RESUMEN
INTRODUCTION: The increasing use of Alzheimer's disease (AD) biomarkers has led to the recognition of a subgroup of non-AD amnestic mild cognitive impairment (aMCI) patients who have medial temporal hypometabolism on fluorodeoxyglucose-positron emission tomography (FDG-PET). METHODS: In this academic memory-clinic-based consecutive series, 16 non-AD aMCI patients and 28 AD controls matched for sex, age, and baseline Mini-Mental State Examination (MMSE) were followed for a median duration of 4.5 years. Our primary outcome was the MMSE decline rate over the subsequent years. We also determined the final diagnosis over time. RESULTS: FDG-PET showed more pronounced medial temporal hypometabolism in non-AD cases and more inferior parietal lobule hypometabolism in AD controls. MMSE decline was slower in non-AD (ß = -0.51) than in AD (ß = -2.00) patients. Five non-AD cases developed frontotemporal dementia years after symptom onset, and one developed dementia with Lewy bodies. DISCUSSION: Non-AD aMCI patients with medial temporal hypometabolism show slower cognitive decline. Highlights: Non-AD aMCI with medial temporal hypometabolism shows slower cognitive decline than AD.FDG-PET revealed distinct metabolic patterns between non-AD aMCI and AD patients.Approximately one-third of non-AD aMCI cases developed frontotemporal dementia.Comprehensive diagnostic biomarkers are crucial for non-AD aMCI characterization.
RESUMEN
Abnormal cytoplasmic localization and accumulation of pathological transactive response DNA binding protein of 43 kDa (TDP-43) underlies several devastating diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). A key element is the correlation between disease progression and spatio-temporal propagation of TDP-43-mediated pathology in the central nervous system. Several lines of evidence support the concept of templated aggregation and cell to cell spreading of pathological TDP-43. To further investigate this mechanism in vivo, we explored the efficacy of capturing and masking the seeding-competent region of extracellular TDP-43 species. For this, we generated a novel monoclonal antibody (mAb), ACI-6677, that targets the pathogenic protease-resistant amyloid core of TDP-43. ACI-6677 has a picomolar binding affinity for TDP-43 and is capable of binding to all C-terminal TDP-43 fragments. In vitro, ACI-6677 inhibited TDP-43 aggregation and boosted removal of pathological TDP-43 aggregates by phagocytosis. When injecting FTLD-TDP brain extracts unilaterally in the CamKIIa-hTDP-43NLSm mouse model, ACI-6677 significantly limited the induction of phosphorylated TDP-43 (pTDP-43) inclusions. Strikingly, on the contralateral side, the mAb significantly prevented pTDP-43 inclusion appearance exemplifying blocking of the spreading process. Taken together, these data demonstrate for the first time that an immunotherapy targeting the protease-resistant amyloid core of TDP-43 has the potential to restrict spreading, substantially slowing or stopping progression of disease.
Asunto(s)
Esclerosis Amiotrófica Lateral , Anticuerpos Monoclonales , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Demencia Frontotemporal , Animales , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Ratones , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Anticuerpos Monoclonales/farmacología , Humanos , Ratones TransgénicosRESUMEN
Frontotemporal dementia (FTD) is a neurodegenerative disease spectrum with an urgent need for reliable biomarkers for early diagnosis and monitoring. Speech and language changes occur in the early stages of FTD and offer a potential non-invasive, early, and accessible diagnostic tool. The use of speech and language markers in this disease spectrum is limited by the fact that most studies investigate English-speaking patients. This systematic review examines the literature on psychoacoustic and linguistic features of speech that occur across the FTD spectrum across as many different languages as possible. 76 papers were identified that investigate psychoacoustic and linguistic markers in discursive speech. 75â¯% of these papers studied English-speaking patients. The most generalizable features found across different languages, are speech rate, articulation rate, pause frequency, total pause duration, noun-verb ratio, and total number of nouns. While there are clear interlinguistic differences across patient groups, the results show promise for implementation of cross-linguistic markers of speech and language across the FTD spectrum particularly for psychoacoustic features.
RESUMEN
A diagnosis of behavioral variant frontotemporal dementia (bvFTD) often relies on informant reports of significant behavioral changes. "BvFTD-by-proxy" describes situations of neuropsychiatric changes reported solely by an informant under circumstances that may raise questions regarding their objectivity. We present three cases of bvFTD-like symptoms reported by spouses, where progression was unclear, testing showed mild but stable executive dysfunction, and neuroimaging was unremarkable. The subjective nature of bvFTD criteria leaves patients vulnerable to misleading informant reports, especially amid relational discord, and may threaten patient autonomy. Recognizing and managing this situation is critical but time-consuming, often requiring coordinated care across multiple providers.
RESUMEN
In later-line treatment of metastatic colorectal cancer (mCRC), there may be large differences in treatment efficacy depending on cancer cachexia. Recently, the cachexia index (CXI), which was calculated from the skeletal muscle mass index (SMI), serum albumin concentration, and neutrophil-to-lymphocyte ratio, was developed to evaluate cancer cachexia. We retrospectively examined the CXI of 80 patients who were treated with trifluridine/thymidine phosphorylase inhibitor (FTD/TPI) + bevacizumab (Bmab) therapy as a later-line treatment for mCRC, and assessed the impact of cancer cachexia on chemotherapeutic efficacy using CXI. Progression-free and overall survival rates were significantly worse in the low CXI group than in the high CXI group, although there were no marked differences in tumor factors, such as the number of metastatic organs or gene mutations, between the two groups. As the cross-sectional area of the iliopsoas muscle was significantly associated with that of the skeletal muscle, the accuracy of the CXI based on the psoas mass index (P-CXI), which is easier to calculate than the SMI, in predicting treatment outcomes was equivalent to that of the CXI based on the SMI (S-CXI). Cancer cachexia is an important factor related to treatment efficacy in later-line treatments, such as FTD/TPI + Bmab therapy.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Caquexia , Neoplasias Colorrectales , Timidina Fosforilasa , Trifluridina , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/complicaciones , Masculino , Trifluridina/uso terapéutico , Trifluridina/administración & dosificación , Femenino , Caquexia/tratamiento farmacológico , Caquexia/etiología , Persona de Mediana Edad , Anciano , Bevacizumab/uso terapéutico , Bevacizumab/administración & dosificación , Timidina Fosforilasa/antagonistas & inhibidores , Timidina Fosforilasa/metabolismo , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Metástasis de la Neoplasia , Resultado del Tratamiento , Adulto , Anciano de 80 o más AñosRESUMEN
BACKGROUND: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have clinical, pathological and genetic overlapping. Lipid pathways are implicated in ALS. This study examined the effect of blood lipid levels on ALS, FTD risk, and survival in ALS. METHODS: A systematic review and meta-analysis of high and low-density lipoprotein cholesterol (HDL-c and LDL-c), total cholesterol, triglycerides, apolipoproteins B and A1 levels with ALS was performed. Two-sample Mendelian randomisation (MR) analysis sought the causal effects of these exposures on ALS, FTD, and survival in ALS. The effect of lipid-lowering drugs was also examined using genetic proxies for targets of lipid-lowering medications. RESULTS: Three cohort studies met the inclusion criteria for meta-analysis. Meta-analysis indicated an association between higher LDL-c (HRper mmol/L = 1.07, 95%CI:1.02-1.12; I 2 =18%) and lower HDL-c (HRper mmol/L = 0.83, 95%CI:0.74-0.94; I 2 =0%) with an increased risk of ALS. MR suggested causal effects of higher LDL-c (ORIVW = 1.085, 95%:CI 1.008-1.168, pFDR = 0.0406), total cholesterol (ORIVW = 1.081, 95%:CI 1.013-1.154, pFDR = 0.0458) and apolipoprotein B (ORIVW = 1.104, 95%:CI 1.041-1.171, pFDR = 0.0061) increasing ALS risk, and higher apolipoprotein B level increasing FTD risk (ORIVW = 1.424, 95%CI 1.072-1.829, pFDR = 0.0382). Reducing LDL-c through APOB inhibition was associated with lower ALS (ORIVW = 0.84, 95%CI 0.759-0.929, pFDR = 0.00275) and FTD risk (ORIVW = 0.581, 95%CI 0.387-0.874, pFDR = 0.0362). CONCLUSION: These data support the influence of LDL-c and total cholesterol on ALS risk and apolipoprotein B on the risk of ALS and FTD. Potential APOB inhibition might decrease the risk of sporadic ALS and FTD. Further work in monogenic forms of ALS and FTD is necessary to determine whether blood lipids influence penetrance and phenotype.
Asunto(s)
Esclerosis Amiotrófica Lateral , Apolipoproteínas , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/epidemiología , Apolipoproteínas/antagonistas & inhibidores , Apolipoproteínas/sangre , Apolipoproteínas/genética , Demencia Frontotemporal/sangre , Demencia Frontotemporal/genética , Demencia Frontotemporal/epidemiología , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Lípidos/sangre , Análisis de la Aleatorización MendelianaRESUMEN
Background: Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified as a genetic cause of amyotrophic lateral sclerosis and/or frontotemporal dementia(ALS-FTD). In our previous studies using in vivo Drosophila model expressing CHCHD10S59L, and human cell models expressing CHCHD10S59L, we have identified that the PINK1/Parkin pathway is activated and causes cellular toxicity. Furthermore, we demonstrated that pseudo-substrate inhibitors for PINK1 and mitofusin2 agonists mitigated the cellular toxicity of CHCHD10S59L. Evidences using in vitro, in vivo genetic, and chemical tools indicate that inhibiting PINK1 would be the most promising treatment for CHCHD10S59L-induced diseases. Methods: An in vivo human cell culture and in vivo Drosophila models expressing CHCHD10S59L mutant were utilized in this study to evaluate the effect of PDE4 inhibitors in PINK-parkin mediated cytotoxicity through immunohistochemical and seahorse assays. Data were analysed using one-way ANOVA and post-hoc Dunnett's test for statistical significance. Results: We investigated cellular pathways that can modulate the PINK1/Parkin pathway and reduce CHCHD10S59L-induced cytotoxicity. Here, we report that FDA-approved PDE4 inhibitors reduced CHCHD10S59L-induced morphological and functional mitochondrial defects in human cells and an in vivo Drosophila model expressing C2C10HS81L. Multiple PDE4 inhibitors decreased PINK1 accumulation and downstream mitophagy induced by CHCHD10S59L. Conclusion: These findings suggest that PDE4 inhibitors currently available in the market may be repositioned to treat CHCHD10S59L-induced ALS-FTD and possibly other related diseases, and that disease treatment with PDE4 inhibitors should include careful consideration of the PINK1/Parkin pathway, as it is generally recognized as a protective pathway.
RESUMEN
OPINION STATEMENT: Recommended first and second line treatments for unresectable metastatic colorectal cancer (mCRC) include fluorouracil-based chemotherapy, anti-vascular endothelial growth factor (VEGF)-based therapy, and anti-epidermal growth factor receptor-targeted therapies. In third line, the SUNLIGHT trial showed that trifluridine/tipiracil + bevacizumab (FTD/TPI + BEV) provided significant survival benefits and as such is now a recommended third line regimen in patients with refractory mCRC, irrespective of RAS mutational status and previous anti-VEGF treatment. Some patients are not candidates for intensive combination chemotherapy as first-line therapy due to age, low tumor burden, performance status and/or comorbidities. Capecitabine (CAP) + BEV is recommended in these patients. In the SOLSTICE trial, FTD/TPI + BEV as a first line regimen in patients not eligible for intensive therapy was not superior to CAP + BEV in terms of progression-free survival (PFS). However, in SOLSTICE, FTD/TPI + BEV resulted in similar PFS, overall survival, and maintenance of quality of life as CAP + BEV, with a different safety profile. FTD/TPI + BEV offers a possible first line alternative in patients for whom CAP + BEV is an unsuitable treatment. This narrative review explores and summarizes the clinical trial data on FTD/TPI + BEV.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Neoplasias Colorrectales , Timina , Trifluridina , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Bevacizumab/uso terapéutico , Bevacizumab/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Trifluridina/uso terapéutico , Trifluridina/administración & dosificación , Timina/uso terapéutico , Metástasis de la Neoplasia , Ensayos Clínicos como Asunto , Resultado del Tratamiento , Combinación de Medicamentos , Manejo de la Enfermedad , PirrolidinasRESUMEN
Diagnosis of Frontotemporal dementia (FTD) and the specific underlying neuropathologies (frontotemporal lobar degeneration; FTLD- Tau and FTLD-TDP) is challenging, and thus fluid biomarkers are needed to improve diagnostic accuracy. We used proximity extension assays to analyze 665 proteins in cerebrospinal fluid (CSF) samples from a multicenter cohort including patients with FTD (n = 189), Alzheimer's Disease dementia (AD; n = 232), and cognitively unimpaired individuals (n = 196). In a subset, FTLD neuropathology was determined based on phenotype or genotype (FTLD-Tau = 87 and FTLD-TDP = 68). Forty three proteins were differentially regulated in FTD compared to controls and AD, reflecting axon development, regulation of synapse assembly, and cell-cell adhesion mediator activity pathways. Classification analysis identified a 14- and 13-CSF protein panel that discriminated FTD from controls (AUC: 0.96) or AD (AUC: 0.91). Custom multiplex panels confirmed the highly accurate discrimination between FTD and controls (AUCs > 0.96) or AD (AUCs > 0.88) in three validation cohorts, including one with autopsy confirmation (AUCs > 0.90). Six proteins were differentially regulated between FTLD-TDP and FTLD-Tau, but no reproducible classification model could be generated (AUC: 0.80). Overall, this study introduces novel FTD-specific biomarker panels with potential use in diagnostic setting.
RESUMEN
A hexanucleotide (G4C2) repeat expansion (HRE) within intron one of C9ORF72 is the leading genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). C9ORF72 haploinsufficiency, formation of RNA foci, and production of dipeptide repeat (DPR) proteins have been proposed as mechanisms of disease. Here, we report the first example of disease-modifying siRNAs for C9ORF72 driven ALS/FTD. Using a combination of reporter assay and primary cortical neurons derived from a C9-ALS/FTD mouse model, we screened a panel of more than 150 fully chemically stabilized siRNAs targeting different C9ORF72 transcriptional variants. We demonstrate the lack of correlation between siRNA efficacy in reporter assay versus native environment; repeat-containing C9ORF72 mRNA variants are found to preferentially localize to the nucleus, and thus C9ORF72 mRNA accessibility and intracellular localization have a dominant impact on functional RNAi. Using a C9-ALS/FTD mouse model, we demonstrate that divalent siRNAs targeting C9ORF72 mRNA variants specifically or non-selectively reduce the expression of C9ORF72 mRNA and significantly reduce DPR proteins. Interestingly, siRNA silencing all C9ORF72 mRNA transcripts was more effective in removing intranuclear mRNA aggregates than targeting only HRE-containing C9ORF72 mRNA transcripts. Combined, these data support RNAi-based degradation of C9ORF72 as a potential therapeutic paradigm.
RESUMEN
Vernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain-of-function mutation in FT-D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray-induced eh1 wheat mutant. Knockout of the wild-type and overexpression of the mutated FT-D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT-D1eh1 exon 3 led to gain-of-function interactions with 14-3-3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering-related transcriptomic programme. This mutation did not affect FT-D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT-D1 translocation to the shoot apical meristem. Furthermore, the 'Segment B' external loop is essential for FT-D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT-D1 regulatory target. This study illustrates FT-D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.
RESUMEN
Heterozygous loss-of-function mutations in the GRN gene are a common cause of frontotemporal dementia. Such mutations lead to decreased plasma and cerebrospinal fluid levels of progranulin (PGRN), a neurotrophic factor with lysosomal functions. Sortilin is a negative regulator of extracellular PGRN levels and has shown promise as a therapeutic target for frontotemporal dementia, enabling increased extracellular PGRN levels through inhibition of sortilin-mediated PGRN degradation. Here we report the development of a high-affinity sortilin-binding affibody-peptide fusion construct capable of increasing extracellular PGRN levels in vitro. By genetic fusion of a sortilin-binding affibody generated through phage display and a peptide derived from the progranulin C-terminus, an affinity protein (A3-PGRNC15*) with 185-pM affinity for sortilin was obtained. Treating PGRN-secreting and sortilin-expressing human glioblastoma U-251 cells with the fusion protein increased extracellular PGRN levels up to 2.5-fold, with an EC50 value of 1.3 nM. Our results introduce A3-PGRNC15* as a promising new agent with therapeutic potential for the treatment of frontotemporal dementia. Furthermore, the work highlights means to increase binding affinity through synergistic contribution from two orthogonal polypeptide units.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Progranulinas , Proteolisis , Proteínas Recombinantes de Fusión , Progranulinas/metabolismo , Progranulinas/genética , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Línea Celular Tumoral , Unión Proteica , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Péptidos/farmacología , Péptidos/metabolismoRESUMEN
The distinct clinical and radiological characteristics of right temporal variant FTD have only been recently recognized. METHODS: Eight patients with right temporal variant FTD were prospectively recruited and underwent a standardised neuropsychological assessment, clinical MRI, and quantitative neuroimaging. RESULTS: Our voxelwise grey analyses captured bilateral anterior and mesial temporal grey matter atrophy with a clear right-sided predominance. Bilateral hippocampal involvement was also observed, as well as disease burden in the right insular and opercula regions. White matter integrity alterations were also bilateral in anterior temporal and sub-insular regions with a clear right-hemispheric predominance. Extra-temporal white matter alterations have also been observed in orbitofrontal and parietal regions. Significant bilateral but right-predominant thalamus, putamen, hippocampus, and amygdala atrophy was identified based on subcortical segmentation. The clinical profile of our patients was dominated by progressive indifference, decline in motivation, loss of interest in previously cherished activities, incremental social withdrawal, difficulty recognising people, progressive language deficits, increasingly rigid routines, and repetitive behaviours. CONCLUSIONS: Right temporal variant FTD has an insidious onset and may be mistaken for depression at symptom onset. It manifests in a combination of apathy, language, and behavioural features. Quantitative MR imaging captures a characteristic bilateral but right-predominant temporal imaging signature with extra-temporal frontal and parietal involvement.
RESUMEN
INTRODUCTION: FTLD-FET is a newly described subtype of frontotemporal lobar degeneration (FTLD characterized by pathologic inclusions of FET proteins: fused in sarcoma (FUS), Ewing sarcoma, and TATA-binding protein-associated factor 2N (TAF15)). Severe caudate volume loss on MRI has been linked to FTLD-FUS, yet glucose hypometabolism in FTLD-FET has not been studied. We assessed [18F] fluorodeoxyglucose PET (FDG-PET) hypometabolism in FTLD-FET subtypes and compared metabolism to FTLD-tau and FTLD-TDP. METHODS: We retrospectively reviewed medical records of 26 autopsied FTLD patients (six FTLD-FET, ten FTLD-Tau, and ten FTLD-TDP) who had completed antemortem FDG-PET. We evaluated five regions, caudate nucleus, medial frontal cortex, lateral frontal cortex, and medial temporal using a 0-3 visual rating scale and validated our findings quantitatively using CORTEX-ID suite Z scores. RESULTS: Of the six FTLD-FET cases (three females) with median age at onset = 36, three were atypical FTLD-U (aFTLD-U) and three were neuronal intermediate filament inclusion disease (NIFID). bvFTD was the most common presentation. Four of the six FTLD cases (3 aFTLD-U + 1 NIFID) showed prominent caudate hypometabolism relatively early in the disease course. FTLD-tau and FTLD-TDP did not show early prominent caudate hypometabolism. Hypometabolism in medial and lateral temporal cortex was associated with FTLD-TDP, while FTLD-tau had normal-minimal regional metabolism. DISCUSSION: Prominent caudate hypometabolism, especially early in the disease course, appears to be a hallmark feature of the aFTLD-U subtype of FTLD-FET. Assessing caudate and temporal hypometabolism on FDG-PET will help to differentiate FTLD-FET from FTLD-tau and FTLD-TDP.
Asunto(s)
Fluorodesoxiglucosa F18 , Degeneración Lobar Frontotemporal , Tomografía de Emisión de Positrones , Humanos , Femenino , Masculino , Persona de Mediana Edad , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/metabolismo , Estudios Retrospectivos , Anciano , Glucosa/metabolismo , Diagnóstico Diferencial , AdultoRESUMEN
Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.
Asunto(s)
Aminoácidos , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Serina-Treonina Quinasas , Proteínas de Unión a GTP rab7 , Humanos , Aminoácidos/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Células HEK293 , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Transducción de SeñalRESUMEN
BACKGROUND: Inflammation has been proposed as a crucial player in neurodegeneration, including Frontotemporal Dementia (FTD). A few studies on sporadic FTD lead to inconclusive results, whereas large studies on genetic FTD are lacking. The aim of this study is to determine cytokine and chemokine plasma circulating levels in a large cohort of genetic FTD, collected within the GENetic Frontotemporal dementia Initiative (GENFI). METHODS: Mesoscale technology was used to analyse levels of 30 inflammatory factors in 434 plasma samples, including 94 Symptomatic Mutation carriers [(SMC); 15 with mutations in Microtubule Associated Protein Tau (MAPT) 34 in Progranulin (GRN) and 45 in Chromosome 9 Open Reading Frame (C9ORF)72], 168 Presymptomatic Mutation Carriers (PMC; 34 MAPT, 70 GRN and 64 C9ORF72) and 173 Non-carrier Controls (NC)]. RESULTS: The following cytokines were significantly upregulated (P<0.05) in MAPT and GRN SMC versus NC: Tumor Necrosis Factor (TNF)α, Interleukin (IL)-7, IL-15, IL-16, IL-17A. Moreover, only in GRN SMC, additional factors were upregulated, including: IL-1ß, IL-6, IL-10, IL-12/IL-23p40, eotaxin, eotaxin-3, Interferon γ-induced Protein (IP-10), Monocyte Chemotactic Protein (MCP)4. On the contrary, IL-1α levels were decreased in SMC compared with NC. Significantly decreased levels of this cytokine were also found in PMC, independent of the type of mutation. In SMC, no correlations between disease duration and cytokine and chemokine levels were found. Considering NfL and GFAP levels, as expected, significant increases were observed in SMC as compared to NC. These differences in mean values remain significant even when stratifying symptomatic patients by the mutated gene (P<0.0001). Considering instead the levels of NfL, GFAP, and the altered inflammatory molecules, no significant correlations emerged. CONCLUSION: We showed that inflammatory proteins are upregulated in MAPT and GRN SMC, with some specific factors altered in GRN only, whereas no changes were seen in C9ORF72 carriers. Notably, only IL-1α levels were decreased in both SMC and PMC, independent of the type of causal mutation, suggesting common modifications occurring in the preclinical phase of the disease.
Asunto(s)
Citocinas , Demencia Frontotemporal , Inflamación , Mutación , Progranulinas , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/sangre , Femenino , Masculino , Persona de Mediana Edad , Progranulinas/genética , Progranulinas/sangre , Citocinas/sangre , Citocinas/genética , Proteínas tau/sangre , Proteínas tau/genética , Anciano , Inflamación/genética , Inflamación/sangre , Proteína C9orf72/genética , Quimiocinas/sangre , Quimiocinas/genética , Estudios de Cohortes , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/sangre , HeterocigotoRESUMEN
Expansion of an intronic (GGGGCC)n repeat within the C9ORF72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (C9-FTD/ALS), characterized with aberrant repeat RNA foci and noncanonical translation-produced dipeptide repeat (DPR) protein inclusions. Here, we elucidate that the (GGGGCC)n repeat RNA co-localizes with nuclear speckles and alters their phase separation properties and granule dynamics. Moreover, the essential nuclear speckle scaffold protein SRRM2 is sequestered into the poly-GR cytoplasmic inclusions in the C9-FTD/ALS mouse model and patient postmortem tissues, exacerbating the nuclear speckle dysfunction. Impaired nuclear speckle integrity induces global exon skipping and intron retention in human iPSC-derived neurons and causes neuronal toxicity. Similar alternative splicing changes can be found in C9-FTD/ALS patient postmortem tissues. This work identified novel molecular mechanisms of global RNA splicing defects caused by impaired nuclear speckle function in C9-FTD/ALS and revealed novel potential biomarkers or therapeutic targets.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Empalme del ARN , Proteínas de Unión al ARN , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Ratones , Animales , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células Madre Pluripotentes Inducidas/metabolismo , Expansión de las Repeticiones de ADN/genética , Neuronas/metabolismo , Masculino , FemeninoRESUMEN
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with a progressive and fatal course. They are often comorbid and share the same molecular spectrum. Their key pathological features are the formation of the aggregation of TDP-43, an RNA-binding protein, in the cytoplasm and its depletion from the nucleus in the central nervous system. In the nucleus, TDP-43 regulates several aspects of RNA metabolism, ranging from RNA transcription and alternative splicing to RNA transport. Suppressing the aberrant splicing events during RNA processing is one of the significant functions of TDP-43. This function is impaired when TDP-43 becomes depleted from the nucleus. Several critical cryptic splicing targets of TDP-43 have recently emerged, such as STMN2, UNC13A, and others. UNC13A is an important ALS/FTD risk gene, and the genetic variations, single nucleotide polymorphisms, cause disease via the increased susceptibility for cryptic exon inclusion under the TDP-43 dysfunction. Moreover, TDP-43 has an autoregulatory mechanism that regulates the splicing of its mRNA (TARDBP mRNA) in the healthy state. This study provides recent findings on the splicing regulatory function of TDP-43 and discusses the prospects of using these aberrant splicing events as efficient biomarkers.
RESUMEN
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
RESUMEN
This study aimed to investigate LRTIs in cancer patients, focusing on pathogen distribution, and outcomes based on tumor types and antimicrobial treatments. The study included 110 cancer patients exhibiting symptoms of lower respiratory tract infections (LRTIs), consisting of 67 males and 43 females across a wide age range from under 1 year to over 60 years old. Exclusion of SARS-CoV-2 infection was conducted before admission. In addition to classical microbiological methods, fast-track detection using Multiplex Real-Time PCR was employed, utilizing the FTD-33 test kit. The findings revealed a diverse landscape of infections, notably Klebsiella pneumoniae, Haemophilus influenzae and Staphylococcus aureus. Parainfluenza 3 and 4 viruses, rhinovirus, influenza A subtype H1N1pdm09, influenza B and C viruses, HCoV-229, HCoV-OC43, and HCoV-HKU1 were infrequently detected. Furthermore, the existence of mixed infection highlighted the complexity of disease conditions in cancer patients. An analysis of antimicrobial treatment highlighted significant variations in fatal outcomes for carbapenem and colistimethate sodium. It was concluded that mixed infections were commonly identified as potential causes of LRTIs among cancer patients, while viral infections were less frequently detected. It underscores the complexity of antimicrobial treatment outcomes.