting Heparin-HCL sperm resulted in a higher blastocyst rate (22.5 %) than Heparin-LCL (10 %) and the control group (15.2 %). In conclusion, heparin treatment effectively induced changes associated with sperm capacitation. The combination of Heparin-HCL treatment and FACS enabled precise selection of capacitated sperm before ICSI, enhancing the efficiency of this technology in the bovine species.


Asunto(s)
Citometría de Flujo , Capacitación Espermática , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides , Animales , Masculino , Bovinos/embriología , Capacitación Espermática/efectos de los fármacos , Citometría de Flujo/veterinaria , Espermatozoides/fisiología , Espermatozoides/efectos de los fármacos , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Inyecciones de Esperma Intracitoplasmáticas/métodos , Femenino , Heparina/farmacología
15.
Acta Trop ; 258: 107338, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084482

RESUMEN

Leishmaniasis is a disease caused by the parasite Leishmania donovani affecting populations belonging to developing countries. The present study explores drug repurposing as an innovative strategy to identify new uses for approved clinical drugs, reducing the time and cost required for drug discovery. The three-dimensional structure of Leishmania donovani Sterol C-24 methyltransferase (LdSMT) was modeled and 1615 FDA-approved drugs from the ZINC database were computationally screened to identify the potent leads. Fulvestrant, docetaxel, indocyanine green, and iohexol were shortlisted as potential leads with the highest binding affinity and fitness scores for the concerned pathogenic receptor. Molecular dynamic simulation studies showed that the macromolecular complexes of indocyanine green and iohexol with LdSMT remained stable throughout the simulation and can be further evaluated experimentally for developing an effective drug. The proposed leads have further demonstrated promising safety profiles during cytotoxicity analysis on the J774.A1 macrophage cell line. Mechanistic analysis with these two drugs also revealed significant morphological alterations in the parasite, along with reduced intracellular parasitic load. Overall, this study demonstrates the potential of drug repurposing in identifying new treatments for leishmaniasis and other diseases affecting developing countries, highlighting the importance of considering approved clinical drugs for new applications.


Asunto(s)
Antiprotozoarios , Reposicionamiento de Medicamentos , Leishmania donovani , Metiltransferasas , Leishmania donovani/efectos de los fármacos , Leishmania donovani/enzimología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Antiprotozoarios/farmacología , Animales , Línea Celular , Macrófagos/parasitología , Macrófagos/efectos de los fármacos , Simulación de Dinámica Molecular , Humanos , Ratones , Simulación por Computador , United States Food and Drug Administration , Aprobación de Drogas , Inhibidores Enzimáticos/farmacología
16.
Methods Mol Biol ; 2823: 77-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39052215

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal solid malignancy with many patients succumbing to the disease within 6 months of diagnosis. The mechanisms that underlie PDAC initiation and progression are poorly understood. Current treatment options are primarily limited to chemotherapy, which is often provided with palliative intent. Unfortunately, there are no robust biomarkers to guide treatment selection or monitor treatment response. This is concerning given the increasing incidence of this cancer. We and others have generated organoid models to explore the biology underlying PDAC with the goal of identifying new therapeutic targets. Here we provide protocols to generate a preclinical PDAC organoid model and methods to use these to define the proteomic landscape of this cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Organoides , Neoplasias Pancreáticas , Proteómica , Organoides/metabolismo , Proteómica/métodos , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Animales , Proteoma , Biomarcadores de Tumor/metabolismo , Ratones
17.
Bioresour Technol ; 406: 131062, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964514

RESUMEN

Acquiring lipid-producing strains of Saccharomyces cerevisiae is necessary for producing high-value palmitoleic acid. This study sought to generate oleaginous S. cerevisiae mutants through a combination of zeocin mutagenesis and fluorescence-activated cell sorting, and then to identify key mutations responsible for enhanced lipid accumulation by multi-omics sequencing. Following three consecutive rounds of mutagenesis and sorting, a mutant, MU310, with the lipid content of 44%, was successfully obtained. Transcriptome and targeted metabolome analyses revealed that a coordinated response involving fatty acid precursor biosynthesis, nitrogen metabolism, pentose phosphate pathway, ethanol conversion, amino acid metabolism and fatty acid ß-oxidation was crucial for promoting lipid accumulation. The carbon fluxes of acetyl-CoA and NADPH in lipid biosynthesis were boosted in these pathways. Certain transcriptional regulators may also play significant roles in modulating lipid biosynthesis. Results of this study provide high-quality resource for palmitoleic acid production and deepen the understanding of lipid synthesis in yeast.


Asunto(s)
Lípidos , Mutagénesis , Saccharomyces cerevisiae , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados , Citometría de Flujo , Metabolismo de los Lípidos , Lípidos/biosíntesis , Metaboloma , Multiómica , Mutación , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcriptoma/genética
18.
Cells ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39056788

RESUMEN

Fibroblasts are among the most abundant cell types in the human body, playing crucial roles in numerous physiological processes, including the structural maintenance of the dermis, production of extracellular matrix components, and mediation of inflammatory responses. Despite their importance, fibroblasts remain one of the least characterized cell populations. The advent of single-cell analysis techniques, particularly single-cell RNA sequencing (scRNA-seq) and fluorescence-activated cell sorting (FACS), has enabled detailed investigations into fibroblast biology. In this study, we present an extensive analysis of fibroblast surface markers suitable for cell sorting and subsequent functional studies. We reviewed over three thousand research articles describing fibroblast populations and their markers, characterizing and comparing subtypes based on their surface markers, as well as their intra- and extracellular proteins. Our detailed analysis identified a variety of distinct fibroblast subpopulations, each with unique markers, characteristics dependent on their location, and the physiological or pathophysiological environment. These findings underscore the diversity of fibroblasts as a cellular population and could lead to the development of novel diagnostic and therapeutic tools.


Asunto(s)
Biomarcadores , Separación Celular , Fibroblastos , Citometría de Flujo , Fibroblastos/metabolismo , Fibroblastos/citología , Humanos , Separación Celular/métodos , Biomarcadores/metabolismo , Citometría de Flujo/métodos , Dermis/citología , Dermis/metabolismo , Análisis de la Célula Individual/métodos , Supervivencia Celular , Animales
19.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39025789

RESUMEN

Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.


Asunto(s)
Citometría de Flujo , Peroxisomas , Saccharomycetales , Peroxisomas/metabolismo , Peroxisomas/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Ensayos Analíticos de Alto Rendimiento , Autofagia , Vacuolas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Macroautofagia/genética
20.
J Mammary Gland Biol Neoplasia ; 29(1): 13, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916673

RESUMEN

Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.


Asunto(s)
Células Epiteliales , Perfilación de la Expresión Génica , Glándulas Mamarias Animales , Maduración Sexual , Células del Estroma , Transcriptoma , Animales , Femenino , Ratones , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Células del Estroma/metabolismo , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Maduración Sexual/fisiología , Proliferación Celular , Ciclo Estral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA