Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Metab ; 89: 102031, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39304063

RESUMEN

Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.


Asunto(s)
Acetato CoA Ligasa , Acetatos , Acetilcoenzima A , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Acetilcoenzima A/metabolismo , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Acetatos/metabolismo , Acetatos/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ciclo Celular/efectos de los fármacos
2.
bioRxiv ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39026889

RESUMEN

Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.

3.
Front Cell Dev Biol ; 9: 753175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746147

RESUMEN

Proper regulation of neuronal morphological changes is essential for neuronal migration, maturation, synapse formation, and high-order function. Many cytoplasmic proteins involved in the regulation of neuronal microtubules and the actin cytoskeleton have been identified. In addition, some nuclear proteins have alternative functions in neurons. While cell cycle-related proteins basically control the progression of the cell cycle in the nucleus, some of them have an extra-cell cycle-regulatory function (EXCERF), such as regulating cytoskeletal organization, after exit from the cell cycle. Our expression analyses showed that not only cell cycle regulators, including cyclin A1, cyclin D2, Cdk4/6, p21cip1, p27kip1, Ink4 family, and RAD21, but also DNA repair proteins, including BRCA2, p53, ATM, ATR, RAD17, MRE11, RAD9, and Hus1, were expressed after neurogenesis, suggesting that these proteins have alternative functions in post-mitotic neurons. In this perspective paper, we discuss the alternative functions of the nuclear proteins in neuronal development, focusing on possible cytoplasmic roles.

4.
Cell Cycle ; 20(8): 808-818, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33794722

RESUMEN

The cyclin D-CDK4/6 complex has two distinct functions. Its kinase-dependent role involves its ability to act as serine/threonine kinase, responsible for phosphorylation of substrates required for cell cycle transitions, while its kinase-independent function involves its ability to act as a reservoir for p27Kip1. This association sequesters p27 from cyclin E-CDK2 complexes, allowing them to remain active. The aim of this current study is two-fold: to understand the contribution of the kinase-dependent and kinase-independent functions of CDK4 and CDK6 in epithelial cells and to directly compare CDK4 and CDK6 in a simple model system, TGF-ß treatment, where arrest is initiated by the expression of p15Ink4b. Cells that overexpressed a catalytically inactive, p15-insensitive CDK6 variant (p27 sequestration only mutant) were able to overcome TGF-ß-mediated arrest by maintaining CDK2 activity, while cells expressing the identical mutations in CDK4 were not. This result can be partially explained by the presence of a previously unidentified cyclin D-CDK6 dimer, which serves as a sink for free p27 during TGF-ß treatment, enabling CDK2 to remain inhibitor free. The use of the TGF-ß model system and the characterization of CDK pool dynamics and p27 switching is relevant to the CDK4/6 specific inhibitors, such as palbociclib, whose mechanism of action may resemble that of p15.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/fisiología , Factor de Crecimiento Transformador beta/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células Cultivadas , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/antagonistas & inhibidores , Ciclinas/metabolismo , Humanos , Multimerización de Proteína/efectos de los fármacos
5.
Cell Rep ; 29(12): 4144-4158.e7, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851939

RESUMEN

Quiescent hematopoietic stem cells (HSCs) are typically dormant, and only a few quiescent HSCs are active. The relationship between "dormant" and "active" HSCs remains unresolved. Here we generate a G0 marker (G0M) mouse line that visualizes quiescent cells and identify a small population of active HSCs (G0Mlow), which are distinct from dormant HSCs (G0Mhigh), within the conventional quiescent HSC fraction. Single-cell RNA-seq analyses show that the gene expression profiles of these populations are nearly identical but differ in their Cdk4/6 activity. Furthermore, high-throughput small-molecule screening reveals that high concentrations of cytoplasmic calcium ([Ca2+]c) are linked to dormancy of HSCs. These findings indicate that G0M separates dormant and active adult HSCs, which are regulated by Cdk4/6 and [Ca2+]c. This G0M mouse line represents a useful resource for investigating physiologically important stem cell subpopulations.


Asunto(s)
Biomarcadores/metabolismo , Calcio/metabolismo , Autorrenovación de las Células , Citoplasma/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Fase de Descanso del Ciclo Celular , Animales , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de la Célula Individual
6.
Acta Pharmacol Sin ; 40(2): 268-278, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29777202

RESUMEN

BRAF and MEK inhibitors have shown remarkable clinical efficacy in BRAF-mutant melanoma; however, most patients develop resistance, which limits the clinical benefit of these agents. In this study, we found that the human melanoma cell clones, A375-DR and A375-TR, with acquired resistance to BRAF inhibitor dabrafenib and MEK inhibitor trametinib, were cross resistant to other MAPK pathway inhibitors. In these resistant cells, phosphorylation of ribosomal protein S6 (rpS6) but not phosphorylation of ERK or p90 ribosomal S6 kinase (RSK) were unable to be inhibited by MAPK pathway inhibitors. Notably, knockdown of rpS6 in these cells effectively downregulated G1 phase-related proteins, including RB, cyclin D1, and CDK6, induced cell cycle arrest, and inhibited proliferation, suggesting that aberrant modulation of rpS6 phosphorylation contributed to the acquired resistance. Interestingly, RSK inhibitor had little effect on rpS6 phosphorylation and cell proliferation in resistant cells, whereas P70S6K inhibitor showed stronger inhibitory effects on rpS6 phosphorylation and cell proliferation in resistant cells than in parental cells. Thus regulation of rpS6 phosphorylation, which is predominantly mediated by BRAF/MEK/ERK/RSK signaling in parental cells, was switched to mTOR/P70S6K signaling in resistant cells. Furthermore, mTOR inhibitors alone overcame acquired resistance and rescued the sensitivity of the resistant cells when combined with BRAF/MEK inhibitors. Taken together, our findings indicate that RSK-independent phosphorylation of rpS6 confers resistance to MAPK pathway inhibitors in BRAF-mutant melanoma, and that mTOR inhibitor-based regimens may provide alternative strategies to overcome this acquired resistance.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteína S6 Ribosómica/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Línea Celular Tumoral , Humanos , Imidazoles/farmacología , Melanoma/tratamiento farmacológico , Melanoma/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Mutación , Oximas/farmacología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Piridonas/farmacología , Pirimidinonas/farmacología
7.
Genes Cells ; 24(2): 172-186, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30584685

RESUMEN

Cell proliferation and cellular quiescence/G0 phase must be regulated in response to intra-/extracellular environments, and such regulation is achieved by the orchestration of protein kinases and protein phosphatases. Here, we investigated fission yeast potential orthologs (Cek1, Ppk18 and Ppk31) of the metazoan Greatwall kinase (Gwl), which inhibits type-2A protein phosphatase with B55 subunit (PP2AB55 ) by phosphorylating and activating the PP2AB55 inhibitors, α-endosulfine/ARPP-19 (Ensa/ARPP-19). Gwl and Ensa/ARPP-19 regulate mitosis; however, we found Ppk18, Cek1 and Mug134/Igo1, the counterpart of Ensa/ARPP-19, are not essential for normal mitosis but regulate nitrogen starvation (-N)-induced proper G0 entry and maintenance. Genetic and biochemical analyses indicated that the conserved Gwl site (serine 64) was phosphorylated in the G0 phase in a Ppk18-dependent manner, and the phosphorylated Mug134/Igo1 inhibited PP2AB55 in vitro. The alanine substitution of the serine 64 caused defects in G0 entry and maintenance as well as the mug134/igo1+ deletion. These results indicate that PP2AB55 activity must be regulated properly to establish the G0 phase. Consistently, simultaneous deletion of the B55 gene with mug134/igo1+ partially rescued the Mug134/Igo1 mutant phenotype. We suggest that in fission yeast, PP2AB55 regulation by the Ppk18-Mug134/Igo1 pathway is required for G0 entry and establishment of robust viability during the G0 phase.


Asunto(s)
Mitosis , Péptidos/metabolismo , Fase de Descanso del Ciclo Celular , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Péptidos y Proteínas de Señalización Intercelular , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia
8.
Stem Cell Reports ; 11(1): 274-287, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29937145

RESUMEN

Transforming growth factor ß1 (TGF-ß1) plays a role in the maintenance of quiescent hematopoietic stem cells (HSCs) in vivo. We asked whether TGF-ß1 controls the cell cycle status of HSCs in vitro to enhance the reconstitution activity. To examine the effect of TGF-ß1 on the HSC function, we used an in vitro culture system in which single HSCs divide with the retention of their short- and long-term reconstitution ability. Extensive single-cell analyses showed that, regardless of its concentration, TGF-ß1 slowed down the cell cycle progression of HSCs but consequently suppressed their self-renewal potential. Cycling HSCs were not able to go back to quiescence with TGF-ß1. This study revealed a negative role of TGF-ß1 in the regulation of the HSC number and reconstitution activity.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Apoptosis , Ciclo Celular , Diferenciación Celular , División Celular/genética , Autorrenovación de las Células , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones
9.
Methods Mol Biol ; 1556: 283-302, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28247356

RESUMEN

Growing evidence supports the view that in adult stem cells, the defining stem cell features of potency and self-renewal are associated with the quiescent state. Thus, uncovering the molecular logic of this reversibly arrested state underlies not only a fundamental understanding of adult tissue dynamics but also hopes for therapeutic regeneration and rejuvenation of damaged or aging tissue. A key question concerns how adult stem cells use quiescence to establish or reinforce the property of self-renewal. Since self-renewal is largely studied by assays that measure proliferation, the concept of self-renewal programs imposed during non-proliferating conditions is counterintuitive. However, there is increasing evidence generated by deconstructing the quiescent state that highlights how programs characteristic of this particular cell cycle exit may enhance stem cell capabilities, through both cell-intrinsic and extrinsic programs.Toward this end, culture models that recapitulate key aspects of stem cell quiescence are useful for molecular analysis to explore attributes and regulation of the quiescent state. In this chapter, we review the different methods used to generate homogeneous populations of quiescent muscle cells, largely by manipulating culture conditions that feed into core signaling programs that regulate the cell cycle. We also provide detailed protocols developed or refined in our lab over the past two decades.


Asunto(s)
Técnicas de Cultivo de Célula , Músculo Esquelético/citología , Fase de Descanso del Ciclo Celular , Células Madre/citología , Actinas/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Línea Celular , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Microscopía Fluorescente , Mioblastos/citología , Mioblastos/metabolismo , Fase de Descanso del Ciclo Celular/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Células Madre/metabolismo
10.
Oncol Lett ; 10(4): 2359-2365, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26622852

RESUMEN

Prostate cancer presents high occurrence worldwide. Medicinal plants are a major source of novel and potentially therapeutic molecules; therefore, the aim of the present study was to investigate the possible anti-prostate cancer activity of afzelin, a flavonol glycoside that was previously isolated from Nymphaea odorata. The effect of afzelin on the proliferation of androgen-sensitive LNCaP and androgen-independent PC-3 cells was evaluated by performing a water soluble tetrazolium salt-1 assay. In addition, the effect of afzelin on the cell cycle of the LNCaP and PC-3 prostate cancer cell lines was evaluated. Western blot analysis was performed to evaluate the effect of afzelin on the kinases responsible for the regulation of actin organization. Afzelin was identified to inhibit the proliferation of LNCaP and PC3 cells, and block the cell cycle in the G0 phase. The anticancer activity of afzelin in these cells was determined to be due to inhibition of LIM domain kinase 1 expression. Thus, the in vitro efficacy of afzelin against prostate cancer is promising; however, additional studies on different animal models are required to substantiate its anticancer potential.

11.
G3 (Bethesda) ; 5(1): 145-55, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25452419

RESUMEN

Genetic factors underlying aging are remarkably conserved from yeast to human. The fission yeast Schizosaccharomyces pombe is an emerging genetic model to analyze cellular aging. Chronological lifespan (CLS) has been studied in stationary-phase yeast cells depleted for glucose, which only survive for a few days. Here, we analyzed CLS in quiescent S. pombe cells deprived of nitrogen, which arrest in a differentiated, G0-like state and survive for more than 2 months. We applied parallel mutant phenotyping by barcode sequencing (Bar-seq) to assay pooled haploid deletion mutants as they aged together during long-term quiescence. As expected, mutants with defects in autophagy or quiescence were under-represented or not detected. Lifespan scores could be calculated for 1199 mutants. We focus the discussion on the 48 most long-lived mutants, including both known aging genes in other model systems and genes not previously implicated in aging. Genes encoding membrane proteins were particularly prominent as pro-aging factors. We independently verified the extended CLS in individual assays for 30 selected mutants, showing the efficacy of the screen. We also applied Bar-seq to profile all pooled deletion mutants for proliferation under a standard growth condition. Unlike for stationary-phase cells, no inverse correlation between growth and CLS of quiescent cells was evident. These screens provide a rich resource for further studies, and they suggest that the quiescence model can provide unique, complementary insights into cellular aging.


Asunto(s)
Mutación , Schizosaccharomyces/genética , Código de Barras del ADN Taxonómico , ADN de Hongos/genética , Schizosaccharomyces/crecimiento & desarrollo
12.
J Biol Chem ; 289(41): 28730-7, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25164823

RESUMEN

Histone H2A variant H2AX is phosphorylated at Ser(139) in response to DNA double-strand break (DSB) and single-stranded DNA (ssDNA) formation. UV light dominantly induces pyrimidine photodimers, which are removed from the mammalian genome by nucleotide excision repair (NER). We previously reported that in quiescent G0 phase cells, UV induces ATR-mediated H2AX phosphorylation plausibly caused by persistent ssDNA gap intermediates during NER. In this study, we have found that DSB is also generated following UV irradiation in an NER-dependent manner and contributes to an earlier fraction of UV-induced H2AX phosphorylation. The NER-dependent DSB formation activates ATM kinase and triggers the accumulation of its downstream factors, MRE11, NBS1, and MDC1, at UV-damaged sites. Importantly, ATM-deficient cells exhibited enhanced UV sensitivity under quiescent conditions compared with asynchronously growing conditions. Finally, we show that the NER-dependent H2AX phosphorylation is also observed in murine peripheral T lymphocytes, typical nonproliferating quiescent cells in vivo. These results suggest that in vivo quiescent cells may suffer from NER-mediated secondary DNA damage including ssDNA and DSB.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Fase de Descanso del Ciclo Celular/efectos de la radiación , Transducción de Señal/efectos de la radiación , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Transformada , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Proteína Homóloga de MRE11 , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Cultivo Primario de Células , Fase de Descanso del Ciclo Celular/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Linfocitos T/efectos de la radiación , Transactivadores/genética , Transactivadores/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA