Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
Front Cell Neurosci ; 18: 1440834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381500

RESUMEN

The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.

2.
Eur J Neurosci ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39410873

RESUMEN

Major depressive disorder (MDD) has been associated with deficits in working memory as well as underlying gamma oscillation power. Consistent with this, overall reductions in cortical excitation have also been described with MDD. In previous work, we have demonstrated that the monoamine reuptake inhibitor venlafaxine increases gamma oscillation power in ex vivo hippocampal slices and that this is associated with concomitant increases in pyramidal arbour and reduced levels of plasticity-restricting perineuronal nets (PNNs). In the present study, we have examined the effects of chronic treatment with pramipexole (PPX), a D3 dopamine receptor agonist, for its effects on gamma oscillation power as measured by in vivo electroencephalography (EEG) recordings in female BALB/c and C57Bl6 mice. We observe a modest but significant increase in 20-50 Hz gamma power with PPX in both strains. Additionally, biochemical analysis of prefrontal cortex lysates from PPX-treated BALB/c mice shows a number of changes that could contribute to, or follow from, increased pyramidal excitability and/or gamma power. PPX-associated changes include reduced levels of specific PNN components as well as tissue inhibitor of matrix metalloproteases-1 (TIMP-1), which inhibits long-term potentiation of synaptic transmission. Consistent with its effects on gamma power, PNN proteins and TIMP-1, chronic PPX treatment also improves working memory and reduces anhedonia. Together these results add to an emerging literature linking extracellular matrix and/or gamma oscillation power to both mood and cognition.

3.
Ageing Res Rev ; : 102547, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39419401

RESUMEN

From 1990 to 2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65% of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.

4.
Brain Stimul ; 17(5): 1076-1085, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245294

RESUMEN

BACKGROUND: Theta-gamma transcranial alternating current stimulation (tACS) was recently found to enhance thumb acceleration in young, healthy participants, suggesting a potential role in facilitating motor skill acquisition. Given the relevance of motor skill acquisition in stroke rehabilitation, theta-gamma tACS may hold potential for treating stroke survivors. OBJECTIVE: We aimed to examine the effects of theta-gamma tACS on motor skill acquisition in young, healthy participants and stroke survivors. METHODS: In a pre-registered, double-blind, randomized, sham-controlled study, 78 young, healthy participants received either theta-gamma peak-coupled (TGP) tACS, theta-gamma trough-coupled (TGT) tACS or sham stimulation. 20 individuals with a chronic stroke received either TGP or sham. TACS was applied over motor cortical areas while participants performed an acceleration-dependent thumb movement task. Stroke survivors were characterized using standardized testing, with a subgroup receiving additional structural brain imaging. RESULTS: Neither TGP nor TGT tACS significantly modified general motor skill acquisition in the young, healthy cohort. In contrast, in the stroke cohort, TGP diminished motor skill acquisition compared to sham. Exploratory analyses revealed that, independent of general motor skill acquisition, healthy participants receiving TGP or TGT exhibited greater peak thumb acceleration than those receiving sham. CONCLUSION: Although theta-gamma tACS increased thumb acceleration in young, healthy participants, consistent with previous reports, it did not enhance overall motor skill acquisition in a more complex motor task. Furthermore, it even had detrimental effects on motor skill acquisition in stroke survivors.

5.
F1000Res ; 13: 674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238834

RESUMEN

Near-death experience (NDE) is a transcendent mental event of uncertain etiology that arises on the cusp of biological death. Since the discovery of NDE in the mid-1970s, multiple neuroscientific theories have been developed in an attempt to account for it in strictly materialistic or reductionistic terms. Therefore, in this conception, NDE is at most an extraordinary hallucination without any otherworldly, spiritual, or supernatural denotations. During the last decade or so, a number of animal and clinical studies have emerged which reported that about the time of death, there may be a surge of high frequency electroencephalogram (EEG) at a time when cortical electrical activity is otherwise at a very low ebb. This oscillatory rhythm falls within the range of the enigmatic brain wave-labelled gamma-band activity (GBA). Therefore, it has been proposed that this brief, paradoxical, and perimortem burst of the GBA may represent the neural foundation of the NDE. This study examines three separate but related questions concerning this phenomenon. The first problem pertains to the electrogenesis of standard GBA and the extent to which authentic cerebral activity has been contaminated by myogenic artifacts. The second problem involves the question of whether agents that can mimic NDE are also underlain by GBA. The third question concerns the electrogenesis of the surge in GBA itself. It has been contended that this is neither cortical nor myogenic in origin. Rather, it arises in a subcortical (amygdaloid) location but is recorded at the cortex via volume conduction, thereby mimicking standard GBA. Although this surge of GBA contains genuine electrophysiological activity and is an intriguing and provocative finding, there is little evidence to suggest that it could act as a kind of neurobiological skeleton for a phenomenon such as NDE.


Asunto(s)
Muerte , Electroencefalografía , Humanos , Ritmo Gamma/fisiología , Encéfalo/fisiología , Encéfalo/fisiopatología , Animales
6.
Front Comput Neurosci ; 18: 1422159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281982

RESUMEN

Gamma oscillations (30-120 Hz) in the brain are not periodic cycles, but they typically appear in short-time windows, often called oscillatory bursts. While the origin of this bursting phenomenon is still unclear, some recent studies hypothesize its origin in the external or endogenous noise of neural networks. We demonstrate that an exact neural mass model of excitatory and inhibitory quadratic-integrate and fire-spiking neurons theoretically predicts the emergence of a different regime of intrinsic bursting gamma (IBG) oscillations without any noise source, a phenomenon due to collective chaos. This regime is indeed observed in the direct simulation of spiking neurons, characterized by highly irregular spiking activity. IBG oscillations are distinguished by higher phase-amplitude coupling to slower theta oscillations concerning noise-induced bursting oscillations, thus indicating an increased capacity for information transfer between brain regions. We demonstrate that this phenomenon is present in both globally coupled and sparse networks of spiking neurons. These results propose a new mechanism for gamma oscillatory activity, suggesting deterministic collective chaos as a good candidate for the origin of gamma bursts.

7.
Neuropharmacology ; 260: 110117, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39153730

RESUMEN

Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Antipsicóticos/uso terapéutico , Colesterol/metabolismo , Animales , Colecalciferol/metabolismo , Agresión/fisiología , Agresión/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 121(33): e2400420121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106304

RESUMEN

Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1ß2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Modelos Animales de Enfermedad , Ritmo Gamma , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Cognición/efectos de los fármacos , Ritmo Gamma/efectos de los fármacos , Memoria/efectos de los fármacos , Receptores de GABA-A/metabolismo , Ratones Transgénicos , Humanos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Alanina/análogos & derivados , Azepinas
9.
PNAS Nexus ; 3(8): pgae288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161729

RESUMEN

Performing visually guided behavior involves flexible routing of sensory information towards associative areas. We hypothesize that in visual cortical areas, this routing is shaped by a gating influence of the local neuronal population on the activity of the same population's single neurons. We analyzed beta frequencies (representing local population activity), high-gamma frequencies (representative of the activity of local clusters of neurons), and the firing of single neurons in the medial temporal (MT) area of behaving rhesus monkeys. Our results show an influence of beta activity on single neurons, predictive of behavioral performance. Similarly, the temporal dependence of high-gamma on beta predicts behavioral performance. These demonstrate a unidirectional influence of network-level neural dynamics on single-neuron activity, preferentially routing relevant information. This demonstration of a local top-down influence unveils a previously unexplored perspective onto a core feature of cortical information processing: the selective transmission of sensory information to downstream areas based on behavioral relevance.

10.
Front Neurosci ; 18: 1425323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170673

RESUMEN

N-methyl-D-aspartate (NMDA) receptor antagonists are widely used to pharmacologically model schizophrenia and have been recently established in the treatment of treatment-resistant major depression demonstrating that the pharmacology of this substance class is complex. Cortical gamma oscillations, a rhythmic neuronal activity associated with cognitive processes, are increased in schizophrenia and deteriorated in depressive disorders and are increasingly used as biomarker in these neuropsychiatric diseases. The opposite use of NMDA receptor antagonists in schizophrenia and depression raises the question how their effects are in accordance with the observed disease pathophysiology and if these effects show a consequent sex-specificity. In this study in rats, we investigated the effects of subchronic (14 days) intraperitoneal injections of the NMDA receptor antagonist MK-801 at a subanesthetic daily dose of 0.2 mg/kg on the behavioral phenotype of adult female and male rats and on pharmacologically induced gamma oscillations measured ex vivo from the hippocampus. We found that MK-801 treatment leads to impaired recognition memory in the novel object recognition test, increased stereotypic behavior and reduced grooming, predominantly in female rats. MK-801 also increased the peak power of hippocampal gamma oscillations induced by kainate or acetylcholine only in female rats, without affecting the peak frequency of the oscillations. The findings indicate that blockade of NMDA receptors enhances gamma oscillations predominantly in female rats and this effect is associated with behavioral changes in females. The results are in accordance with clinical electrophysiological findings and highlight the importance of hippocampal gamma oscillations as a biomarker in schizophrenia and depression.

11.
Clin Neurophysiol ; 165: 55-63, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959536

RESUMEN

OBJECTIVE: Electroencephalography (EEG) measures of visual evoked potentials (VEPs) provide a targeted approach for investigating neural circuit dynamics. This study separately analyses phase-locked (evoked) and non-phase-locked (induced) gamma responses within the VEP to comprehensively investigate circuit differences in autism. METHODS: We analyzed VEP data from 237 autistic and 114 typically developing (TD) children aged 6-11, collected through the Autism Biomarkers Consortium for Clinical Trials (ABC-CT). Evoked and induced gamma (30-90 Hz) responses were separately quantified using a wavelet-based time-frequency analysis, and group differences were evaluated using a permutation-based clustering procedure. RESULTS: Autistic children exhibited reduced evoked gamma power but increased induced gamma power compared to TD peers. Group differences in induced responses showed the most prominent effect size and remained statistically significant after excluding outliers. CONCLUSIONS: Our study corroborates recent research indicating diminished evoked gamma responses in children with autism. Additionally, we observed a pronounced increase in induced power. Building upon existing ABC-CT findings, these results highlight the potential to detect variations in gamma-related neural activity, despite the absence of significant group differences in time-domain VEP components. SIGNIFICANCE: The contrasting patterns of decreased evoked and increased induced gamma activity in autistic children suggest that a combination of different EEG metrics may provide a clearer characterization of autism-related circuitry than individual markers alone.


Asunto(s)
Trastorno Autístico , Electroencefalografía , Potenciales Evocados Visuales , Ritmo Gamma , Humanos , Potenciales Evocados Visuales/fisiología , Masculino , Niño , Femenino , Ritmo Gamma/fisiología , Trastorno Autístico/fisiopatología , Electroencefalografía/métodos , Estimulación Luminosa/métodos
12.
Psychophysiology ; 61(11): e14653, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39014532

RESUMEN

Research suggests a potential of gamma oscillation entrainment for enhancing memory in Alzheimer's disease and healthy subjects. Gamma entrainment can be accomplished with oscillatory electrical, but also sensory stimulation. However, comparative studies between sensory stimulation and transcranial alternating current stimulation (tACS) effects on memory processes are lacking. This study examined the effects of rhythmic gamma auditory stimulation (rAS) and temporal gamma-tACS on verbal long-term memory (LTM) and working memory (WM) in 74 healthy individuals. Participants were assigned to two groups according to the stimulation techniques (rAS or tACS). Memory was assessed in three experimental blocks, in which each participant was administered with control, 40, and 60 Hz stimulation in counterbalanced order. All interventions were well-tolerated, and participants reported mostly comparable side effects between real stimulation (40 and 60 Hz) and the control condition. LTM immediate and delayed recall remained unaffected by stimulations, while immediate recall intrusions decreased during 60 Hz stimulation. Notably, 40 Hz interventions improved WM compared to control stimulations. These results highlight the potential of 60 and 40 Hz temporal cortex stimulation for reducing immediate LTM recall intrusions and improving WM performance, respectively, probably due to the entrainment of specific gamma oscillations in the auditory cortex. The results also shed light on the comparative effects of these neuromodulation tools on memory functions, and their potential applications for cognitive enhancement and in clinical trials.


Asunto(s)
Estimulación Acústica , Ritmo Gamma , Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Adulto , Memoria a Corto Plazo/fisiología , Adulto Joven , Ritmo Gamma/fisiología , Memoria a Largo Plazo/fisiología , Recuerdo Mental/fisiología , Corteza Auditiva/fisiología
13.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999971

RESUMEN

Major burdens for patients suffering from stroke are cognitive co-morbidities and epileptogenesis. Neural network disinhibition and deficient inhibitive pulses for fast network activities may result from impaired presynaptic release of the inhibitory neurotransmitter GABA. To test this hypothesis, a cortical photothrombotic stroke was induced in Sprague Dawley rats, and inhibitory currents were recorded seven days later in the peri-infarct blood-brain barrier disrupted (BBBd) hippocampus via patch-clamp electrophysiology in CA1 pyramidal cells (PC). Miniature inhibitory postsynaptic current (mIPSC) frequency was reduced to about half, and mIPSCs decayed faster in the BBBd hippocampus. Furthermore, the paired-pulse ratio of evoked GABA release was increased at 100 Hz, and train stimulations with 100 Hz revealed that the readily releasable pool (RRP), usually assumed to correspond to the number of tightly docked presynaptic vesicles, is reduced by about half in the BBBd hippocampus. These pathophysiologic changes are likely to contribute significantly to disturbed fast oscillatory activity, like cognition-associated gamma oscillations or sharp wave ripples and epileptogenesis in the BBBd hippocampus.


Asunto(s)
Barrera Hematoencefálica , Hipocampo , Potenciales Postsinápticos Inhibidores , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico , Animales , Barrera Hematoencefálica/metabolismo , Ratas , Ácido gamma-Aminobutírico/metabolismo , Hipocampo/metabolismo , Masculino , Células Piramidales/metabolismo , Vesículas Sinápticas/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Transmisión Sináptica
14.
Acta Physiol (Oxf) ; 240(9): e14198, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38958443

RESUMEN

AIM: Neural activity in the olfactory bulb (OB) can represent odor information during different brain and behavioral states. For example, the odor responses of mitral/tufted (M/T) cells in the OB change during learning of odor-discrimination tasks and, at the network level, beta power increases and the high gamma (HG) power decreases during odor presentation in such tasks. However, the neural mechanisms underlying these observations remain poorly understood. Here, we investigate whether serotonergic modulation from the dorsal raphe nucleus (DRN) to the OB is involved in shaping activity during the learning process in a go/no-go task in mice. METHODS: Fiber photometry was used to record the population activity of DRN serotonergic neurons during a go/no-go task. In vivo electrophysiology was used to record neural activity (single units and local field potentials) in the OB during the go/no-go task. Real-time place preference (RTPP) and intracranial light administration in a specific subarea (iClass) tests were used to assess the ability of mice to encoding reward information. RESULTS: Odor-evoked population activity in serotonergic neurons in the DRN was shaped during the learning process in a go/no-go task. In the OB, neural activity from oscillations to single cells showed complex, learning-associated changes and ability to encode information during an odor discrimination task. However, these properties were not observed after ablation of DRN serotonergic neurons. CONCLUSION: The activity of neural networks and single cells in the OB, and their ability to encode information about odor value, are shaped by serotonergic projections from the DRN.


Asunto(s)
Núcleo Dorsal del Rafe , Odorantes , Bulbo Olfatorio , Neuronas Serotoninérgicas , Animales , Bulbo Olfatorio/fisiología , Núcleo Dorsal del Rafe/fisiología , Núcleo Dorsal del Rafe/metabolismo , Ratones , Masculino , Neuronas Serotoninérgicas/fisiología , Ratones Endogámicos C57BL , Aprendizaje/fisiología , Serotonina/metabolismo , Olfato/fisiología
15.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38854074

RESUMEN

The information transfer necessary for successful memory retrieval is believed to be mediated by theta and gamma oscillations. These oscillations have been linked to memory processes in electrophysiological studies, which were correlational in nature. In the current study, we used transcranial alternating current stimulation (tACS) to externally modulate brain oscillations to examine its direct effects on memory performance. Participants received sham, theta (4 Hz), and gamma (50 Hz) tACS over frontoparietal regions while retrieving information in a source memory paradigm. Linear regression models were used to investigate the direct effects of oscillatory non-invasive brain stimulation (NIBS) on memory accuracy and confidence. Our results indicate that both theta and gamma tACS altered memory confidence. Specifically, theta tACS seemed to lower the threshold for confidence in retrieved information, while gamma tACS appeared to alter the memory confidence bias. Furthermore, the individual differences in tACS effects could be predicted from electroencephalogram (EEG) measures recorded prior to stimulation, suggesting that EEG could be a useful tool for predicting individual variability in the efficacy of NIBS.

16.
medRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853875

RESUMEN

The left supramarginal gyrus (LSMG) may mediate attention to memory, and gauge memory state and performance. We performed a secondary analysis of 142 verbal delayed free recall experiments, in patients with medically-refractory epilepsy with electrode contacts implanted in the LSMG. In 14 of 142 experiments (in 14 of 113 patients), the cross-validated convolutional neural networks (CNNs) that used 1-dimensional(1-D) pairs of convolved high-gamma and beta tensors, derived from the LSMG recordings, could label recalled words with an area under the receiver operating curve (AUROC) of greater than 60% [range: 60-90%]. These 14 patients were distinguished by: 1) higher amplitudes of high-gamma bursts; 2) distinct electrode placement within the LSMG; and 3) superior performance compared with a CNN that used a 1-D tensor of the broadband recordings in the LSMG. In a pilot study of 7 of these patients, we also cross-validated CNNs using paired 1-D convolved high-gamma and beta tensors, from the LSMG, to: a) distinguish word encoding epochs from free recall epochs [AUC 0.6-1]; and distinguish better performance from poor performance during delayed free recall [AUC 0.5-0.86]. These experiments show that bursts of high-gamma and beta generated in the LSMG are biomarkers of verbal memory state and performance.

17.
Brain Res Bull ; 215: 111010, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38871258

RESUMEN

It is known that Temporal Information Processing (TIP) underpins our cognitive functioning. Previous research has focused on the relationship between TIP efficiency and oscillatory brain activity, especially the gamma rhythm; however, non-oscillatory (aperiodic or 1/f) brain activity has often been missed. Recent studies have identified the 1/f component as being important for the functioning of the brain. Therefore, the current study aimed to verify whether TIP efficiency is associated with specific EEG resting state cortical activity patterns, including oscillatory and non-oscillatory (aperiodic) brain activities. To measure individual TIP efficiency, we used two behavioral tasks in which the participant judges the order of two sounds separated by millisecond intervals. Based on the above procedure, participants were classified into two groups with high and low TIP efficiency. Using cluster-based permutation analyses, we examined between-group differences in oscillatory and non-oscillatory (aperiodic) components across the 1-90 Hz range. The results revealed that the groups differed in the aperiodic component across the 30-80 Hz range in fronto-central topography. In other words, participants with low TIP efficiency exhibited higher levels of aperiodic activity, and thus a flatter frequency spectrum compared to those with high TIP efficiency. We conclude that participants with low TIP efficiency display higher levels of 'neural noise', which is associated with poorer quality and speed of neural processing.


Asunto(s)
Electroencefalografía , Humanos , Masculino , Femenino , Electroencefalografía/métodos , Adulto Joven , Adulto , Encéfalo/fisiología , Percepción Auditiva/fisiología , Estimulación Acústica/métodos , Ondas Encefálicas/fisiología , Percepción del Tiempo/fisiología
18.
Brain Res ; 1841: 149091, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897535

RESUMEN

Auditory neural networks in the brain naturally entrain to rhythmic stimuli. Such synchronization is an accessible index of local network performance as captured by EEG. Across species, click trains delivered âˆ¼ 40 Hz show strong entrainment with primary auditory cortex (Actx) being a principal source. Imaging studies have revealed additional cortical sources, but it is unclear if they are functionally distinct. Since auditory processing evolves hierarchically, we hypothesized that local synchrony would differ between between primary and association cortices. In female SD rats (N = 12), we recorded 40 Hz click train-elicited gamma oscillations using epidural electrodes situated at two distinct sites; one above the prefrontal cortex (PFC) and another above the Actx, after dosing with saline (1 ml/kg, sc) or the NMDA antagonist, MK801 (0.025, 0.05 or 0.1 mpk), in a blocked crossover design. Post-saline, both regions showed a strong 40 Hz auditory steady state response (ASSR). The latencies for the N1 response were âˆ¼ 16 ms (Actx) and âˆ¼ 34 ms (PFC). Narrow band (38-42 Hz) gamma oscillations appeared rapidly (<40 ms from stim onset at Actx but in a more delayed fashion (∼200 ms) at PFC. MK801 augmented gamma synchrony at Actx while dose-dependently disrupting at the PFC. Event-related gamma (but not beta) coherence, an index of long-distance connectivity, was disrupted by MK801. In conclusion, local network gamma synchrony in a higher order association cortex performs differently from that of the primary auditory cortex. We discuss these findings in the context of evolving sound processing across the cortical hierarchy.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Maleato de Dizocilpina , Potenciales Evocados Auditivos , Ritmo Gamma , Corteza Prefrontal , Ratas Sprague-Dawley , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Auditiva/fisiología , Corteza Auditiva/efectos de los fármacos , Femenino , Maleato de Dizocilpina/farmacología , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Estimulación Acústica/métodos , Potenciales Evocados Auditivos/efectos de los fármacos , Potenciales Evocados Auditivos/fisiología , Ratas , Antagonistas de Aminoácidos Excitadores/farmacología , Percepción Auditiva/fisiología , Percepción Auditiva/efectos de los fármacos , Electroencefalografía/métodos
19.
Transl Neurodegener ; 13(1): 33, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926897

RESUMEN

The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Estimulación Transcraneal de Corriente Directa , Enfermedad de Alzheimer/terapia , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Ritmo Gamma/fisiología , Animales
20.
Front Neuroergon ; 5: 1375913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864094

RESUMEN

Introduction: There is a need to develop a comprehensive account of time-on-task fatigue effects on performance (i.e., the vigilance decrement) to increase predictive accuracy. We address this need by integrating three independent accounts into a novel hybrid framework. This framework unites (1) a motivational system balancing goal and comfort drives as described by an influential cognitive-energetic theory with (2) accumulating microlapses from a recent computational model of fatigue, and (3) frontal gamma oscillations indexing fluctuations in motivational control. Moreover, the hybrid framework formally links brief lapses (occurring over milliseconds) to the dynamics of the motivational system at a temporal scale not otherwise described in the fatigue literature. Methods: EEG and behavioral data was collected from a brief vigilance task. High frequency gamma oscillations were assayed, indexing effortful controlled processes with motivation as a latent factor. Binned and single-trial gamma power was evaluated for changes in real- and lagged-time and correlated with behavior. Functional connectivity analyses assessed the directionality of gamma power in frontal-parietal communication across time-on-task. As a high-resolution representation of latent motivation, gamma power was scaled by fatigue moderators in two computational models. Microlapses modulated transitions from an effortful controlled state to a minimal-effort default state. The hybrid models were compared to a computational microlapse-only model for goodness-of-fit with simulated data. Results: Findings suggested real-time high gamma power exhibited properties consistent with effortful motivational control. However, gamma power failed to correlate with increases in response times over time, indicating electrophysiology and behavior relations are insufficient in capturing the full range of fatigue effects. Directional connectivity affirmed the dominance of frontal gamma activity in controlled processes in the frontal-parietal network. Parameterizing high frontal gamma power, as an index of fluctuating relative motivational control, produced results that are as accurate or superior to a previous microlapse-only computational model. Discussion: The hybrid framework views fatigue as a function of a energetical motivational system, managing the trade-space between controlled processes and competing wellbeing needs. Two gamma computational models provided compelling and parsimonious support for this framework, which can potentially be applied to fatigue intervention technologies and related effectiveness measures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA