Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Methods Enzymol ; 695: 1-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521581

RESUMEN

G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.


Asunto(s)
ADN Helicasas , G-Cuádruplex , Humanos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , ADN/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas Recombinantes/metabolismo
2.
EMBO Rep ; 25(2): 876-901, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177925

RESUMEN

FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.


Asunto(s)
ADN , Neoplasias , Humanos , ADN/química , Replicación del ADN , Inestabilidad Genómica , Proteínas de Mantenimiento de Minicromosoma
3.
Mol Cell ; 83(1): 43-56.e10, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608669

RESUMEN

Endogenous and exogenous agents generate DNA-protein crosslinks (DPCs), whose replication-dependent degradation by the SPRTN protease suppresses aging and liver cancer. SPRTN is activated after the replicative CMG helicase bypasses a DPC and polymerase extends the nascent strand to the adduct. Here, we identify a role for the 5'-to-3' helicase FANCJ in DPC repair. In addition to supporting CMG bypass, FANCJ is essential for SPRTN activation. FANCJ binds ssDNA downstream of the DPC and uses its ATPase activity to unfold the protein adduct, which exposes the underlying DNA and enables cleavage of the adduct. FANCJ-dependent DPC unfolding is also essential for translesion DNA synthesis past DPCs that cannot be degraded. In summary, our results show that helicase-mediated protein unfolding enables multiple events in DPC repair.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN , Desplegamiento Proteico , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética
4.
J Biol Chem ; 299(1): 102770, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470428

RESUMEN

G-quadruplex (G4)-forming DNA sequences are abundant in the human genome, and they are hot spots for inducing DNA double-strand breaks (DSBs) and genome instability. The mechanisms involved in protecting G4s and maintaining genome stability have not been fully elucidated. Here, we demonstrated that RAD52 plays an important role in suppressing DSB accumulation at G4s, and RAD52-deficient cells are sensitive to G4-stabilizing compounds. Mechanistically, we showed that RAD52 is required for efficient homologous recombination repair at G4s, likely due to its function in recruiting structure-specific endonuclease XPF to remove G4 structures at DSB ends. We also demonstrated that upon G4 stabilization, endonuclease MUS81 mediates cleavage of stalled replication forks at G4s. The resulting DSBs recruit RAD52 and XPF to G4s for processing DSB ends to facilitate homologous recombination repair. Loss of RAD52 along with G4-resolving helicase FANCJ leads to a significant increase of DSB accumulation before and after treatment with the G4-stabilizing compound pyridostatin, and RAD52 exhibits a synthetic lethal interaction with FANCJ. Collectively, our findings reveal a new role of RAD52 in protecting G4 integrity and provide insights for new cancer treatment strategies.


Asunto(s)
G-Cuádruplex , Proteína Recombinante y Reparadora de ADN Rad52 , Animales , Humanos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Reparación del ADN por Recombinación/genética
5.
Hum Mutat ; 42(12): 1648-1665, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34585473

RESUMEN

Fanconi anemia (FA) is a rare autosomal or X-linked genetic disorder characterized by chromosomal breakages, congenital abnormalities, bone marrow failure (BMF), and cancer. There has been a discovery of 22 FANC genes known to be involved in the FA pathway. This wide number of pathway components makes molecular diagnosis challenging for FA. We present here the most comprehensive molecular diagnosis of FA subjects from India. We observed a high frequency (4.42 ± 1.5 breaks/metaphase) of chromosomal breakages in 181 FA subjects. The major clinical abnormalities observed were skin pigmentation (70.2%), short stature (46.4%), and skeletal abnormalities (43.1%), along with a few minor clinical abnormalities. The combination of Sanger sequencing and Next Generation Sequencing could molecularly characterize 164 (90.6%) FA patients and identified 12 different complementation groups [FANCA (56.10%), FANCG (16.46%), FANCL (12.80%), FANCD2 (4.88%), FANCJ (2.44%), FANCE (1.22%), FANCF (1.22%), FANCI (1.22%), FANCN (1.22%), FANCC (1.22%), FANCD1 (0.61%) and FANCB (0.61%)]. A total of 56 novel variants were identified in our cohort, including a hotspot variant: a deletion of exon 27 in the FANCA gene and a nonsense variant at c.787 C>T in the FANCG gene. Our comprehensive molecular findings can aid in the stratification of molecular investigation in the diagnosis and management of FA patients.


Asunto(s)
Anemia de Fanconi , ADN Helicasas , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , India
6.
Mol Cell Biol ; 40(23)2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32989015

RESUMEN

Fanconi anemia (FA) is a unique DNA damage repair pathway. To date, 22 genes have been identified that are associated with the FA pathway. A defect in any of those genes causes genomic instability, and the patients bearing the mutation become susceptible to cancer. In our earlier work, we identified that Fanconi anemia protein G (FANCG) protects the mitochondria from oxidative stress. In this report, we have identified eight patients having a mutation (C.65G>C), which converts arginine at position 22 to proline (p.Arg22Pro) in the N terminus of FANCG. The mutant protein, hFANCGR22P, is able to repair the DNA and able to retain the monoubiquitination of FANCD2 in the FANCGR22P/FGR22P cell. However, it lost mitochondrial localization and failed to protect mitochondria from oxidative stress. Mitochondrial instability in the FANCGR22P cell causes the transcriptional downregulation of mitochondrial iron-sulfur cluster biogenesis protein frataxin (FXN) and the resulting iron deficiency of FA protein FANCJ, an iron-sulfur-containing helicase involved in DNA repair.


Asunto(s)
Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica/genética , Proteínas de Unión a Hierro/biosíntesis , Mitocondrias/patología , ARN Helicasas/genética , Secuencia de Aminoácidos/genética , Línea Celular Tumoral , Daño del ADN/genética , Reparación del ADN/genética , Regulación hacia Abajo/genética , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Células HEK293 , Células HeLa , Humanos , Proteínas de Unión a Hierro/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Frataxina
7.
Cell Rep ; 32(1): 107849, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640219

RESUMEN

Replication-blocking DNA lesions are particularly toxic to proliferating cells because they can lead to chromosome mis-segregation if not repaired prior to mitosis. In this study, we report that ZGRF1 null cells accumulate chromosome aberrations following replication perturbation and show sensitivity to two potent replication-blocking anticancer drugs: mitomycin C and camptothecin. Moreover, ZGRF1 null cells are defective in catalyzing DNA damage-induced sister chromatid exchange despite accumulating excessive FANCD2, RAD51, and γ-H2AX foci upon induction of interstrand DNA crosslinks. Consistent with a direct role in promoting recombinational DNA repair, we show that ZGRF1 is a 5'-to-3' helicase that catalyzes D-loop dissociation and Holliday junction branch migration. Moreover, ZGRF1 physically interacts with RAD51 and stimulates strand exchange catalyzed by RAD51-RAD54. On the basis of these data, we propose that ZGRF1 promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de la Membrana/metabolismo , Reparación del ADN por Recombinación , Biocatálisis , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Reactivos de Enlaces Cruzados/química , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Recombinación Homóloga , Humanos , Proteínas de la Membrana/deficiencia , Mitomicina/farmacología , Recombinasa Rad51/metabolismo , Fase S/efectos de los fármacos
8.
World J Gastroenterol ; 26(11): 1197-1207, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32231423

RESUMEN

BACKGROUND: BRIP1 is a helicase that partners with BRCA1 in the homologous recombination (HR) step in the repair of DNA inter-strand cross-link lesions. It is a rare cause of hereditary ovarian cancer in patients with no mutations of BRCA1 or BRCA2. The role of the protein in other cancers such as gastrointestinal (GI) carcinomas is less well characterized but given its role in DNA repair it could be a candidate tumor suppressor similarly to the two BRCA proteins. AIM: To analyze the role of helicase BRIP1 (FANCJ) in GI cancers pathogenesis. METHODS: Publicly available data from genomic studies of esophageal, gastric, pancreatic, cholangiocarcinomas and colorectal cancers were interrogated to unveil the role of BRIP1 in these carcinomas and to discover associations of lesions in BRIP1 with other more common molecular defects in these cancers. RESULTS: Molecular lesions in BRIP1 were rare (3.6% of all samples) in GI cancers and consisted almost exclusively of mutations and amplifications. Among mutations, 40% were possibly pathogenic according to the OncoKB database. A majority of BRIP1 mutated GI cancers were hyper-mutated due to concomitant mutations in mismatch repair or polymerase ε and δ1 genes. No associations were discovered between amplifications of BRIP1 and any mutated genes. In gastroesophageal cancers BRIP1 amplification commonly co-occurs with ERBB2 amplification. CONCLUSION: Overall BRIP1 molecular defects do not seem to play a major role in GI cancers whereas mutations frequently occur in hypermutated carcinomas and co-occur with other HR genes mutations. Despite their rarity, BRIP1 defects may present an opportunity for therapeutic interventions similar to other HR defects.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Neoplasias Gastrointestinales/genética , Predisposición Genética a la Enfermedad , ARN Helicasas/genética , Codón sin Sentido , Bases de Datos Genéticas/estadística & datos numéricos , Conjuntos de Datos como Asunto , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Neoplasias Gastrointestinales/mortalidad , Neoplasias Gastrointestinales/patología , Amplificación de Genes , Humanos , Estimación de Kaplan-Meier , ARN Helicasas/metabolismo , Reparación del ADN por Recombinación/genética , Estudios Retrospectivos
9.
Genes (Basel) ; 11(1)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861576

RESUMEN

The FANCJ helicase unfolds G-quadruplexes (G4s) in human cells to support DNA replication. This action is coupled to the recruitment of REV1 polymerase to synthesize DNA across from a guanine template. The precise mechanisms of these reactions remain unclear. While FANCJ binds to G4s with an AKKQ motif, it is not known whether this site recognizes damaged G4 structures. FANCJ also has a PIP-like (PCNA Interacting Protein) region that may recruit REV1 to G4s either directly or through interactions mediated by PCNA protein. In this work, we measured the affinities of a FANCJ AKKQ peptide for G4s formed by (TTAGGG)4 and (GGGT)4 using fluorescence spectroscopy and biolayer interferometry (BLI). The effects of 8-oxoguanine (8oxoG) on these interactions were tested at different positions. BLI assays were then performed with a FANCJ PIP to examine its recruitment of REV1 and PCNA. FANCJ AKKQ bound tightly to a TTA loop and was sequestered away from the 8oxoG. Reducing the loop length between guanine tetrads increased the affinity of the peptide for 8oxoG4s. FANCJ PIP targeted both REV1 and PCNA but favored interactions with the REV1 polymerase. The impact of these results on the remodeling of damaged G4 DNA is discussed herein.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Guanina/análogos & derivados , Nucleotidiltransferasas/genética , Antígeno Nuclear de Célula en Proliferación/genética , ARN Helicasas/química , ARN Helicasas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión/efectos de los fármacos , Línea Celular , Dicroismo Circular , G-Cuádruplex , Guanina/química , Humanos , Modelos Moleculares , Nucleotidiltransferasas/química , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica/efectos de los fármacos , Conformación Proteica , Dominios Proteicos , Espectrometría de Fluorescencia
10.
Genes (Basel) ; 10(11)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683575

RESUMEN

Guanine quadruplex (G4) structures are among the most stable secondary DNA structures that can form in vitro, and evidence for their existence in vivo has been steadily accumulating. Originally described mainly for their deleterious effects on genome stability, more recent research has focused on (potential) functions of G4 structures in telomere maintenance, gene expression, and other cellular processes. The combined research on G4 structures has revealed that properly regulating G4 DNA structures in cells is important to prevent genome instability and disruption of normal cell function. In this short review we provide some background and historical context of our work resulting in the identification of FANCJ, RTEL1 and BLM as helicases that act on G4 structures in vivo. Taken together these studies highlight important roles of different G4 DNA structures and specific G4 helicases at selected genomic locations and telomeres in regulating gene expression and maintaining genome stability.


Asunto(s)
G-Cuádruplex , ARN Helicasas/metabolismo , RecQ Helicasas/metabolismo , Homeostasis del Telómero , Animales , Inestabilidad Genómica , Humanos
11.
Cancer Biol Ther ; 20(6): 843-854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30822218

RESUMEN

OBJECTIVE: DNA repair pathways are potential targets of molecular therapy in cancer patients. The FANCD2, BRIP1, BRCA1/2, and FANCF genes are involved in homologous recombination DNA repair, which implicates their possible role in cell response to DNA-damaging agents. We evaluated a clinical significance of pre-treatment expression of these genes at mRNA level in 99 primary, advanced-stage ovarian carcinomas from patients, who later received taxane-platinum (TP) or platinum-cyclophosphamide (PC) treatment. METHODS: Gene expression was determined with the use of Real-Time PCR. The BRCA2 and BRIP1 gene sequence was investigated with the use of SSCP, dHPLC, and PCR-sequencing. RESULTS: Increased FANCD2 expression occurred to be a negative prognostic factor for all patients (PC+TP:HR 3.85, p = 0.0003 for the risk of recurrence; HR 1.96, p = 0.02 for the risk of death), and this association was even stronger in the TP-treated group (HR 6.7, p = 0.0002 and HR 2.33, p = 0.01, respectively). Elevated BRIP1 expression was the only unfavorable molecular factor in the PC-treated patients (HR 8.37, p = 0.02 for the risk of recurrence). Additionally, an increased FANCD2 and BRCA1/2 expression levels were associated with poor ovarian cancer outcome in either TP53-positive or -negative subgroups of the TP-treated patients, however these groups were small. Sequence analysis identified one protein truncating variant (1/99) in BRCA2 and no mutations (0/56) in BRIP1. CONCLUSIONS: Our study shows for the first time that FANCD2 overexpression is a strong negative prognostic factor in ovarian cancer, particularly in patients treated with TP regimen. Moreover, increased mRNA level of the BRIP1 is a negative prognostic factor in the PC-treated patients. Next, changes in the BRCA2 and BRIP1 genes are rare and together with other analyzed FA genes considered as homologous recombination deficiency may not affect the expression level of analyzed genes.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación F de la Anemia de Fanconi/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Adulto , Anciano , Biomarcadores de Tumor , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/terapia , Pronóstico , Modelos de Riesgos Proporcionales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Cell Cycle ; 17(18): 2207-2220, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30209988

RESUMEN

Timely recruitment of DNA damage response proteins to sites of genomic structural lesions is very important for signaling mechanisms to activate appropriate cell cycle checkpoints but also repair the altered DNA sequence to suppress mutagenesis. The eukaryotic cell is characterized by a complex cadre of players and pathways to ensure genomic stability in the face of replication stress or outright genomic insult by endogenous metabolites or environmental agents. Among the key performers are molecular motor DNA unwinding enzymes known as helicases that sense genomic perturbations and separate structured DNA strands so that replacement of a damaged base or sugar-phosphate backbone lesion can occur efficiently. Mutations in the BLM gene encoding the DNA helicase BLM leads to a rare chromosomal instability disorder known as Bloom's syndrome. In a recent paper by the Sengupta lab, BLM's role in the correction of double-strand breaks (DSB), a particularly dangerous form of DNA damage, was investigated. Adding to the complexity, BLM appears to be a key ringmaster of DSB repair as it acts both positively and negatively to regulate correction pathways of high or low fidelity. The FANCJ DNA helicase, mutated in another chromosomal instability disorder known as Fanconi Anemia, is an important player that likely coordinates with BLM in the balancing act. Further studies to dissect the roles of DNA helicases like FANCJ and BLM in DSB repair are warranted.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Reparación del ADN , RecQ Helicasas , Sulfonamidas
13.
Cell Rep ; 24(12): 3251-3261, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30232006

RESUMEN

The DNA helicase FANCJ is mutated in hereditary breast and ovarian cancer and Fanconi anemia (FA). Nevertheless, how loss of FANCJ translates to disease pathogenesis remains unclear. We addressed this question by analyzing proteins associated with replication forks in cells with or without FANCJ. We demonstrate that FANCJ-knockout (FANCJ-KO) cells have alterations in the replisome that are consistent with enhanced replication stress, including an aberrant accumulation of the fork remodeling factor helicase-like transcription factor (HLTF). Correspondingly, HLTF contributes to fork degradation in FANCJ-KO cells. Unexpectedly, the unrestrained DNA synthesis that characterizes HLTF-deficient cells is FANCJ dependent and correlates with S1 nuclease sensitivity and fork degradation. These results suggest that FANCJ and HLTF promote replication fork integrity, in part by counteracting each other to keep fork remodeling and elongation in check. Indicating one protein compensates for loss of the other, loss of both HLTF and FANCJ causes a more severe replication stress response.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , ARN Helicasas/metabolismo , Factores de Transcripción/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Células HCT116 , Células HEK293 , Humanos , ARN Helicasas/genética , Factores de Transcripción/genética
14.
Genes (Basel) ; 7(7)2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27376332

RESUMEN

Mounting evidence indicates that alternate DNA structures, which deviate from normal double helical DNA, form in vivo and influence cellular processes such as replication and transcription. However, our understanding of how the cellular machinery deals with unusual DNA structures such as G-quadruplexes (G4), triplexes, or hairpins is only beginning to emerge. New advances in the field implicate a direct role of the Fanconi Anemia Group J (FANCJ) helicase, which is linked to a hereditary chromosomal instability disorder and important for cancer suppression, in replication past unusual DNA obstacles. This work sets the stage for significant progress in dissecting the molecular mechanisms whereby replication perturbation by abnormal DNA structures leads to genomic instability. In this review, we focus on FANCJ and its role to enable efficient DNA replication when the fork encounters vastly abundant naturally occurring DNA obstacles, which may have implications for targeting rapidly dividing cancer cells.

15.
Cancer Sci ; 107(10): 1406-1415, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27399284

RESUMEN

The breast and ovarian cancer predisposition protein BRCA1 forms three mutually exclusive complexes with Fanconi anemia group J protein (FANCJ, also called BACH1 or BRIP1), CtIP, and Abraxas/RAP80 through its BRCA1 C terminus (BRCT) domains, while its RING domain binds to BRCA1-associated RING domain 1 (BARD1). We recently found that the interaction between heterochromatin protein 1 (HP1) and BARD1 is required for the accumulation of BRCA1 and CtIP at sites of DNA double-strand breaks. Here, we investigated the importance of HP1 and BARD1-HP1 interaction in the localization of FANCJ together with the other BRCA1-BRCT binding proteins to clarify the separate role of the HP1-mediated pathway from the RNF8/RNF168-induced ubiquitin-mediated pathway for BRCA1 function. FANCJ interacts with HP1γ in a BARD1-dependent manner, and this interaction was enhanced by ionizing radiation or irinotecan hydrochloride treatment. Simultaneous depletion of all three HP1 isoforms with shRNAs disrupts the accumulation of FANCJ and CtIP, but not RAP80, at double-strand break sites. Replacement of endogenous BARD1 with a mutant BARD1 that is incapable of binding to HP1 also disrupts the accumulation of FANCJ and CtIP, but not RAP80. In contrast, RNF168 depletion disrupts the accumulation of only RAP80, but not FANCJ or CtIP. Consequently, the accumulation of conjugated ubiquitin was only inhibited by RNF168 depletion, whereas the accumulation of RAD51 and sister chromatid exchange were only inhibited by HP1 depletion or disruption of the BARD1-HP1 interaction. Taken together, the results suggest that the BRCA1-FANCJ and BRCA1-CtIP complexes are not downstream of the RNF8/RNF168/ubiquitin pathway, but are instead regulated by the HP1 pathway that precedes homologous recombination DNA repair.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Homólogo de la Proteína Chromobox 5 , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN , Endodesoxirribonucleasas , Células HeLa , Chaperonas de Histonas , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Unión Proteica , Recombinasa Rad51/metabolismo , Intercambio de Cromátides Hermanas , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
Methods ; 108: 14-23, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27223403

RESUMEN

DNA helicases participate in virtually all aspects of cellular DNA metabolism by using ATP-fueled directional translocation along the DNA molecule to unwind DNA duplexes, dismantle nucleoprotein complexes, and remove non-canonical DNA structures. Post-translational modifications and helicase interacting partners are often viewed as determining factors in controlling the switch between bona fide helicase activity and other functions of the enzyme that do not involve duplex separation. The bottleneck in developing a mechanistic understanding of human helicases and their control by post-translational modifications is obtaining sufficient quantities of the modified helicase for traditional structure-functional analyses and biochemical reconstitutions. This limitation can be overcome by single-molecule analysis, where several hundred surface-tethered molecules are sufficient to obtain a complete kinetic and thermodynamic description of the helicase-mediated substrate binding and rearrangement. Synthetic oligonucleotides site-specifically labeled with Cy3 and Cy5 fluorophores can be used to create a variety of DNA substrates that can be used to characterize DNA binding, as well as helicase translocation and duplex unwinding activities. This chapter describes "single-molecule sorting", a robust experimental approach to simultaneously quantify, and distinguish the activities of helicases carrying their native post-translational modifications. Using this technique, a DNA helicase of interest can be produced and biotinylated in human cells to enable surface-tethering for the single-molecule studies by total internal reflection fluorescence microscopy. The pool of helicases extracted from the cells is expected to contain a mixture of post-translationally modified and unmodified enzymes, and the contributions from either population can be monitored separately, but in the same experiment providing a direct route to evaluating the effect of a given modification.


Asunto(s)
ADN Helicasas/aislamiento & purificación , Proteínas de Unión al ADN/aislamiento & purificación , Citometría de Flujo/métodos , Imagen Individual de Molécula/métodos , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , ADN/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Oligonucleótidos/síntesis química , Oligonucleótidos/genética
17.
Methods ; 108: 118-29, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27107905

RESUMEN

FANCJ is a superfamily 2 DNA helicase, which also belongs to the iron-sulfur domain containing helicases that include XPD, ChlR1 (DDX11), and RTEL1. Mutations in FANCJ are genetically linked to Fanconi anemia (FA), breast cancer, and ovarian cancer. FANCJ plays a critical role in genome stability and participates in DNA interstrand crosslink and double-strand break repair. Enormous sequence alterations in exons and introns of FANCJ have been identified in patients, including 15 mutations in the coding region which are linked to breast cancer, 12 to FA, and two to ovarian cancer. We and other groups have characterized several FANCJ missense mutations, including M299I, A349P, R251C, and Q255H. As an increasing number of clinically relevant FANCJ mutations are identified, understanding the mechanism whereby FANCJ mutation leads to diseases is critical. Mutational analysis of FANCJ will help us elucidate the pathogenesis and potentially lead to therapeutic strategies by targeting FANCJ.


Asunto(s)
Análisis Mutacional de ADN/métodos , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Mutación Missense/genética , ARN Helicasas/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Femenino , Inestabilidad Genómica , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética
18.
Genes Dev ; 29(24): 2532-46, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26637282

RESUMEN

Microsatellites are short tandem repeat sequences that are highly prone to expansion/contraction due to their propensity to form non-B-form DNA structures, which hinder DNA polymerases and provoke template slippage. Although error correction by mismatch repair plays a key role in preventing microsatellite instability (MSI), which is a hallmark of Lynch syndrome, activities must also exist that unwind secondary structures to facilitate replication fidelity. Here, we report that Fancj helicase-deficient mice, while phenotypically resembling Fanconi anemia (FA), are also hypersensitive to replication inhibitors and predisposed to lymphoma. Whereas metabolism of G4-DNA structures is largely unaffected in Fancj(-/-) mice, high levels of spontaneous MSI occur, which is exacerbated by replication inhibition. In contrast, MSI is not observed in Fancd2(-/-) mice but is prevalent in human FA-J patients. Together, these data implicate FANCJ as a key factor required to counteract MSI, which is functionally distinct from its role in the FA pathway.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/fisiopatología , Linfoma/genética , Inestabilidad de Microsatélites , Animales , Antineoplásicos/farmacología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Camptotecina/farmacología , Línea Celular , Células Cultivadas , Daño del ADN/genética , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/deficiencia , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones Noqueados , Mitomicina/farmacología , Neoplasias Glandulares y Epiteliales/genética , ARN Helicasas , Rayos Ultravioleta
19.
Oncotarget ; 6(30): 28816-32, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26336824

RESUMEN

Fanconi anemia (FA) is a rare genome instability syndrome with progressive bone marrow failure and cancer susceptibility. FANCJ is one of 17 genes mutated in FA-patients, comprises a DNA helicase that is vital for properly maintaining genomic stability and is known to function in the FA-BRCA DNA repair pathway. While exact role(s) of FANCJ in this repair process is yet to be determined, it is known to interact with primary effector FANCD2. However, FANCJ is not required for FANCD2 activation but is important for its ability to fully respond to DNA damage. In this report, we determined that transient depletion of FANCJ adversely affects stability of FANCD2 and its co-regulator FANCI in multiple cell lines. Loss of FANCJ does not significantly alter cell cycle progression or FANCD2 transcription. However, in the absence of FANCJ, the majority of FANCD2 is degraded by both the proteasome and Caspase-3 dependent mechanism. FANCJ is capable of complexing with and stabilizing FANCD2 even in the absence of a functional helicase domain. Furthermore, our data demonstrate that FANCJ is important for FANCD2 stability and proper activation of DNA damage responses to replication blocks induced by hydroxyurea.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Caspasa 3/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Estabilidad de Enzimas , Anemia de Fanconi/tratamiento farmacológico , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Hidroxiurea/farmacología , Inhibidores de Proteasoma/farmacología , Unión Proteica , Proteolisis , Interferencia de ARN , Factores de Tiempo , Transfección , Ubiquitinación
20.
Cell Cycle ; 14(3): 342-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25659033

RESUMEN

Fanconi Anemia (FA) is an inherited multi-gene cancer predisposition syndrome that is characterized on the cellular level by a hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA pathway proteins are thought to act in a linear hierarchy: Following ICL detection, an upstream FA core complex monoubiquitinates the central FA pathway members FANCD2 and FANCI, followed by their recruitment to chromatin. Chromatin-bound monoubiquitinated FANCD2 and FANCI subsequently coordinate DNA repair factors including the downstream FA pathway members FANCJ and FANCD1/BRCA2 to repair the DNA ICL. Importantly, we recently showed that FANCD2 has additional independent roles: it binds chromatin and acts in concert with the BLM helicase complex to promote the restart of aphidicolin (APH)-stalled replication forks, while suppressing the firing of new replication origins. Here, we show that FANCD2 fulfills these roles independently of the FA core complex-mediated monoubiquitination step. Following APH treatment, nonubiquitinated FANCD2 accumulates on chromatin, recruits the BLM complex, and promotes robust replication fork recovery regardless of the absence or presence of a functional FA core complex. In contrast, the downstream FA pathway members FANCJ and BRCA2 share FANCD2's role in replication fork restart and the suppression of new origin firing. Our results support a non-linear FA pathway model at stalled replication forks, where the nonubiquitinated FANCD2 isoform - in concert with FANCJ and BRCA2 - fulfills a specific function in promoting efficient replication fork recovery independently of the FA core complex.


Asunto(s)
Proteína BRCA2/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Complejos Multiproteicos/metabolismo , Afidicolina/farmacología , Línea Celular , Cromatina/metabolismo , Replicación del ADN/efectos de los fármacos , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA