Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Exp Eye Res ; 225: 109249, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36152913

RESUMEN

Previously we identified B6.EDA+/+ mice as a novel mouse model that presents with elevated IOP and trabecular meshwork damage. Here, we expand on our previous findings by measuring aqueous humor outflow facility and analyzing the integrity of the inner wall of Schlemm's canal. As expected, intraocular pressure (IOP) was increased, and outflow facility was decreased compared to C57BL/6J controls. B6.EDA+/+ mice had significantly increased expression of the adherens junction protein, VE-cadherin by the inner wall endothelium of Schlemm's canal. These data suggest that in addition to trabecular meshwork damage, there are changes in Schlemm's canal in B6.EDA+/+ mice that lead to aqueous outflow dysfunction and ocular hypertension.


Asunto(s)
Glaucoma , Malla Trabecular , Ratones , Animales , Ratones Endogámicos C57BL , Esclerótica , Humor Acuoso/metabolismo , Presión Intraocular , Modelos Animales de Enfermedad
2.
Cell Biosci ; 12(1): 72, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619185

RESUMEN

BACKGROUND: Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage. Here, we investigate the role of an endogenous Toll-like receptor 4 (TLR4) ligand, FN-EDA, in the development of glaucoma utilizing a transgenic mouse strain (B6.EDA+/+) that constitutively expresses only FN containing the EDA isoform. METHODS: Eyes from C57BL6/J (wild-type), B6.EDA+/+ (constitutively active EDA), B6.EDA-/- (EDA null) mice were processed for electron microscopy and consecutive images of the entire length of the TM and Schlemm's canal (SC) from anterior to posterior were collected and montaged into a single image. ECM accumulation, basement membrane length, and size and number of giant vacuoles were quantified by ImageJ analysis. Tlr4 and Iba1 expression in the TM and ONH cells was conducted using RNAscope in situ hybridization and immunohistochemistry protocols. IOP was measured using a rebound tonometer, ON damage assessed by PPD stain, and RGC loss quantified in RBPMS labeled retina flat mounts. RESULTS: Ultrastructure analyses show the TM of B6.EDA+/+ mice have significantly increased accumulation of ECM between TM beams with few empty spaces compared to C57BL/6 J mice (p < 0.05). SC basement membrane is thicker and more continuous in B6.EDA+/+ mice compared to C57BL/6 J. No significant structural differences are detected in the TM of EDA null mice. Tlr4 and Iba1 expression is increased in the TM of B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.05). IOP is significantly higher in B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.001), and significant ON damage (p < 0.001) and RGC loss (p < 0.05) detected at 1 year of age. Tlr4 mRNA is expressed in mouse ONH cells, and is present in ganglion cell axons, microglia, and astrocytes. There is a significant increase in the area occupied by Iba-1 positive microglia cells in the ONH of B6.EDA+/+ mice compared to C57BL/6 J control eyes (p < 0.01). CONCLUSIONS: B6.EDA+/+ mice have increased ECM accumulation in the TM, elevated IOP, enhanced proinflammatory changes in the ONH, loss of RGCs, and ONH damage. These data suggest B6.EDA+/+ mice recapitulate many aspects of glaucomatous damage.

3.
J Cell Physiol ; 235(5): 4494-4507, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31637720

RESUMEN

Cancer-associated fibroblasts (CAFs) in the tumor microenvironment play major roles in supporting cancer progression. A previous report showed that SPIN90 downregulation is correlated with CAF activation and that SPIN90-deficient CAFs promote breast cancer progression. However, the mechanisms that mediate cancer-stroma interaction and how such interactions regulate cancer progression are not well understood. Here, we show that extra domain A (EDA)-containing fibronectin (FN), FN(+)EDA, produced by mouse embryonic fibroblasts (MEFs) derived from Spin90-knockout (KO) mice increases their own myofibroblast differentiation, which facilitates breast cancer progression. Increased FN(+)EDA in Spin90-KO MEFs promoted fibril formation in the extracellular matrix (ECM) and specifically interacted with integrin α4ß1 as the mediating receptor. Moreover, FN(+)EDA expression by Spin90-KO MEFs increased proliferation, migration, and invasion of breast cancer cells. Irigenin, a specific inhibitor of the interaction between integrin α4ß1 and FN(+)EDA, significantly blocked the effects of FN(+)EDA, such as fibril formation by Spin90-KO MEFs and proliferation, migration, and invasion of breast cancer cells. In orthotopic breast cancer mouse models, irigenin injection remarkably reduced tumor growth and lung metastases. It was supported by that FN(+)EDA in assembled fibrils was accumulated in cancer stroma of human breast cancer patients in which SPIN90 expression was downregulated. Our data suggest that SPIN90 downregulation increases FN(+)EDA and promotes ECM stiffening in breast cancer stroma through an assembly of long FN(+)EDA-rich fibrils; moreover, engagement of the Integrin α4ß1 receptor facilitates breast cancer progression. Inhibitory effects of irigenin on tumor growth and metastasis suggest the potential of this agent as an anticancer therapeutic.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Fibronectinas/metabolismo , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Femenino , Fibronectinas/genética , Eliminación de Gen , Humanos , Neoplasias Mamarias Animales , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Neoplasias Experimentales , Proteínas del Tejido Nervioso/genética , Regulación hacia Arriba
4.
Biochem Biophys Rep ; 13: 83-92, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29387813

RESUMEN

Emerging evidence suggests that dysfunction of the ubiquitin-proteasome system is involved in the pathogenesis of numerous senile degenerative diseases including retinal disorders. The aim of this study was to assess whether there is a link between proteasome regulation and retinal pigment epithelium (RPE)-mediated expression of extracellular matrix genes. For this purpose, human retinal pigment epithelial cells (ARPE-19) were treated with different concentrations of transforming growth factor-ß (TGFß), connective tissue growth factor (CTGF), interferon-γ (IFNγ) and the irreversible proteasome inhibitor epoxomicin. First, cytotoxicity and proliferation assays were carried out. The expression of proteasome-related genes and proteins was assessed and proteasome activity was determined. Then, expression of fibrosis-associated factors fibronectin (FN), fibronectin EDA domain (FN EDA), metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinases-1 (TIMP-1) and peroxisome proliferator-associated receptor-γ (PPARγ) was assessed. The proteasome inhibitor epoxomicin strongly arrested cell cycle progression and down-regulated TGFß gene expression, which in turn was shown to induce expression of pro-fibrogenic genes in ARPE-19 cells. Furthermore, epoxomicin induced a directional shift in the balance between MMP-2 and TIMP-1 and was associated with down-regulation of transcription of extracellular matrix genes FN and FN-EDA and up-regulation of the anti-fibrogenic factor PPARγ. In addition, both CTGF and TGFß were shown to affect expression of proteasome-associated mRNA and protein levels. Our results suggest a link between proteasome activity and pro-fibrogenic mechanisms in the RPE, which could imply a role for proteasome-modulating agents in the treatment of retinal disorders characterized by RPE-mediated fibrogenic responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA