Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pestic Biochem Physiol ; 202: 105971, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879290

RESUMEN

Paraquat (PQ) poisoning leads to irreversible fibrosis in the lungs with high mortality and no known antidote. In this study, we investigated the effect of the SET and MYND domain containing 2 (SMYD2) on PQ-induced pulmonary fibrosis (PF) and its potential mechanisms. We established an in vivo PQ-induced PF mouse model by intraperitoneal injection of PQ (20 mg/kg) and in vitro PQ (25 µM)-injured MLE-12 cell model. On the 15th day of administration, tissue injury, inflammation, and fibrosis in mice were evaluated using various methods including routine blood counts, blood biochemistry, blood gas analysis, western blotting, H&E staining, ELISA, Masson staining, and immunofluorescence. The findings indicated that AZ505 administration mitigated tissue damage, inflammation, and collagen deposition in PQ-poisoned mice. Mechanistically, both in vivo and in vitro experiments revealed that AZ505 treatment suppressed the PQ-induced epithelial-mesenchymal transition (EMT) process by downregulating GLI pathogenesis related 2 (GLIPR2) and ERK/p38 pathway. Further investigations demonstrated that SMYD2 inhibition decreased GLIPR2 methylation and facilitated GLIPR2 ubiquitination, leading to GLIPR2 destabilization in PQ-exposed MLE-12 cells. Moreover, rescue experiments conducted in vitro demonstrated that GLIPR2 overexpression eliminated the inhibitory effect of AZ505 on the ERK/p38 pathway and EMT. Our results reveal that the SMYD2 inhibitor AZ505 may act as a novel therapeutic candidate to suppress the EMT process by modulating the GLIPR2/ERK/p38 axis in PQ-induced PF.


Asunto(s)
Transición Epitelial-Mesenquimal , Paraquat , Fibrosis Pulmonar , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones , Paraquat/toxicidad , Masculino , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Línea Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética
2.
J Bioenerg Biomembr ; 56(3): 273-284, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38427129

RESUMEN

Tetramethylpyrazine (TMP) is one of the active ingredients of Chuan Xiong that has been reported to have effects on numerous diseases, including diabetic nephropathy (DN). Whereas, related molecular mechanisms are not fully elucidated. We aimed to explore circACTR2's role in TMP-mediated protective effects on DN. In vitro DN condition was established in human kidney cells (HK-2) by treating high glucose (HG). CCK-8 assay and flow cytometry assay were used to observe cell viability and survival. Oxidative stress was determined by the associated markers using kits. The release of inflammatory factors was detected using ELISA kits. Quantitative real-time PCR (qPCR) and western blot were utilized for expression analysis of cricACTR2, miR-140-5p, and GLI pathogenesis-related 2 (GLIPR2). The binding between miR-140-5p and circACTR2 or GLIPR2 was confirmed by dual-luciferase, RIP, and pull-down studies. HG largely induced HK-2 cell apoptosis, oxidative stress, and inflammation, which were alleviated by TMP. CircACTR2's expression was enhanced in HG-treated HK-2 cells but attenuated in HG + TMP-treated HK-2 cells. CircACTR2 overexpression attenuated the functional effects of TMP and thus restored HG-induced cell apoptosis, oxidative stress, and inflammation. CircACTR2 bound to miR-140-5p to enhance the expression of GLIPR2. MiR-140-5p restoration or GLIPR2 inhibition reversed the role of circACTR2 overexpression. CircACTR2 attenuated the protective effects of TMP on HG-induced HK-2 cell damages by regulating the miR-140-5p/GLIPR2 network, indicating that circACTR2 was involved in the functional network of TMP in DN.


Asunto(s)
Pirazinas , Humanos , Pirazinas/farmacología , MicroARNs/metabolismo , Estrés Oxidativo/efectos de los fármacos , ARN Circular/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Línea Celular , Apoptosis/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología
3.
Front Immunol ; 15: 1280525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476239

RESUMEN

Background: Glioma pathogenesis related-2 (GLIPR2), an emerging Golgi membrane protein implicated in autophagy, has received limited attention in current scholarly discourse. Methods: Leveraging extensive datasets, including The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC), we conducted a comprehensive investigation into GLIPR2 expression across diverse human malignancies. Utilizing UALCAN, OncoDB, MEXPRESS and cBioPortal databases, we scrutinized GLIPR2 mutation patterns and methylation landscapes. The integration of bulk and single-cell RNA sequencing facilitated elucidation of relationships among cellular heterogeneity, immune infiltration, and GLIPR2 levels in pan-cancer. Employing ROC and KM analyses, we unveiled the diagnostic and prognostic potential of GLIPR2 across diverse cancers. Immunohistochemistry provided insights into GLIPR2 expression patterns in a multicenter cohort spanning various cancer types. In vitro functional experiments, including transwell assays, wound healing analyses, and drug sensitivity testing, were employed to delineate the tumor suppressive role of GLIPR2. Results: GLIPR2 expression was significantly reduced in neoplastic tissues compared to its prevalence in healthy tissues. Copy number variations (CNV) and alterations in methylation patterns exhibited discernible correlations with GLIPR2 expression within tumor tissues. Moreover, GLIPR2 demonstrated diagnostic and prognostic implications, showing pronounced associations with the expression profiles of numerous immune checkpoint genes and the relative abundance of immune cells in the neoplastic microenvironment. This multifaceted influence was evident across various cancer types, with lung adenocarcinoma (LUAD) being particularly prominent. Notably, patients with LUAD exhibited a significant decrease in GLIPR2 expression within practical clinical settings. Elevated GLIPR2 expression correlated with improved prognostic outcomes specifically in LUAD. Following radiotherapy, LUAD cases displayed an increased presence of GLIPR2+ infiltrating cellular constituents, indicating a notable correlation with heightened sensitivity to radiation-induced therapeutic modalities. A battery of experiments validated the functional role of GLIPR2 in suppressing the malignant phenotype and enhancing treatment sensitivity. Conclusion: In pan-cancer, particularly in LUAD, GLIPR2 emerges as a promising novel biomarker and tumor suppressor. Its involvement in immune cell infiltration suggests potential as an immunotherapeutic target.


Asunto(s)
Adenocarcinoma del Pulmón , Glioma , Neoplasias Pulmonares , Humanos , Variaciones en el Número de Copia de ADN , Proteómica , Biomarcadores , Microambiente Tumoral
4.
J Mol Biol ; 435(4): 167935, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586462

RESUMEN

Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) acts as a negative regulator of autophagy by interacting with Beclin 1 at Golgi membranes in mammalian cells. The molecular mechanism of this interaction is largely unknown. We recently showed that human GAPR-1 (hGAPR-1) has amyloidogenic properties resulting in the formation of protein condensates upon overexpression in Saccharomyces cerevisiae. Here we show that human Beclin 1 (hBeclin 1) has several predicted amyloidogenic regions and that overexpression of hBeclin 1-mCherry in yeast also results in the formation of fluorescent protein condensates. Surprisingly, co-expression of hGAPR-1-GFP and hBeclin 1-mCherry results in a strong reduction of hBeclin 1 condensates. Mutations of the known interaction site on the hGAPR-1 and hBeclin 1 surface abolished the effect on condensate formation during co-expression without affecting the condensate formation properties of the individual proteins. Similarly, a hBeclin 1-derived B18 peptide that is known to bind hGAPR-1 and to interfere with the interaction between hGAPR-1 and hBeclin 1, abolished the reduction of hBeclin 1 condensates by co-expression of hGAPR-1. These results indicate that the same type of protein-protein interactions interfere with condensate formation during co-expression of hGAPR-1 and hBeclin 1 as previously described for their interaction at Golgi membranes. The amyloidogenic properties of the B18 peptide were, however, important for the interaction with hGAPR-1, as mutant peptides with reduced amyloidogenic properties also showed reduced interaction with hGAPR-1 and reduced interference with hGAPR-1/hBeclin 1 condensate formation. We propose that amyloidogenic interactions take place between hGAPR-1 and hBeclin 1 prior to condensate formation.


Asunto(s)
Proteínas Amiloidogénicas , Beclina-1 , Proteínas de la Membrana , Mapeo de Interacción de Proteínas , Animales , Humanos , Beclina-1/genética , Beclina-1/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae , Mutación , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Multimerización de Proteína , Dominios y Motivos de Interacción de Proteínas
5.
J Mol Biol ; 433(19): 167162, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34298062

RESUMEN

Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid-liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.


Asunto(s)
Cuerpos de Inclusión/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Cristalografía por Rayos X , Citosol/química , Citosol/metabolismo , Humanos , Proteínas de la Membrana/genética , Agregado de Proteínas , Conformación Proteica , Dominios Proteicos , Ingeniería de Proteínas , Proteolisis , Saccharomyces cerevisiae/genética , Zinc/metabolismo
6.
Autophagy ; 17(10): 2891-2904, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33222586

RESUMEN

A key mediator of macroautophagy/autophagy induction is the class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1) consisting of PIK3C3/VPS34, PIK3R4/VPS15, BECN1, and ATG14. Although several proteins are known to enhance or decrease PtdIns3K-C1 activity, our understanding of the molecular regulation of PtdIns3K-C1 is still incomplete. Previously, we identified a Golgi-associated protein, GLIPR2, in a screen for proteins that interact with amino acids 267-284 of BECN1, a region of BECN1 sufficient to induce autophagy when fused to a cell penetrating leader sequence. In this study, we used CRISPR-Cas9-mediated depletion of GLIPR2 in cells and mice to investigate the role of GLIPR2 in the regulation of autophagy and PtdIns3K-C1 activity. Depletion of GLIPR2 in HeLa cells increased autelophagic flux and generation of phosphatidylinositol 3-phosphate (PtdIns3P). GLIPR2 knockout resulted in less compact Golgi structures, which was also observed in autophagy-inducing conditions such as amino acid starvation or Tat-BECN1 peptide treatment. Importantly, the binding of GLIPR2 to purified PtdIns3K-C1 inhibited the in vitro lipid kinase activity of PtdIns3K-C1. Moreover, the tissues of glipr2 knockout mice had increased basal autophagic flux as well as increased recruitment of the PtdIns3P-binding protein, WIPI2. Taken together, our findings demonstrate that GLIPR2 is a negative regulator of PtdIns3K-C1 activity and basal autophagy.Abbreviations: ATG14: autophagy related 14; Baf A1: bafilomycin A1; BARA: ß-α repeated, autophagy-specific; CQ: chloroquine; GFP: green fluorescent protein; GLIPR2: GLI pathogenesis related 2; HBSS: Hanks' balanced salt solution; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PBS: phosphate-buffered saline; PtdIns3K-C1: phosphatidylinositol 3-kinase complex I; PtdIns3P: phosphatidylinositol-3-phosphate; SEM: standard error of the mean; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III , Proteínas de la Membrana , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Fosforilación
7.
J Mol Endocrinol ; 59(2): 181-190, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28733476

RESUMEN

The objectives of this study are to investigate the effect of miR-30e targeting GLIPR-2 on the pathological mechanism of DN. The renal tissues of db/db and db/m mice at different age of weeks were stained with PAS. qRT-PCR was applied to detect the expression of miR-30e and GLIPR-2, not only in the renal tissues of mice but also in the renal tubular epithelial cells (RTECs). By luciferase reporter gene assays, we found the 3'-UTR of the GLIPR-2 mRNA as a direct target of miR-30e. The RTECs cultured in high glucose were divided into blank control, NC, miR-30e mimics, miR-30e inhibitors, miR-30e inhibitor + si-GLIPR-2 and si-GLIPR-2 groups. MTT and flow cytometry were utilized to measure the proliferation and apoptosis of RTECs, while qRT-PCR and Western blot to detect the expression of GLIPR-2- and EMT-related factors. The following results were obtained: In the renal tissues of over 8-week-old db/db mice and the RTECs cultured for 6 h in high glucose, miR-30e was downexpressed while GLIPR-2 was upregulated in a time-dependent manner. Besides, overexpression of miR-30e and si-GLIPR-2 can not only greatly improve the proliferation of RTECs cultured in high glucose, but also downregulate the apoptosis rate of RTECs and the expressions of GLIPR-2, vimentin, α-SMA, Col-I and FN and upregulate E-cadherin. Moreover, si-GLIPR-2 can reverse the proliferation reduction, GLIPR-2 and EMT occurrence caused by the downexpression of miR-30e in RTECs. In conclusion, miR-30e is downregulated in DN, and the overexpression of miR-30e can inhibit GLIPR-2, promote the proliferation of RTECs and inhibit EMT, ultimately avoid leading to renal fibrosis in DN.


Asunto(s)
Nefropatías Diabéticas/genética , MicroARNs/metabolismo , Proteínas/genética , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Proliferación Celular/efectos de los fármacos , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/orina , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/toxicidad , Túbulos Renales/patología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA