Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.417
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39222657

RESUMEN

Soft materials containing liquid inclusions have emerged as a promising class of materials. Unlike solid inclusions, liquid inclusions possess intrinsic fluidity, which allows them to retain the excellent deformation ability of soft materials. This can prevent compliance mismatches between the inclusions and the matrix, thus leading to improved performance and durability. Various liquids, including metallic, water-based, and ionic liquids, have been selected as inclusions for embedding into soft materials, resulting in unique properties and functionalities that enable a wide range of applications in soft robotics, wearable devices, and other cutting-edge fields. This review provides an overview of recent studies on the functional properties of composites with liquid inclusions and discusses theoretical models used to estimate these properties, aiming to bridge the gap between the microstructure/components and the overall properties of the composite from a theoretical perspective. Furthermore, current challenges and future opportunities for the widespread application of these composites are explored, highlighting their potential in advancing technologies.

2.
J Dairy Sci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218067

RESUMEN

This study evaluated the impact of thermal, ultrasonication, and UV treatment on the structural and functional properties of whey proteins from donkey milk (DWP). Whey proteins exhibited notable stability in non-heat-treated environments, while their structural and functional characteristics were notably impacted by excessive heat treatment. The application of high-temperature long-time thermal treatment (HTLT) resulted in a decrease in fluorescence intensity, foaming and emulsification stability, and considerable damage to the active components of the proteins. Specifically, the preservation of lysozyme activity was only 23%, and lactoferrin and immunoglobulin G exhibited a significant loss of 70% and 77%, respectively. Non-thermal treatment methods showed superior efficacy in preserving the active components in whey proteins compared with heat treatment. Ultrasonic treatment has demonstrated a notable capability in diminishing protein particle size and turbidity, and UV treatment has been observed to have the ability to oxidize internal disulfide bonds within proteins, consequently augmenting the presence of free sulfhydryl groups, which were beneficial to foaming and emulsification stability. This study not only offers a scientific basis for the processing and application of DWP but also serves as a guide to produce dairy products, aiding in the development of dairy products tailored to specific health functions.

3.
Food Res Int ; 194: 114914, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232534

RESUMEN

Gastrointestinal digestibility behavior, structural and functional characteristics of bovine ß-casein (ß-CN) were studied in vitro under infant and adult conditions. This direct comparison helps reveal the effects of different physiological stages on the digestive behavior of ß-CN. Not only was the degree of hydrolysis (DH) of ß-CN analyzed, but also the changes in its digestive morphology, microstructure, and secondary structure during digestion were explored in depth. Meanwhile, we focused on the physicochemical properties of ß-CN digesta, including solubility, emulsifying and foaming properties, as well as their functional properties, such as antimicrobial and antioxidant activities. Key results showed that ß-CN underwent more extensive hydrolysis in the adult digestion model, with approximately twice the DH compared to the infant model. The adult model exhibited faster digestion kinetics, less protein flocculation, and a more loosened secondary structure, indicating a more efficient digestion process. Notably, the digesta from the adult model displayed significantly improved solubility and emulsifying properties, and also enhanced antioxidant capacities, with significantly better inhibition of two common pathogenic bacteria than the infant model, and an average increase in the diameter of the inhibition zone of approximately 2 mm. These findings underscore the differential digestive behavior and functional potential of ß-CN across physiological stages. This comprehensive assessment approach contributes to a more comprehensive insight into the digestive behavior of ß-CN. Therefore, we conclude that producing products from unmodified ß-CN may be more suitable for the adult population, and that the digesta in the adult model exhibit higher functional properties.


Asunto(s)
Antioxidantes , Caseínas , Digestión , Solubilidad , Caseínas/química , Caseínas/metabolismo , Animales , Bovinos , Humanos , Adulto , Antioxidantes/química , Lactante , Hidrólisis , Modelos Biológicos
4.
Food Sci Nutr ; 12(8): 5951-5965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139954

RESUMEN

This research was carried out to optimize the extraction process of proteins from pomegranate seeds and characterize their in vitro digestibility as well as their thermal and functional properties. For this purpose, the study screened five parameters (liquid/solid ratio, pH, temperature, NaCl concentration, and time) that could potentially influence the extraction process. This screening was conducted using a two-level Placket-Burman design (PBD). The significant parameters (pH and NaCl concentration) were subsequently optimized using a three-level face-centered central composite design (FCCD) to determine the optimum extraction conditions. A maximum protein recovery of 83.8% was obtained at pH 11.0 and NaCl concentration of 0.0 M. Pomegranate seed protein isolate (PSPI) with a protein content of 92.4% (w/w) was obtained through the isoelectric precipitation of pomegranate seed protein extracted under the optimized conditions. An emulsifying activity index of 14.1 m2 g-1 was observed at the isoelectric pH, where the emulsion stability index was at 8.2%. PSPI also showed high water- and oil-holding capacities (3.7 and 4.3 g g-1, respectively). The essential amino acid levels in PSPI (except for valine and isoleucine) exceeded the recommended amounts set by WHO/FAO/UNU for adults, highlighting its high nutritional value. Based on thermal analysis data, denaturation of PSPI could occur at 89.5°C. The in vitro digestibility of PSPI was found to be 74.3%. PSPI shows a potential as a novel ingredient for substituting animal-based proteins in various food applications.

5.
J Texture Stud ; 55(4): e12861, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138121

RESUMEN

This study offers a comprehensive review of current developments regarding the utilization of diverse hydrocolloids in formulating fruit fillings across different fruit types, their impact on textural attributes, rheological properties, thermal stability, syneresis, and nutritional advantages of fillings and optimization of its characteristics to align with consumer preferences. The review also focuses on the various factors influencing fruit fillings, including the selection of fruits, processing methodologies, the inherent nature and concentration of hydrocolloids, and their synergistic interactions. In depth, scientific work on the impact of the parameters such as pH, total soluble solids, and sugar content within the fruit fillings was also discussed. Additionally, this article focuses on the utilization of the diverse fruit fillings developed by using hydrocolloids in bakery products including pastry, tartlet, muffins, cookies, and so forth. The review establishes that hydrocolloids offer a spectrum of techno-functional attributes conducive to strengthening both the structural and thermal stability of fruit fillings, consequently extending their shelf life. It further establishes that incorporating of hydrocolloids facilitates the development of healthier food products by mitigating the necessity of excessive sugar or various other less favorable ingredients. The incorporation of fruit fillings in bakery products significantly increases the value proposition of these baked goods, contributing to their overall enhancement of quality and sensory value.


Asunto(s)
Coloides , Manipulación de Alimentos , Frutas , Frutas/química , Manipulación de Alimentos/métodos , Reología , Humanos , Valor Nutritivo
6.
Foods ; 13(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123514

RESUMEN

The effects of ball milling on the physicochemical, functional, and emulsification characteristics of Polygonatum sibiricum insoluble dietary fiber (PIDF) were investigated. Through controlling milling time (4, 5, 6, 7, and 8 h), five PIDFs (PIDF-1, PIDF-2, PIDF-3, PIDF-4, and PIDF-5) were obtained. The results showed that ball milling effectively decreased the particle size and increased the zeta-potential of PIDF. Scanning electron microscope results revealed that PIDF-5 has a coarser microstructure. All PIDF samples had similar FTIR and XRD spectra. The functional properties of PIDF were all improved to varying degrees after ball milling. PIDF-3 had the highest water-holding capacity (5.12 g/g), oil-holding capacity (2.83 g/g), water-swelling capacity (3.83 mL/g), total phenol (8.12 mg/g), and total flavonoid (1.91 mg/g). PIDF-4 had the highest ion exchange capacity. Fat and glucose adsorption capacity were enhanced with ball milling time prolongation. PIDF-5 exhibited a contact angle of 88.7° and lower dynamic interfacial tension. Rheological results showed that PIDF-based emulsions had shear thinning and gel-like properties. PE-PIDF-5 emulsion had the smallest particle size and the highest zeta-potential value. PE-PIDF-5 was stable at pH 7 and high temperature. The findings of this study are of great significance to guide the utilization of the by-products of Polygonatum sibiricum.

7.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123586

RESUMEN

In this study, hot water treatment (WT), ultrasonic treatment (UT), ultrasonic-sodium hydroxide treatment (UST), ultrasonic-enzyme treatment (UET), and ultrasonic-microwave treatment (UMT) were used to treat sweet potatoes. The structural, physicochemical, and functional properties of the extracted soluble dietary fibres (SDFs) were named WT-SDF, UT-SDF, UST-SDF, UET-SDF, and UMT-SDF, respectively. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal properties, and Brunauer-Emmett-Teller (BET) analysis were employed. The structural results indicated that the UST-SDF exhibited the best thermal stability, highest crystallinity, and maximum specific surface area. Moreover, compared to hot water extraction, ultrasonic extraction, or ultrasonic extraction in combination with other methods, enhanced the physicochemical and functional properties of the SDF, including extraction yield, water-holding capacity (WHC), oil-holding capacity (OHC), glucose adsorption capacity (GAC), glucose dialysis retardation index (GDRI), sodium cholate adsorption capacity (SCAC), cholesterol adsorption capacity (CAC), nitrite ion adsorption capacity (NIAC), and antioxidant properties. Specifically, the UST-SDF and UMT-SDF showed better extraction yield, WHC, OHC, GAC, CAC, SCAC, and NIAC values than the other samples. In summary, these results indicate that UST and UMT could be applied as ideal extraction methods for sweet potato SDF and that UST-SDF and UMT-SDF show enormous potential for use in the functional food industry.

8.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123594

RESUMEN

Terrestrial orchid tubers are an important source of food in some parts of Africa and are traditionally included in the diets of most rural communities in Malawi. However, there is limited information on the nutritional and phytochemical content of the Malawian orchids to substantiate their traditional use. The present study evaluates the nutritional and phytochemical variation of four orchid species: Disa zombica, Satyrium buchananii, Satyrium carsonii, and Satyrium trinerve, collected from the same ecological zone of Malawi. The proximate content, minerals, phytochemicals, and functional properties were analysed using official procedures. Protein ranged from 2.19% to 4.65%, whereas carbohydrate ranged from 65.24% to 80.22%, with S. carsonii and S. trinerve registering the highest protein and carbohydrate contents, respectively. Iron and potassium were highest in D. zombica, while sodium and calcium were highest in S. buchananii. The total phenolics ranged from 228.56 to 500.00 mg GAE/100 g, with D. zombica registering the highest. The water absorption capacity ranged from 4.10 to 10.88 g/g. Despite variable levels, the study provides evidence that orchid species contain essential nutrients and phytochemicals important for human nutrition and health. Furthermore, the functional properties can be utilised in the development of food products, such as baked products.

9.
Foods ; 13(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123606

RESUMEN

Unconventional food plants, popularized in Brazil as PANC, remain underutilized globally. In that sense, this study aims to explore the nutritional and functional properties of taioba (Xanthosoma sagittifolium), a plant with edible leaves and tubers, and to investigate its potential for industrial-scale application as a source of starch. A systematic review was carried out and meta-analysis following the PRISMA guidelines was conducted based on a random effects synthesis of multivariable-adjusted relative risks (RRs). The searches were carried out in seven search sources, among which were Web of Science, Elsevier's Science Direct, Wiley Online Library, Springer Nature, Taylor & Francis, Hindawi, Scielo, ACS-American Chemical Society, and Google Scholar. The systematic review was guided by a systematic review protocol based on the POT strategy (Population, Outcome, and Types of studies), adapted for use in this research. Mendeley was a resource used for organization, to manage references, and to exclude duplicates of studies selected for review. The findings revealed that taioba leaves are abundant in essential nutrients, proteins, vitamins, and minerals. Additionally, the tubers offer rich starch content along with vitamins and minerals like iron, potassium, and calcium, making them an ideal substitute for conventional sources on an industrial scale. This research highlights the significance of studying the functionalities, applicability, and integration of this PANC in our diets, while also emphasizing its capability as a substitute for traditional starch varieties. Moreover, exploiting this plant's potential adds value to Amazonian resources, reduces import costs, and diversifies resource utilization across multiple industrial sectors.

10.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39124994

RESUMEN

The suitability of a given protein for use in food products depends heavily on characteristics such as foaming capacity, emulsifiability, and solubility, all of which are affected by the protein structure. Notably, protein structure, and thus characteristics related to food applications, can be altered by treatment with high-power ultrasound (HUS). Almonds are a promising source of high-quality vegetable protein for food products, but their physicochemical and functional properties remain largely unexplored, limiting their current applications in foods. Here, we tested the use of HUS on almond protein isolate (API) to determine the effects of this treatment on API functional properties. Aqueous almond protein suspensions were sonicated at varying power levels (200, 400, or 600 W) for two durations (15 or 30 min). The molecular structure, protein microstructure, solubility, and emulsifying and foaming properties of the resulting samples were then measured. The results showed that HUS treatment did not break API covalent bonds, but there were notable changes in the secondary protein structure composition, with the treated proteins showing a decrease in α-helices and ß-turns, and an increase in random coil structures as the result of protein unfolding. HUS treatment also increased the number of surface free sulfhydryl groups and decreased the intrinsic fluorescence intensity, indicating that the treatment also led to alterations in the tertiary protein structures. The particle size in aqueous suspensions was decreased in treated samples, indicating that HUS caused the dissociation of API aggregates. Finally, treated samples showed increased water solubility, emulsifying activity, emulsifying stability, foaming capacity, and foaming stability. This study demonstrated that HUS altered key physicochemical characteristics of API, improving critical functional properties including solubility and foaming and emulsifying capacities. This study also validated HUS as a safe and environmentally responsible tool for enhancing desirable functional characteristics of almond proteins, promoting their use in the food industry as a high-quality plant-based protein.


Asunto(s)
Proteínas de Plantas , Prunus dulcis , Solubilidad , Prunus dulcis/química , Proteínas de Plantas/química , Ondas Ultrasónicas , Estructura Secundaria de Proteína
11.
Food Res Int ; 192: 114681, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147541

RESUMEN

This study was conducted to formulate a conjugate of soy protein isolate (SPI) and peach gum (PG) with improved functional properties, interacting at mass ratios of 1:1, 1:2, 1:3, 2:1, and 2:3 by Maillard reaction via wet heating method. Conjugation efficiency was confirmed by grafting degree (DG) and browning index (BI). Results indicated that DG increased with increasing concentration of PG, and decreased with increasing pH, whereas no remarkable change was observed with increasing reaction time. The conjugates were optimized at a ratio of 1:3. SDS-PAGE confirmed conjugate formation, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) verified conjugate secondary structural changes, and scanning electron microscopy (SEM) indicated significant overall structural changes. The functional properties, solubility, emulsifying stability, water holding, foaming, and antioxidant activity were significantly improved. This study revealed the wet heating method as an effective approach to improve the functional properties of soy protein.


Asunto(s)
Antioxidantes , Calor , Reacción de Maillard , Solubilidad , Proteínas de Soja , Proteínas de Soja/química , Antioxidantes/química , Espectroscopía Infrarroja por Transformada de Fourier , Gomas de Plantas/química , Emulsiones , Microscopía Electrónica de Rastreo , Dicroismo Circular , Concentración de Iones de Hidrógeno , Electroforesis en Gel de Poliacrilamida , Agua/química , Calefacción , Manipulación de Alimentos/métodos
12.
Adv Sci (Weinh) ; : e2408150, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119828

RESUMEN

This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.

13.
J Food Sci ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126698

RESUMEN

This review examines the potential of curcumin as a technological and functional food additive in dairy and milk-based products. The advantages of incorporating curcumin in these products include its antimicrobial properties, support for the activity of lactic acid bacteria, improvement in sensory characteristics, and shelf-life extension. Curcumin notably enhances antioxidant activity and acts as a natural preservative in cheese, cheese-like products, and butter. In ice cream and dairy desserts, curcumin contributes to attractive color formation and offers functional benefits such as antioxidant activity, photostability, and increased nutritional value. However, the use of turmeric extract, a common source of curcumin, presents challenges including low bioavailability, color instability, and the formation of insoluble precipitates. The application of specialized curcumin formulations with enhanced water dispersion, purity, and bioavailability can mitigate these issues, improve the product's technological properties, and ensure compliance with local regulations. This review highlights the importance of continued research and development to optimize the use of curcumin in dairy and milk-based products, offering valuable insights for scientists and food industry professionals.

14.
Int J Food Sci ; 2024: 6624083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105167

RESUMEN

Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.

15.
Front Bioeng Biotechnol ; 12: 1440598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161354

RESUMEN

Introduction: Aryl-alcohol oxidase (AAO) shows a pronounced duality as oxidase and dehydrogenase similar to that described for other glucose-methanol-choline (GMC) oxidase/dehydrogenase superfamily proteins involved in lignocellulose decomposition. In this work, we detail the overall mechanism of AAOs from Pleurotus eryngii and Bjerkandera adusta for catalyzing the oxidation of natural aryl-alcohol substrates using either oxygen or quinones as electron acceptors and describe the crystallographic structure of AAO from B. adusta in complex with a product analogue. Methods: Kinetic studies with 4-methoxybenzyl and 3-chloro-4- methoxybenzyl alcohols, including both transient-state and steady-state analyses, along with interaction studies, provide insight into the oxidase and dehydrogenase mechanisms of these enzymes. Moreover, the resolution of the crystal structure of AAO from B. adusta allowed us to compare their overall folding and the structure of the active sites of both AAOs in relation to their activities. Results and Discussion: Although both enzymes show similar mechanistic properties, notable differences are highlighted in this study. In B. adusta, the AAO oxidase activity is limited by the reoxidation of the flavin, while in P. eryngii the slower step takes place during the reductive half-reaction, which determines the overall reaction rate. By contrast, dehydrogenase activity in both enzymes, irrespective of the alcohol participating in the reaction, is limited by the hydroquinone release from the active site. Despite these differences, both AAOs are more efficient as dehydrogenases, supporting the physiological role of this activity in lignocellulosic decay. This dual activity would allow these enzymes to adapt to different environments based on the available electron acceptors.

16.
Ultrason Sonochem ; 110: 107025, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39163694

RESUMEN

Whey protein is an important food ingredient, but it is also considered a major food allergen. The aim of this study was to investigate the effect of ultrasound pretreatment on the structure, IgE binding capacity, functional properties and biological activity of whey protein isolate (WPI) hydrolysates (WPH), including WPI hydrolyzed by a combination of enzymes from Bromelain and ProteAXH (BA-WPI) and WPI hydrolyzed by a combination of enzymes from Papain W-40 and ProteAXH (PA-WPI). The IgE binding capacity of BA-WPI and PA-WPI was reduced to 40.28% and 30.17%, respectively, due to disruption/exposure/shielding of conformational and linear epitopes. The IgE binding capacity of sonicated WPI was increased, but ultrasound pretreatment further reduced the IgE binding capacity of the hydrolysates to 32.89% and 28.04%. This is due to the fact that ultrasound pretreatment leads to conformational changes including increased α-helix and ß-sheet structure, exposure of aromatic amino acids, surface hydrophobicity, and increased sulfhydryl content, which increases the accessibility of allergenic epitopes to WPI by the enzyme. Multispectral and LC-MS/MS results further indicated that ultrasound pretreatment altered the conformational and primary structural changes of the hydrolysates. The thermograms showed that ultrasound pretreatment mainly altered the epitope spectra of ß-lactoglobulin hydrolysates, while it had less effect on the epitope spectra of α-lactalbumin hydrolysates. Additionally, ultrasound pretreatment significantly improved the foaming properties, antioxidant activity, and α-glucosidase inhibition of the hydrolysates without impairing the solubility and emulsification properties of the hydrolysates. Therefore, ultrasound pretreatment is a feasible method to reduce the allergenicity of WPH and to improve their functional properties and bioactivity. Notably, ultrasonic pretreatment improved the effectiveness and efficiency of WPI hydrolysis, which is a feasible method to produce high-quality protein feedstock in a green, efficient, and economical way.

17.
Int J Food Microbiol ; 424: 110857, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39141973

RESUMEN

Functional foods represent one of the fastest-growing, newer food category, and plant sources with functional properties are increasingly used as analogues of fermented milk-based derivatives. In this study, blended wort-rooibos beverages fermented with probiotic yeasts are proposed for the first time. Benefits of functional, non-conventional Lachancea thermotolerans (Lt101), Kazachstania unispora (Kum3-B3), Meyerozyma guilliermondii (Mg112), Meyerozyma caribbica (Mc58) and Debaryomyces hansenii (Dh36) yeast strains and the content of bioactive metabolites were evaluated. Viability tests on the probiotic yeasts confirmed previous results obtained in other matrices. The functional footprint of probiotic yeasts Lt101, Mg112 and Dh36 was confirmed by a balanced nutritional profile of the final drinks, also supported by aromatic and sensory analyses. In vitro estimated glycaemic index ranged between 77 % and 87 % without any influence on glycaemic response. Strains Dh36, Mc58, Kum3-B3 and Mg112 showed high antioxidant capacity and high total phenolic content, supporting the health promoting effect of the beverages.


Asunto(s)
Antioxidantes , Fermentación , Alimentos Fermentados , Probióticos , Levaduras , Levaduras/metabolismo , Alimentos Fermentados/microbiología , Bebidas/microbiología , Alimentos Funcionales , Microbiología de Alimentos , Humanos , Fenoles/metabolismo , Fenoles/análisis
18.
Ultrason Sonochem ; 110: 107030, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153419

RESUMEN

Environmental concerns linked to animal-based protein production have intensified interest in sustainable alternatives, with a focus on underutilized plant proteins. Faba beans, primarily used for animal feed, offer a high-quality protein source with promising bioactive compounds for food applications. This study explores the efficacy of ultrasound-assisted extraction under optimal conditions (123 W power, 1:15 g/mL solute/solvent ratio, 41 min sonication, 623 mL total volume) to isolate faba bean protein (U-FBPI). The ultrasound-assisted method achieved a protein extraction yield of 19.75 % and a protein content of 92.87 %, outperforming the control method's yield of 16.41 % and protein content of 89.88 %. Electrophoretic analysis confirmed no significant changes in the primary structure of U-FBPI compared to the control. However, Fourier-transform infrared spectroscopy revealed modifications in the secondary structure due to ultrasound treatment. The U-FBPI demonstrated superior water and oil holding capacities compared to the control protein isolate, although its foaming capacity was reduced by ultrasound. Thermal analysis indicated minimal impact on the protein's thermal properties under the applied ultrasound conditions. This research highlights the potential of ultrasound-assisted extraction for improving the functional properties of faba bean protein isolates, presenting a viable approach for advancing plant-based food production and contributing to sustainable protein consumption.

19.
Food Chem ; 461: 140813, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39173261

RESUMEN

The large yellow croaker roe phospholipids (LYPLs), rich in polyunsaturated fatty acids, is a potential phospholipid additive for meat products. In this work, the effects of LYPLs on the structural and functional properties of myofibrillar protein (MP) were determined, and compared with egg yolk phospholipids (EYPLs) and soybean phospholipids (SBPLs). The results revealed that LYPLs, similar to SBPLs and EYPLs, induced a transformation in the secondary structure of MP from α-helix to ß-sheets and random coils, while also inhibited the formation of carbonyl and disulfide bonds within MP. All three phospholipids induced MP tertiary structure unfolding, with the greatest degree of unfolding observed in MP containing LYPLs. The MP with LYPLs had the highest surface hydrophobicity, emulsification properties and gel strength. In addition, MP with LYPLs added also demonstrated superior rheological properties and water-holding capacity compared with SBPLs and EYPLs. In conclusion, adding LYPLs endowed MP with improved functional properties.

20.
Food Chem ; 460(Pt 3): 140784, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126952

RESUMEN

The low-grade matcha is rich in insoluble dietary fiber. Trichoderma viride was used to increase the soluble dietary fiber to improve its functional properties. The soluble dietary fiber content increased from 6.74% to 15.24%. Pectin, hemicellulose, maltose, d-xylose, and glucose contents increased by 63.35% and 11.54%, 2.18, 0.11, and 7.04 mg/g, respectively. Trichoderma viride fermentation disrupted the dense structure of insoluble dietary fiber, resulting in a honeycomb structure and improving crystallinity by 22.75%. These structural changes led to an improved cation exchange capacity from 1.69 to 4.22 mmol/g, an increase in the inhibitory effect of α-amylase from 47.38% to 72.04%, and a 2.13-fold in the ferrous ion scavenging ability, and the IC50 values of superoxide anion was reduced from 7.00 to 1.54 mg/mL, respectively. Therefore, Trichoderma viride fermentation is an excellent method for improving the quality of dietary fiber in matcha processing by-products.


Asunto(s)
Fibras de la Dieta , Fermentación , Fibras de la Dieta/metabolismo , Fibras de la Dieta/análisis , Hypocreales/metabolismo , Hypocreales/química , alfa-Amilasas/metabolismo , alfa-Amilasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA