Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.332
Filtrar
1.
Transl Cancer Res ; 13(8): 4062-4084, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39262488

RESUMEN

Background: The diphthamide (DPH) gene family is a group of genes that encode a set of enzymes that specifically modify eukaryotic elongation factor 2 (eEF2). Although previous studies have shown a link between the DPH genes (DPHs) and carcinogenesis, it is still unknown how the DPHs affect hepatocellular carcinoma (HCC). This study aimed to describe the expression, clinical significance, and potential mechanisms of DPHs in HCC. Methods: Real-time quantitative polymerase chain reaction (RT-qPCR), Genotype-Tissue Expression (GTEx), and The Cancer Genome Atlas (TCGA) databases were utilized to research the expression of DPHs in HCC. The relationship between the expression of DPHs and the clinicopathological characteristics of HCC patients was investigated using TCGA data, and their diagnostic value was evaluated using receiver operating characteristic (ROC) curves and their prognostic value was analyzed using Kaplan-Meier curves and univariate and multivariate Cox regression analyses. Potential reasons for the upregulation of DPH2 and DPH3 (DPH2,3) expression in HCC were analyzed using multiple databases. Additionally, this study also explored the potential biological functions of DPH2,3 in HCC via gene sets enrichment analysis (GSEA). Correlation analysis of DPH2,3 expression with immune-related genes and immune checkpoints was performed using Spearman's correlation analysis, and single-sample GSEA was used to assess the distribution of tumor-infiltrating immune cell types. Results: DPH1,7 expression was downregulated in tumor tissues while DPH2,3,5,6 expression was upregulated and showed a similar expression pattern in HCC. The results of the ROC analysis suggested that DPHs had valuable diagnostic properties in HCC. Kaplan-Meier analysis demonstrated that DPH2,3,7 had prognostic predictive value in HCC. Furthermore, univariate and multivariate Cox regression suggested that DPH2,3 was an independent predictive factor for HCC. GSEA analysis revealed that DPH2,3 might be tightly associated with Pathways in cancer, cell cycles, Fc gamma R mediated phagocytosis, etc. Additionally, DPH2,3 expression and numerous immune-related genes showed a positive connection, including chemokines receptor genes, immunosuppressive genes, chemokines genes, human leukocyte antigen (HLA) genes, and immunostimulatory genes. Further analysis of the association between 24 immune infiltrating cells and DPH2,3 revealed the greatest negative correlation between natural killer (NK) cells and Th17 cells, but the greatest positive correlation with Th2 cells. Conclusions: DPHs significantly influence the development and progression of HCC. DPH2,3 has significant diagnostic and prognostic potential and may be a promising target for immunotherapy.

2.
BMC Genomics ; 25(1): 848, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251938

RESUMEN

BACKGROUND: Temperature is a crucial environmental determinant for the vitality and development of teleost fish, yet the underlying mechanisms by which they sense temperature fluctuations remain largely unexplored. Transient receptor potential (TRP) proteins, renowned for their involvement in temperature sensing, have not been characterized in teleost fish, especially regarding their temperature-sensing capabilities. RESULTS: In this study, a genome-wide analysis was conducted, identifying a total of 28 TRP genes in the mandarin fish Siniperca chuatsi. These genes were categorized into the families of TRPA, TRPC, TRPP, TRPM, TRPML, and TRPV. Despite notable variations in conserved motifs across different subfamilies, TRP family members shared common structural features, including ankyrin repeats and the TRP domain. Tissue expression analysis showed that each of these TRP genes exhibited a unique expression pattern. Furthermore, examination of the tissue expression patterns of ten selected TRP genes following exposure to both high and low temperature stress indicated the expression of TRP genes were responsive to temperatures changes. Moreover, the expression profiles of TRP genes in response to mandarin fish virus infections showed significant upregulation for most genes after Siniperca chuatsi rhabdovirus, mandarin fish iridovirus and infectious spleen and kidney necrosis virus infection. CONCLUSIONS: This study characterized the TRP family genes in mandarin fish genome-wide, and explored their expression patterns in response to temperature stress and virus infections. Our work will enhance the overall understanding of fish TRP channels and their possible functions.


Asunto(s)
Perciformes , Filogenia , Canales de Potencial de Receptor Transitorio , Animales , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Perciformes/genética , Perciformes/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes , Genoma , Temperatura , Infecciones por Virus ADN/genética , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Regulación de la Expresión Génica , Iridoviridae
3.
BMC Genomics ; 25(1): 846, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251952

RESUMEN

BACKGROUND: Squamosa promoter-binding protein-like (SPL) is a plant-specific transcription factor that is widely involved in the regulation of plant growth and development, including flower and grain development, stress responses, and secondary metabolite synthesis. However, this gene family has not been comprehensively evaluated in barley, the most adaptable cereal crop with a high nutritional value. RESULTS: In this study, a total of 15 HvSPL genes were identified based on the Hordeum vulgare genome. These genes were named HvSPL1 to HvSPL15 based on the chromosomal distribution of the HvSPL genes and were divided into seven groups (I, II, III, V, VI, VII, and VIII) based on the phylogenetic tree analysis. Chromosomal localization revealed one pair of tandem duplicated genes and one pair of segmental duplicated genes. The HvSPL genes exhibited the highest collinearity with the monocotyledonous plant, Zea mays (27 pairs), followed by Oryza sativa (18 pairs), Sorghum bicolor (16 pairs), and Arabidopsis thaliana (3 pairs), and the fewest homologous genes with Solanum lycopersicum (1 pair). The distribution of the HvSPL genes in the evolutionary tree was relatively scattered, and HvSPL proteins tended to cluster with SPL proteins from Z. mays and O. sativa, indicating a close relationship between HvSPL and SPL proteins from monocotyledonous plants. Finally, the spatial and temporal expression patterns of the 14 HvSPL genes from different subfamilies were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Based on the results, the HvSPL gene family exhibited tissue-specific expression and played a regulatory role in grain development and abiotic stress. HvSPL genes are highly expressed in various tissues during seed development. The expression levels of HvSPL genes under the six abiotic stress conditions indicated that many genes responded to stress, especially HvSPL8, which exhibited high expression under multiple stress conditions, thereby warranting further attention. CONCLUSION: In this study, 15 SPL gene family members were identified in the genome of Hordeum vulgare, and the phylogenetic relationships, gene structure, replication events, gene expression, and potential roles of these genes in millet development were studied. Our findings lay the foundation for exploring the HvSPL genes and performing molecular breeding of barley.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Hordeum/genética , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Cromosomas de las Plantas/genética , Mapeo Cromosómico , Duplicación de Gen
4.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39229226

RESUMEN

Corals populations worldwide are declining rapidly due to elevated ocean temperatures and other human impacts. The Caribbean harbors a high number of threatened, endangered, and critically endangered coral species compared to reefs of the larger Indo-Pacific. The reef corals of the Caribbean are also long diverged from their Pacific counterparts and may have evolved different survival strategies. Most genomic resources have been developed for Pacific coral species which may impede our ability to study the changes in genetic composition of Caribbean reef communities in response to global change. To help fill the gap in genomic resources, we used PacBio HiFi sequencing to generate the first genome assemblies for three Caribbean, reef-building corals, Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. We also explore the genomic novelties that shape scleractinian genomes. Notably, we find abundant gene duplications of all classes (e.g., tandem and segmental), especially in S. siderea. This species has one of the largest genomes of any scleractinian coral (822Mb) which seems to be driven by repetitive content and gene family expansion and diversification. As the genome size of S. siderea was double the size expected of stony corals, we also evaluated the possibility of an ancient whole genome duplication using Ks tests and found no evidence of such an event in the species. By presenting these genome assemblies, we hope to develop a better understanding of coral evolution as a whole and to enable researchers to further investigate the population genetics and diversity of these three species.

5.
BMC Genomics ; 25(1): 836, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237905

RESUMEN

BACKGROUND: The KT/HAK/KUP is the largest K+ transporter family in plants, playing crucial roles in K+ absorption, transport, and defense against environmental stress. Sweet watermelon is an economically significant horticultural crop belonging to the genus Citrullus, with a high demand for K+ during its growth process. However, a comprehensive analysis of the KT/HAK/KUP gene family in watermelon has not been reported. RESULTS: 14 KT/HAK/KUP genes were identified in the genomes of each of seven Citrullus species. These KT/HAK/KUPs in watermelon were unevenly distributed across seven chromosomes. Segmental duplication is the primary driving force behind the expansion of the KT/HAK/KUP family, subjected to purifying selection during domestication (Ka/Ks < 1), and all KT/HAK/KUPs exhibit conserved motifs and could be phylogenetically classified into four groups. The promoters of KT/HAK/KUPs contain numerous cis-regulatory elements related to plant growth and development, phytohormone response, and stress response. Under K+ deficiency, the growth of watermelon seedlings was significantly inhibited, with cultivated watermelon experiencing greater impacts (canopy width, redox enzyme activity) compared to the wild type. All KT/HAK/KUPs in C. lanatus and C. amarus exhibit specific expression responses to K+-deficiency and drought stress by qRT-PCR. Notably, ClG42_07g0120700/CaPI482276_07g014010 were predominantly expressed in roots and were further induced by K+-deficiency and drought stress. Additionally, the K+ transport capacity of ClG42_07g0120700 under low K+ stress was confirmed by yeast functional complementation assay. CONCLUSIONS: KT/HAK/KUP genes in watermelon were systematically identified and analyzed at the pangenome level and provide a foundation for understanding the classification and functions of the KT/HAK/KUPs in watermelon plants.


Asunto(s)
Citrullus , Sequías , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Citrullus/genética , Citrullus/metabolismo , Citrullus/crecimiento & desarrollo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potasio/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Deficiencia de Potasio/genética , Deficiencia de Potasio/metabolismo , Regiones Promotoras Genéticas
6.
BMC Plant Biol ; 24(1): 838, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242995

RESUMEN

BACKGROUND: Potassium (K) is an essential nutrient for plant growth and development. Maize (Zea mays) is a widely planted crops in the world and requires a huge amount of K fertilizer. Arbuscular mycorrhizal fungi (AMF) are closely related to the K uptake of maize. Genetic improvement of maize K utilization efficiency will require elucidating the molecular mechanisms of maize K uptake through the mycorrhizal pathway. Here, we employed transcriptome and gene family analysis to elucidate the mechanism influencing the K uptake and utilization efficiency of mycorrhizal maize. METHODS AND RESULTS: The transcriptomes of maize were studied with and without AMF inoculation and under different K conditions. AM symbiosis increased the K concentration and dry weight of maize plants. RNA sequencing revealed that genes associated with the activity of the apoplast and nutrient reservoir were significantly enriched in mycorrhizal roots under low-K conditions but not under high-K conditions. Weighted gene correlation network analysis revealed that three modules were strongly correlated with K content. Twenty-one hub genes enriched in pathways associated with glycerophospholipid metabolism, glycerolipid metabolism, starch and sucrose metabolism, and anthocyanin biosynthesis were further identified. In general, these hub genes were upregulated in AMF-colonized roots under low-K conditions. Additionally, the members of 14 gene families associated with K obtain were identified (ARF: 38, ILK: 4, RBOH: 12, RUPO: 20, MAPKK: 89, CBL: 14, CIPK: 44, CPK: 40, PIN: 10, MYB: 174, NPF: 79, KT: 19, HAK/HKT/KUP: 38, and CPA: 8) from maize. The transcript levels of these genes showed that 92 genes (ARF:6, CBL:5, CIPK:13, CPK:2, HAK/HKT/KUP:7, PIN:2, MYB:26, NPF:16, RBOH:1, MAPKK:12 and RUPO:2) were upregulated with AM symbiosis under low-K conditions. CONCLUSIONS: This study indicated that AMF increase the resistance of maize to low-K stress by regulating K uptake at the gene transcription level. Our findings provide a genome-level resource for the functional assignment of genes regulated by K treatment and AM symbiosis in K uptake-related gene families in maize. This may contribute to elucidate the molecular mechanisms of maize response to low K stress with AMF inoculation, and provided a theoretical basis for AMF application in the crop field.


Asunto(s)
Micorrizas , Potasio , Simbiosis , Transcriptoma , Zea mays , Micorrizas/fisiología , Zea mays/genética , Zea mays/microbiología , Zea mays/metabolismo , Potasio/metabolismo , Simbiosis/genética , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica
7.
Physiol Mol Biol Plants ; 30(9): 1493-1515, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39310703

RESUMEN

The GDSL gene family plays diverse roles in plant growth and development. Despite its significance, the functions of the GDSL in the pitaya plant are still unknown. Pitaya (Selenicereus undatus L.) also called Hylocereus undatus (Hu), belongs to the family Cactaceae and is an important tropical plant that contains high dietary fibers and antioxidants. In the present investigation, we screened 91 HuGDSL genes in the pitaya genome by conducting a comprehensive computational analysis. The phylogenetic tree categorized HuGDSL genes into 9 distinct clades in combination with four other species. Further, 29 duplicate events were identified of which 12 were tandem, and 17 were segmental. The synteny analysis revealed that segmental duplication was more prominent than tandem duplication among these genes. The majority of duplicated gene pairs (95%) indicate their Ka/Ks ratios ranging from 0.1 to 0.3, which shows that maximum HuGDSL genes were under purifying selection pressure. The cis-acting element in the promotor region contains phytohormones such as auxin, gibberellin, jasmonic acid, and abscisic acid abundantly. Finally, the HuGDSL gene expression pattern under single and multiple stresses was analyzed via; RNA-seq. We select ten stress-responsive HuGDSL genes for RT-qPCR validation. After careful investigation, we identified five HuGDSL candidate genes (HuGDSL-1/3/55/59, and HuGDSL-78) based on RNA-seq, and RT-qPCR data that showed enhanced expression in stress and melatonin-applied seedlings. This study represents valuable insights into maintaining pitaya growth and development by preparing stress-resilient pitaya genotypes through modern biotechnological techniques. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01506-w.

8.
Physiol Mol Biol Plants ; 30(9): 1517-1532, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39310705

RESUMEN

Among plants' transcription factor families, the bHLHs family has a significant influence on plant development processes and stress tolerance. However, there have been no relevant studies performed on the bHLHs family in kenaf (Hibiscus cannabinus L). Here, the bHLH transcription factors in kenaf were found using bioinformatics, and a total of 141 kenaf HcbHLH transcription factors were identified. Phylogenetic analysis revealed that these transcription factors were irregularly distributed on 18 chromosomes and separated into 20 subfamilies. Additionally, utilizing the transcriptome data under diverse abiotic pressures, the expression of HcbHLH members was analyzed under different stress conditions. A typical HcbHLH abiotic stress transcription factor, HcbHLH88, was exposed to salt, drought, heavy metals, and ABA. The findings revealed that HcbHLH88 might be activated under salt, drought, cadmium stress, and ABA conditions. Furthermore, HcbHLH88's function under salt stress conditions was studied after it was silenced using the virus-induced gene silencing (VIGS) technique. Reduced antioxidant enzyme activity and stunted plant development were seen in VIGS-silenced seedlings. Stress-related genes were shown to be considerably downregulated in the HcbHLH88-silenced kenaf plants, according to the qRT-PCR study. In conclusion, this study provides the first systematic gene family analysis of the kenaf bHLH gene family and provides a preliminary validation of the salt tolerance function of the HcbHLH88 gene. This study lays the foundation for future research on the regulatory mechanisms of bHLH genes in response to abiotic stresses. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01504-y.

9.
Virus Evol ; 10(1): veae066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39315401

RESUMEN

Cytomegalovirus (CMV) is a genus of herpesviruses, members of which share a long history of coevolution with their primate hosts including New World monkeys, Old World monkeys (OWMs), and Great Apes (GAs). These viruses are ubiquitous within their host populations and establish lifelong infection in most individuals. Although asymptomatic in healthy individuals, infection poses a significant risk to individuals with a weakened or underdeveloped immune system. The genome of human CMV is the largest among human-infecting viruses and comprises at least 15 separate gene families, which may have arisen by gene duplication. Within human CMV, the RL11 gene family is the largest. RL11 genes are nonessential in vitro but have immune evasion roles that are likely critical to persistence in vivo. These genes demonstrate an extreme level of inter-species and intra-strain sequence diversity, which makes it challenging to deduce the evolutionary relationships within this gene family. Understanding the evolutionary relationships of these genes, especially accurate ortholog identification, is essential for reconstructing ancestral genomes, deciphering gene repertoire and order, and enabling reliable functional analyses across the CMV species, thereby offering insights into evolutionary processes, genetic diversity, and the functional significance of genes. In this work, we combined in silico genome screening with sequence-based and structure-guided phylogenetic analysis to reconstruct the evolutionary history of the RL11 gene family. We confirmed that RL11 genes are unique to OWM and GA CMVs, showing that this gene family was formed by multiple early duplication events and later lineage-specific losses. We identified four main clades of RL11 genes and showed that their expansions were mainly lineage specific and happened independently in CMVs of GAs, African OWMs, and Asian OWMs. We also identified groups of orthologous genes across the CMV tree, showing that some human CMV-specific RL11 genes emerged before the divergence of human and chimpanzee CMVs but were subsequently lost in the latter. The extensive and dynamic species-specific evolution of this gene family suggests that their functions target elements of host immunity that have similarly coevolved during speciation.

10.
Int J Biol Macromol ; 280(Pt 1): 135669, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284473

RESUMEN

Phosphatidylethanolamine binding protein (PEBP) family plays important roles in multiple developmental processes in plants. In this study, a total of 11 PEBP gene family members were identified from the mango (Mangifera indica L.) genome, and these proteins were divided into three subfamilies based on their phylogenetic relationships: TERMINAL FLOWER 1 (TFL1)-like, MOTHER OF FT AND TFL (MFT)-like, and FLOWERING LOCUS T (FT)-like. Expression analysis revealed that MiFT1a, MiFT1b and MiFT2 were expressed mainly in leaves, whereas MiFT3 and MiFT4 were expressed mainly in embryos. The overexpression of MiFTs significantly promoted early flowering under both long- and short-day conditions. Interestingly, it still significantly promoted early flowering at 16 °C and 28 °C, with MiFT1a exhibiting the most significant, followed by MiFT1b and MiFT2. Additionally, the expression level of MiFT3 is related to the embryonic development of mango. Further studies revealed that overexpression of MiFT3 inhibited seed germination in transgenic Arabidopsis lines. In addition, the MiFT1a and MiFT1b transgenic lines did not respond to abiotic stress, while MiFT2, MiFT3 and MiFT4 enhanced resistance to salt or drought stress in Arabidopsis. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that MiFTs can interact with flower related and multiple stress proteins, such as bZIP protein (MiFD), 14-3-3 protein, zinc finger protein (MiZFP4), RING zinc-finger protein (MiRZFP34), and phosphatase 2C (MiPP2C25A and MiPP2C25B). These results indicate that FT subfamily not only regulates flowering but also participates in stress response, but there are differences in the function among these genes.

11.
BMC Plant Biol ; 24(1): 911, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350008

RESUMEN

BACKGROUND: The ß-1,3-glucanase gene is widely involved in plant development and stress defense. However, an identification and expression analysis of the grape ß-1,3-glucanase gene (VviBG) family had not been conducted prior to this study. RESULTS: Here, 42 VviBGs were identified in grapevine, all of which contain a GH-17 domain and a variable C-terminal domain. VviBGs were divided into three clades α, ß and γ, and six subgroups A-F, with relatively conserved motifs/domains and intron/exon structures within each subgroup. The VviBG gene family contained four tandem repeat gene clusters. There were intra-species synteny relationships between two pairs of VviBGs and inter-species synteny relationships between 20 pairs of VviBGs and AtBGs. The VviBG promoter contained many cis-acting elements related to stress and hormone responses. Tissue-specific analysis showed that VviBGs exhibited distinct spatial and temporal expression patterns. Transcriptome analysis indicated that many VviBGs were induced by wounds, UV, downy mildew, cold, salt and drought, especially eight VviBGs in subgroup A of the γ clade. RT-qPCR analysis showed that these eight VviBGs were induced under abiotic stress (except for VviBG41 under cold stress), and most of them were induced at higher expression levels by PEG6000 and NaCl than under cold treatment. CONCLUSIONS: The chromosome localization, synteny and phylogenetic analysis of the VviBG members were first conducted. The cis-acting elements, transcriptome data and RT-qPCR analysis showed that VviBG genes play a crucial role in grape growth and stress (hormone, biotic and abiotic) responses. Our study laid a foundation for understanding their functions in grape resistance to different stresses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Estrés Fisiológico , Vitis , Vitis/genética , Vitis/enzimología , Estrés Fisiológico/genética , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Sintenía
12.
BMC Plant Biol ; 24(1): 898, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343877

RESUMEN

BACKGROUND: Medicago sativa, often referred to as the "king of forage", is prized for its high content of protein, minerals, carbohydrates, and digestible nutrients. However, various abiotic stresses can hinder its growth and development, ultimately resulting in reduced yield and quality, including water deficiency, high salinity, and low temperature. The ethylene-insensitive 3 (EIN3)/ethylene-insensitive 3-like (EIL) transcription factors are key regulators in the ethylene signaling pathway in plants, playing crucial roles in development and in the response to abiotic stresses. Research on the EIN3/EIL gene family has been reported for several species, but minimal information is available for M. sativa. RESULTS: In this study, we identified 10 MsEIN3/EIL genes from the M. sativa genome (cv. Zhongmu No.1), which were classified into three clades based on phylogenetic analysis. The conserved structural domains of the MsEIN3/EIL genes include motifs 1, 2, 3, 4, and 9. Gene duplication analyses suggest that segmental duplication (SD) has played a significant role in the expansion of the MsEIN3/EIL gene family throughout evolution. Analysis of the cis-acting elements in the promoters of MsEIN3/EIL genes indicates their potential to respond to various hormones and environmental stresses. We conducted a further analysis of the tissue-specific expression of the MsEIN3/EIL genes and assessed the gene expression profiles of MsEIN3/EIL under various stresses using transcriptome data, including cold, drought, salt and abscisic acid treatments. The results showed that MsEIL1, MsEIL4, and MsEIL5 may act as positive regulatory factors involved in M. sativa's response to abiotic stress, providing important genetic resources for molecular design breeding. CONCLUSION: This study investigated MsEIN3/EIL genes in M. sativa and identified three candidate transcription factors involved in the regulation of abiotic stresses. These findings will offer valuable insights into uncovering the molecular mechanisms underlying various stress responses in M. sativa.


Asunto(s)
Medicago sativa , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Medicago sativa/genética , Medicago sativa/fisiología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Genoma de Planta
13.
Mar Environ Res ; 202: 106750, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39293275

RESUMEN

Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three MAPK genes: AiERK, Aip38, and AiJNK. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of AiMAPKs were ubiquitous, with significant increases in AiERK expression observed at the umbo larval stage (3.09-fold), while Aip38 and AiJNK were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of AiMAPKs were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, AiMAPKs expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of AiMAPKs genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.

14.
BMC Genomics ; 25(1): 863, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285326

RESUMEN

BACKGROUND: The Domain of unknown function 679 membrane protein (DMP) family, which is unique to plants, plays a crucial role in reproductive development, stress response and aging. A comprehensive study was conducted to identify the DMP gene members of oat (Avena sativa) and to investigate their structural features and tissue-specific expression profiles. Utilizing whole genome and transcriptome data, we analyzed the physicochemical properties, gene structure, cis-acting elements, phylogenetic relationships, conserved structural (CS) domains, CS motifs and expression patterns of the AsDMP family in A. sativa. RESULTS: The DMP family genes of A. sativa were distributed across 17 chromosomal scaffolds, encompassing a total of 33 members. Based on phylogenetic relationships, the AsDMP genes were classified into five distinct subfamilies. The gene structure also suggests that A. sativa may have undergone an intron loss event during its evolution. Covariance analysis indicates that genome-wide duplication and segmental duplication may be the major contributor to the expansion of the AsDMP gene family. Ka/Ks selective pressure analysis of the AsDMP gene family suggests that DMP gene pairs are generally conserved over evolutionary time. The upstream promoters of these genes contain several cis-acting elements, suggesting a potential role in abiotic stress responses and hormone induction. Transcriptome data revealed that the expression patterns of the DMP genes are involved in tissue and organ development. In this study, the AsDMP genes (AsDMP1, AsDMP19, and AsDMP22) were identified as potential regulators of seed senescence in A. sativa. These genes could serve as candidates for breeding studies focused on seed longevity and anti-aging germplasm in A. sativa. The study provides valuable insights into the regulatory mechanisms of the AsDMP gene family in the aging process of A. sativa germplasm and offers theoretical support for further function investigation into the functions of AsDMP genes and the molecular mechanisms underlying seed anti-aging. CONCLUSIONS: This study identified the AsDMP genes as being involved in the aging process of A. sativa seeds, marking the first report on the potential role of DMP genes in seed aging for A. sativa.


Asunto(s)
Avena , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Semillas , Avena/genética , Avena/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Genómica , Genoma de Planta , Regiones Promotoras Genéticas , Evolución Molecular , Estrés Fisiológico/genética
15.
BMC Plant Biol ; 24(1): 842, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39242989

RESUMEN

BACKGROUND: Calcium-dependent protein kinase (CDPK) plays a key role in cotton tolerance to abiotic stress. However, its role in cotton heat stress tolerance is not well understood. Here, we characterize the GhCDPK gene family and their expression profiles with the aim of identifying CDPK genes associated with heat stress tolerance. RESULTS: This study revealed 48 GhCDPK members in the cotton genome, distributed on 18 chromosomes. Tree phylogenetic analysis showed three main clustering groups of the GhCDPKs. Cis-elements revealed many abiotic stress and phytohormone pathways conserved promoter regions. Similarly, analysis of the transcription factor binding sites (TFBDS) in the GhCDPK genes showed many stress and hormone related sites. The expression analysis based on qRT-PCR showed that GhCDPK16 was highly responsive to high-temperature stress. Subsequent protein-protein interactions of GhCDPK16 revealed predictable interaction with ROS generating, calcium binding, and ABA signaling proteins. Overexpression of GhCDPK16 in cotton and Arabidopsis improved thermotolerance by lowering ROS compound buildup. Under heat stress, GhCDPK16 transgenic lines upregulated heat-inducible genes GhHSP70, GHSP17.3, and GhGR1, as demonstrated by qRT-PCR analysis. Contrarily, GhCDPK16 knockout lines in cotton exhibited an increase in ROS accumulation. Furthermore, antioxidant enzyme activity was dramatically boosted in the GhCDPK16-ox transgenic lines. CONCLUSIONS: The collective findings demonstrated that GhCDPK16 could be a viable gene to enhance thermotolerance in cotton and, therefore, a potential candidate gene for improving heat tolerance in cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Respuesta al Choque Térmico , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/fisiología , Gossypium/genética , Gossypium/fisiología , Gossypium/metabolismo , Respuesta al Choque Térmico/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Termotolerancia/genética
16.
BMC Plant Biol ; 24(1): 840, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242996

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa L.) is an essential leguminous forage with high nutrition and strong adaptability. The TIFY family is a plant-specific transcription factor identified in many plants. However, few reports have been reported on the phylogenetic analysis and gene expression profiling of TIFY family genes in alfalfa. RESULT: A total of 84 TIFY genes belonging to 4 categories were identified in alfalfa, including 58 MsJAZs, 18 MsZMLs, 4 MsTIFYs and 4 MsPPDs, respectively. qRT-PCR data from 8 genes in different tissues revealed that most MsTIFY genes were highly expressed in roots. The expression of MsTIFY14 was up-regulated after different times in both thrips-resistant and susceptible alfalfa after thrips feeding, and the expression of the remaining MsTIFYs had a strong correlation with the time of thrips feeding. Different abiotic stresses, including drought, salt, and cold, could induce or inhibit the expression of MsTIFY genes to varying degrees. In addition, the eight genes were all significantly up-regulated by JA and/or SA. Interestingly, MsTIFY77 was induced considerably by all the biotic, abiotic, or plant hormones (JA or SA) except ABA. CONCLUSION: Our study identified members of the TIFY gene family in alfalfa and analyzed their structures and possible functions. It laid the foundation for further research on the molecular functions of TIFYs in alfalfa.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa , Proteínas de Plantas , Factores de Transcripción , Animales , Perfilación de la Expresión Génica , Genes de Plantas , Genoma de Planta , Medicago sativa/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
BMC Plant Biol ; 24(1): 836, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243043

RESUMEN

BACKGROUND: Invertases (INVs) are key enzymes in sugar metabolism, cleaving sucrose into glucose and fructose and playing an important role in plant development and the stress response, however, the INV gene family in passion fruit has not been systematically reported. RESULTS: In this study, a total of 16 PeINV genes were identified from the passion fruit genome and named according to their subcellular location and chromosome position. These include six cell wall invertase (CWINV) genes, two vacuolar invertase (VINV) genes, and eight neutral/alkaline invertase (N/AINV) genes. The gene structures, phylogenetic tree, and cis-acting elements of PeINV gene family were predicted using bioinformatics methods. Results showed that the upstream promoter region of the PeINV genes contained various response elements; particularly, PeVINV2, PeN/AINV3, PeN/AINV5, PeN/AINV6, PeN/AINV7, and PeN/AINV8 had more response elements. Additionally, the expression profiles of PeINV genes under different abiotic stresses (drought, salt, cold temperature, and high temperature) indicated that PeCWINV5, PeCWINV6, PeVINV1, PeVINV2, PeN/AINV2, PeN/AINV3, PeN/AINV6, and PeN/AINV7 responded significantly to these abiotic stresses, which was consistent with cis-acting element prediction results. Sucrose, glucose, and fructose are main soluble components in passion fruit pulp. The contents of total soluble sugar, hexoses, and sweetness index increased significantly at early stages during fruit ripening. Transcriptome data showed that with an increase in fruit development and maturity, the expression levels of PeCWINV2, PeCWINV5, and PeN/AINV3 exhibited an up-regulated trend, especially for PeCWINV5 which showed highest abundance, this correlated with the accumulation of soluble sugar and sweetness index. Transient overexpression results demonstrated that the contents of fructose, glucose and sucrose increased in the pulp of PeCWINV5 overexpressing fruit. It is speculated that this cell wall invertase gene, PeCWINV5, may play an important role in sucrose unloading and hexose accumulation. CONCLUSION: In this study, we systematically identified INV genes in passion fruit for the first time and further investigated their physicochemical properties, evolution, and expression patterns. Furthermore, we screened out a key candidate gene involved in hexose accumulation. This study lays a foundation for further study on INV genes and will be beneficial on the genetic improvement of passion fruit breeding.


Asunto(s)
Frutas , Passiflora , beta-Fructofuranosidasa , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Hexosas/metabolismo , Familia de Multigenes , Passiflora/genética , Passiflora/enzimología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
18.
Front Plant Sci ; 15: 1462924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39345983

RESUMEN

GATA transcription factors are an important class of transcription factors in plants, known for their roles in tissue development, signal transduction, and responses to biotic and abiotic stresses. To date, there have been no reports on the GATA gene family in melon (Cucumis melo). In this study, 24 CmGATA genes were identified from the melon genome. These family members exhibit significant differences in protein length, molecular weight, and theoretical isoelectric point and are primarily located in the nucleus. Based on the classification of Arabidopsis thaliana GATA members, the phylogenetic tree divided them into four groups: group I, group II, group III, and group IV, containing 10, 8, 4, and 2 genes, respectively. Notably, CmGATA genes within the same group have highly conserved protein motifs and similar exon-intron structures. The CmGATA family members are unevenly distributed across 10 chromosomes, with six pairs of segmentally duplicated genes and one pair of tandemly duplicated genes, suggesting that gene duplication may be the primary factor in the expansion of the CmGATA family. Melon shares 21, 4, 38, and 34 pairs of homologous genes with A. thaliana, Oryza sativa, Cucumis sativus, and Citrullus lanatus, respectively. The promoter regions are enriched with various cis-acting elements related to growth and development (eight types), hormone regulation (nine types), and stress responses (six types). Expression patterns indicate that different CmGATA family members are significantly expressed in seeds, roots, stems, leaves, tendrils, mesocarp, and epicarp, exhibiting distinct tissue-specific expression characteristics. Quantitative fluorescence analysis revealed that five genes, CmGATA3, CmGATA7, CmGATA16, CmGATA22, and CmGATA24, may be highly active under 48-h drought stress, while CmGATA1 and CmGATA22 may enhance melon resistance to heavy metal lead stress. Additionally, CmGATA22 and CmGATA24 are suggested to regulate melon resistance to Fusarium wilt infection. CmGATA22 appears to comprehensively regulate melon responses to both biotic and abiotic stresses. Lastly, potential protein interaction networks were predicted for the CmGATA family members, identifying CmGATA8 as a potential hub gene and predicting 2,230 target genes with enriched GO functions. This study preliminarily explores the expression characteristics of CmGATA genes under drought stress, heavy metal lead stress, and Fusarium wilt infection, providing a theoretical foundation for molecular mechanisms in melon improvement and stress resistance.

19.
PeerJ ; 12: e18073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346067

RESUMEN

The plant-specific INDETERMINATE DOMAIN (IDD) gene family is important for plant growth and development. However, a comprehensive analysis of the IDD family in orchids is limited. Based on the genome data of Phalaenopsis equestris, the IDD gene family was identified and analyzed by bioinformatics methods in this study. Ten putative P. equestris IDD genes (PeIDDs) were characterized and phylogenetically classified into two groups according to their full amino acid sequences. Protein motifs analysis revealed that overall structures of PeIDDs in the same group were relatively conserved. Its promoter regions harbored a large number of responsive elements, including light responsive, abiotic stress responsive elements, and plant hormone cis-acting elements. The transcript level of PeIDD genes under cold and drought conditions, and by exogenous auxin (NAA) and abscisic acid (ABA) treatments further confirmed that most PeIDDs responded to various conditions and might play essential roles under abiotic stresses and hormone responses. In addition, distinct expression profiles in different tissues/organs suggested that PeIDDs might be involved in various development processes. Furthermore, the prediction of protein-protein interactions (PPIs) revealed some PeIDDs (PeIDD3 or PeIDD5) might function via cooperating with chromatin remodeling factors. The results of this study provided a reference for further understanding the function of PeIDDs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Orchidaceae , Proteínas de Plantas , Orchidaceae/genética , Orchidaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Filogenia , Estrés Fisiológico/genética , Genoma de Planta , Regiones Promotoras Genéticas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología
20.
Int J Biol Macromol ; 280(Pt 2): 135730, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322125

RESUMEN

The Ribosomal protein L18 (RPL18) protein gene family plays an important role in plant growth, development and stress response. Although the RPL18 genes have been identified in several plant species, the RPL18 gene family in wheat (Triticum aestivum) is still unexplored. This study found 8 TaRPL18 genes, each of which has a significantly different gene sequence length and is evenly distributed on the chromosome; Additionally, these proteins have similar physicochemical characteristics as well as secondary and tertiary structures. 17 RPL18 genes in 4 species (wheat, Arabidopsis, rice, and maize) were classified into 5 groups, and the TaRPL18 genes within the same group showed similar structures and conserved motifs. Analysis of the cis-acting elements in the TaRPL18 genes promoter regions revealed the presence of developmental and stress-responsive elements in the majority of the genes. Through yeast two-hybrid (Y2H) experiments, it was confirmed that the powdery mildew resistance protein TaPm46 physically interacts with the Class IV TaRPL18-1. Functional analysis indicated that TaRPL18-1-silenced wheat plants show reduced resistance to powdery mildew compared to the wild type (WT), with decreased expression levels of PAL and PPO genes, and increased expression levels of the PR gene. The findings of this study provide a basis for clarifying the function of the TaRPL18 genes and will be useful for the selection of disease-resistant varieties of wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA