Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.187
Filtrar
1.
J Environ Sci (China) ; 150: 373-384, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306413

RESUMEN

Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.


Asunto(s)
Farmacorresistencia Microbiana , Microbiología del Suelo , Suelo , Suelo/química , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Bacterias/efectos de los fármacos , Bacterias/genética , Contaminantes del Suelo/toxicidad
2.
Gene ; 932: 148893, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197797

RESUMEN

Flowers of Crocus sativus L. are immensely important not only for arrangement of floral whorls but more because each floral organ is dominated by a different class of specialized compounds. Dried stigmas of C. sativus flowers form commercial saffron, and are known to accumulate unique apocarotenoids like crocin, picrocrocin and safranal. Inspite of being a high value crop, the molecular mechanism regulating flower development in Crocus remains largely unknown. Moreover, it would be very interesting to explore any co-regulatory mechanism which controls floral architecture and secondary metabolic pathways which exist in specific floral organs. Here we report transcriptome wide identification of MADS box genes in Crocus. A total of 39 full length MADS box genes were identified among which three belonged to type I and 36 to type II class. Phylogeny classified them into 11 sub-clusters. Expression pattern revealed some stigma up-regulated genes among which CstMADS19 encoding an AGAMOUS gene showed high expression. Transient over-expression of CstMADS19 in stigmas of Crocus resulted in increased crocin by enhancing expression of pathway genes. Yeast one hybrid assay demonstrated that CstMADS19 binds to promoters of phytoene synthase and carotenoid cleavage dioxygenase 2 genes. Yeast two hybrid and BiFC assays confirmed interaction of CstMADS19 with CstMADS26 which codes for a SEPALATA gene. Co-overexpression of CstMADS19 and CstMADS26 in Crocus stigmas enhanced crocin content more than was observed when genes were expressed individually. Collectively, these findings indicate that CstMADS19 functions as a positive regulator of stigma based apocarotenoid biosynthesis in Crocus.


Asunto(s)
Carotenoides , Crocus , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Proteínas de Plantas , Crocus/genética , Crocus/metabolismo , Carotenoides/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Perfilación de la Expresión Génica/métodos , Ciclohexenos/metabolismo , Transcriptoma , Terpenos/metabolismo , Glucósidos/metabolismo , Glucósidos/biosíntesis
3.
Methods Mol Biol ; 2850: 435-450, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363086

RESUMEN

YeastFab is a Golden Gate-based cloning standard and parts repository. It is designed for modular, hierarchical assembly of transcription units and multi-gene assemblies for expression in Saccharomyces cerevisiae. This makes it a suitable toolbox to optimize the expression strength of heterologous genes in yeast. When cloning heterologous coding sequences into YeastFab vectors, in several cases we have observed toxicity to the cloning host Escherichia coli. The provided protocol details how to clone such toxic genes from multiple synthetic DNA fragments while adhering to the YeastFab standard. The presented cloning strategy includes a C-terminal FLAG tag that allows screening for constructs with a desired protein expression in yeast by western blot. The design allows scarlessly removing the tag through a Golden Gate reaction to facilitate cloning of expression constructs with the native, untagged transgene.


Asunto(s)
Clonación Molecular , Escherichia coli , Vectores Genéticos , Saccharomyces cerevisiae , Clonación Molecular/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vectores Genéticos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Environ Sci (China) ; 150: 422-431, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306417

RESUMEN

In recent years, the biodegradable plastics has extensively used in industry, agriculture, and daily life. Herein, the effects of two biodegradable microplastics (BMPs), poly(butyleneadipate-co-terephthalate) (PBAT) and polyhydroxyalkanoate (PHA), on soil sulfamethoxazole (SMX) degradation and sul genes development were comparatively studied based on the type, dosage, and state. The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT > PHA and high dose > low dose. Meanwhile virgin PBAT significantly reduced soil pH. In general, the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes, with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes. The driving effects of BMPs on soil microbial diversity following the same order as that on DOC. Specific bacteria stimulated by BMPs, such as Arthrobacter and two genera affiliated with phylum TM7, accounted for the accelerated degradation of SMX. Intriguingly, UV-aging hindered the release of DOC from BMPs and the reduction in pH, mitigated the stimulation of microbial communities, and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation. Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.


Asunto(s)
Biodegradación Ambiental , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Sulfametoxazol , Sulfametoxazol/toxicidad , Suelo/química , Microplásticos/toxicidad , Rayos Ultravioleta , Plásticos Biodegradables
5.
J Environ Sci (China) ; 148: 243-262, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095161

RESUMEN

Because of the recent widespread usage of antibiotics, the acquisition and dissemination of antibiotic-resistance genes (ARGs) were prevalent in the majority of habitats. Generally, the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria (ARB) disinfection and ARGs degradation and even promote the proliferation of ARGs. Problematically, ARB and ARGs in effluent pose potential risks if they are not further treated. Photocatalytic oxidation is considered a promising disinfection technology, where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid (DNA) for ARB elimination and subsequent degradation of ARGs. This review aims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant (AR) from wastewater in recent years. We discuss the sources and transfer of ARGs in wastewater. The overall removal efficiencies of ultraviolet radiation (UV)/chlorination, UV/ozone, UV/H2O2, and UV/sulfate-radical based system for ARB and ARGs, as well as the experimental parameters and removal mechanisms, are systematically discussed. The contribution of photocatalytic materials based on TiO2 and g-C3N4 to the inactivation of ARB and degradation of ARGs is highlighted, producing many free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer (HGT) in wastewater. Finally, based on the reviewed studies, future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Bacterias , Desinfección/métodos , Farmacorresistencia Bacteriana/genética , Rayos Ultravioleta , Purificación del Agua/métodos
6.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003059

RESUMEN

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Asunto(s)
Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo , Fermentación , Ácido Acético/metabolismo , Reactores Biológicos
7.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003073

RESUMEN

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Asunto(s)
Agua Potable , Farmacorresistencia Microbiana , Metagenómica , Farmacorresistencia Microbiana/genética , Agua Potable/microbiología , China , Monitoreo del Ambiente , Antibacterianos/farmacología , Microbiología del Agua
8.
Rev. biol. trop ; Rev. biol. trop;72(1): e49359, ene.-dic. 2024. graf
Artículo en Inglés | LILACS, SaludCR | ID: biblio-1559319

RESUMEN

Abstract Introduction: A recent revision of the generic classification of the Trochilidae based on DNA sequences revealed many inconsistencies with the current generic classification, largely based on plumage characters subject to homoplasy, especially in the Trochilini, the largest tribe. A thorough generic reorganization brought the classification into accord with the phylogeny, but due to lack of genetic data, two species remained unclassified. One of these was the Mangrove Hummingbird, "Amazilia" boucardi, endemic to Costa Rica and included in the IUCN red list of threatened species. Objective: To obtain molecular evidence to clarify the generic relationships of "A." boucardi. Methods: We isolated DNA from tissues of this species and amplified 4 nuclear and 4 mitochondrial fragments and compared these with homologous fragments from 56 species in the Trochilini, constructing phylogenetic trees with maximum likelihood and Bayesian methods. Results: Our phylogenetic analyses confirmed the placement of boucardi in the Trochilini and definitely excluded it from Amazilia but placed it with high confidence in the genus Chrysuronia Bonaparte, 1850, within which its closest relative is C. coeruleogularis, which also inhabits mangroves. Conclusions: Our genetic data based on nuclear and mitochondrial regions clearly indicate the relationship of A. boucardi and L. coeruleogularis. Moreover, it is also supported by their habitat distribution in the mangroves of the Pacific coast of Costa Rica and Western Panama. Therefore, we suggested to exclude A. boucardi as "incertae sedis".


Resumen Introducción: Una revisión reciente de la clasificación de la familia Trochilidae con base en secuencias de ADN demostró muchas incongruencias con la clasificación genérica previa, que había sido hecho con base en caracteres del plumaje muy sujetos a homoplasia, especialmente en la tribu más grande, Trochillini. Una reorganización de los géneros logró llevar su clasificación genérica a la concordancia con la filogenia, pero debido a la ausencia de datos genéticos, dos especies permanecieron sin clasificar. Una de estas fue el colibrí de manglar Amazilia boucardi, una especie endémica de Costa Rica, considerada como amenazada en la lista roja de la UICN. Objetivo: Obtener evidencia molecular para esclarecer las relaciones genéricas de A. boucardi. Métodos: Se aisló ADN de tejidos de esta especie y se amplificaron 4 fragmentos de ADN del núcleo y 5 de la mitocondria, y se compararon con fragmentos homólogos de 56 especies en la tribu Trochillini, generando árboles filogenéticos con métodos de máxima verosimilitud y bayesiano. Resultados: Los análisis filogénticos obtenidos confirmaron la ubicación de boucardi en Trochilini y definitivamente la excluyó del género Amazilia, pero la ubicó con un alto grado de confianza en el género Chrysuronia Bonaparte, 1850, dentro los cuales su pariente más cercano es C. coeruleogularis, que también habita manglares. Conclusiones: Nuestros datos genéticos basados en regiones nucleares y mitocondriales indican claramente la relación entre A. boucardi and L. coeruleogularis. Es más, lo anterior se sustenta por su distribución en los manglares de la costa Pacífica de Costa Rica y oeste de Panamá. Por lo tanto, sugerimos excluir a A. boucardi como "incertae sedis".


Asunto(s)
Animales , Aves/clasificación , ADN/análisis , Filogenia , Costa Rica , Genes Mitocondriales
9.
Int J Urol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352063

RESUMEN

OBJECTIVES: This study aimed to investigate the potential for using the phosphatase and tensin homolog (PTEN) gene as a prognostic marker in post-prostatectomy patients with castration-sensitive prostate cancer (PCa). METHODS: A total of 180 patients with castration-sensitive PCa who underwent radical prostatectomy at our institution were included in this study. PTEN expression was evaluated using immunohistochemistry, and patients were classified into two groups based on the staining intensity: PTEN-Normal and PTEN-Loss. The association between PTEN expression and biochemical recurrence was analyzed using the Cox proportional hazards model. RESULTS: Patients in the PTEN-Loss group had a higher risk of biochemical recurrence (hazard ratio, 4.642; 95% confidence interval, 2.137-10.083; p < 0.001) and a lower recurrence-free rate compared to the PTEN-Normal group (35% vs. 75%). In addition to clinicopathological factors, such as the serum prostate-specific antigen level, Gleason score, and T stage, evaluation of PTEN expression improved the prediction of biochemical recurrence after prostatectomy (area under the curve, 0.577 vs. 0.688). CONCLUSIONS: Low PTEN expression is a significant predictor of biochemical recurrence in patients with castration-sensitive PCa who have already undergone prostatectomy.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39354776

RESUMEN

Parkinson's Disease (PD) is a progressive disorder worldwide and its etiology remains unidentified. Over the last few decades, animal models of PD have been extensively utilized to explore the development and mechanisms of this neurodegenerative condition. Toxic and transgenic animal models for PD possess unique characteristics and constraints, necessitating careful consideration when selecting the appropriate model for research purposes. Animal models have played a significant role in uncovering the causes and development of PD, including its cellular and molecular processes. These models suggest that the disorder arises from intricate interplays between genetic predispositions and environmental influences. Every model possesses its unique set of strengths and weaknesses. This review provides a critical examination of animal models for PD and compares them with the features observed in the human manifestation of the disease.

11.
Mol Biol (Mosk) ; 58(2): 220-233, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39355880

RESUMEN

RNA polymerase III synthesizes a wide range of noncoding RNAs shorter than 400 nucleotides in length. These RNAs are involved in protein synthesis (tRNA, 5S rRNA, and 7SL RNA), maturation, and splicing of different types of RNA (RPR, MRP RNA, and U6 snRNA), regulation of transcription (7SK RNA), replication (Y RNA), and intracellular transport (vault RNA). BC200 and BC1 RNA genes are transcribed by RNA polymerase III in neurons only where these RNAs regulate protein synthesis. Mutations in the regulatory elements of the genes transcribed by RNA polymerase III as well as in transcription factors of this RNA polymerase are associated with the development of a number of diseases, primarily oncological and neurological. In this regard, the mechanisms of regulation of the expression of the genes containing various RNA polymerase III promoters were actively studied. This review describes the structural and functional classification of polymerase III promoters, as well as the factors involved in the regulation of promoters of different types. A number of examples demonstrate the role of the described factors in the pathogenesis of human diseases.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa III , Transcripción Genética , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Regulación de la Expresión Génica
12.
Biochem Genet ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356352

RESUMEN

Lower-grade glioma (LGG) is a common primary brain tumor with a highly heterogeneous clinical presentation, and its prognosis cannot be accurately predicted by current histopathology. It has been found that mitochondria play an important role in hypoxia, angiogenesis, and energy metabolism in glioma, and mitochondrial function may have an important impact on LGG prognosis. The goal of this study was to develop a novel prognostic model based on Mitochondrial-related genes (MRGs). We first analyzed the somatic alterations profiles of MRGs in patients with LGG and found that somatic alterations were common in LGG and correlated with prognosis. Using RNA-seq data from TCGA and CGGA, 12 prognosis-related MRGs were identified to construct a mitochondrial activation score (MiAS) model by combining univariate regression and LASSO regression analysis. The model and nomogram were evaluated using the area under the ROC curve with AUC = 0.910. The model was closely correlated with the clinical characteristics of LGG patients and performed well in predicting the prognosis of LGG patients with significantly shorter overall survival (OS) time in the high-MiAS group. GSVA and GSEA results showed that oxidative stress, pro-cancer, and immune-related pathways were significantly enriched in the high-MiAS group. CIBERSORT results showed that MiAS was significantly associated with immune cell infiltration in LGG. Macrophage M1 and follicular helper T cells had increased infiltration in the high-MiAS group. TIDE predicted a better immunotherapy outcome in patients in the low-MiAS group. Finally, using data from the CTRPv2 and GDSC2 datasets to assess chemotherapy response in LGG, it was predicted that the chemotherapeutic agents AZD6482, MG-132, and PLX-4720 might be potential agents for patients in the high-MiAS group of LGG. In addition, we performed in vitro experiments and found that knockdown of OCIAD2 expression reduced the abilities of glioma cells to proliferate, migrate, and invade. In contrast, overexpression of OCIAD2 enhanced these abilities of glioma cells. This study found that MRGs were correlated with LGG patient prognosis, which is expected to provide new treatment strategies for LGG patients with different MiAS.

13.
Braz J Microbiol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356407

RESUMEN

Enterococci are ubiquitous usually commensal bacteria that can act as opportunistic pathogens frequently associated with resistance to multiple antimicrobial classes. A variety of animals may carry potentially harmful enterococci. In the present work, the occurrence and characteristics of enterococci recovered from the fecal microbiota of wild birds belonging to four families (Accipitridae, Cathartidae, Falconidae and Strigidae) were investigated. Enterococci were recovered from 104 (92.0%) fecal samples obtained from 113 birds, and 260 strains were selected for additional characterization. Enterococcus faecalis was the predominant species (63.8%), followed by Enterococcus hirae (16.2%), Enterococcus faecium (11.5%), Enterococcus gallinarum (5.4%), Enterococcus avium (1.5%), Enterococcus casseliflavus (0.8%), and Enterococcus raffinosus and Enterococcus cecorum (0.4% each). Major percentages (11.9% 75.0%) of nonsusceptibility were observed to quinolones (particularly to enrofloxacin), erythromycin, rifampin, nitrofurantoin, tetracycline and streptomycin. Gentamicin and ampicillin resistances (13.3% each) were only detected among E. faecium. A total of 133 (51.2%) strains were MDR, showing a large variety of MDR profiles, composed by simultaneous resistance encompassing 3 to 12 antimicrobials. MDR strains were found in 68.2% of the birds. Antimicrobial resistance was associated with the presence of the aac(6')-aph(2″)-Ia, aph(2″)-Id, ant(6)-Ia, ant(9)-Ia, ant(9)-Ib, tet(M), tet(L), tet(S), erm(B), mef(A/E), msrC, and vat(D) genes. The most common virulence genes were efaA, gelE, ace, eeP, and asa1. PFGE analysis revealed a large genetic diversity among most of the strains. MLST performed for 35 E. faecalis strains revealed 23 different STs, whereas 14 STs were found among 18 E. faecium strains. Hospital-associated lineages ST22, ST25, ST56, ST1274 were identified. The results show that the wild birds investigated can carry a diversity of potentially hazardous enterococcal strains displaying multiple antimicrobial resistance and virulence genes, reinforcing the assumption that these animals provide an important target to monitor the circulation of microorganisms that deserve consideration under the One Health perspective.

14.
Eye Vis (Lond) ; 11(1): 40, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354641

RESUMEN

PURPOSE: This study aimed to investigate the association between variants in the interleukin (IL)-1 gene cluster and susceptibility to keratoconus (KC) in an Iranian population. METHODS: In the case group, there were 188 KC patients diagnosed by clinical findings and corneal tomography. The control group included all 205 healthy controls with no personal or family history of eye-related, metabolic, or immune system-related disease. Using the standard salting out extraction procedure, genomic DNA was isolated from peripheral blood leukocytes. The genotypes were determined by applying agarose gel electrophoresis for the IL-1RN 86 bp VNTR and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for rs16944 and rs1143634. RESULTS: The results showed a significant association between the IL-1ß rs1143634 (rs1143634 T allele, P = 0.008) and IL-1RN 86 bp VNTR polymorphisms (LL and LS genotype, P = 0.048 and 0.012 respectively) and susceptibility to KC in the Iranian population. The genotype distributions of rs1143634 (P = 0.004) and rs2234663 (P = 0.042) significantly differed between case and control groups, with certain genotypes demonstrating a protective effect against KC. Logistic regression analysis revealed a protective effect of the IL-1RN L allele [odds ratio (OR) = 0.367, 95% confidence interval (CI): 0.240-0.562; P = 0.000] and certain haplotypes (OR = 0.628, 95% CI: 0.447-0.884; P = 0.007) against KC. However, no significant association was found for the IL-1ß rs16944 polymorphism. CONCLUSION: This study provides evidence for an association between variants in the IL-1 gene cluster and susceptibility to KC in an Iranian population. Further research on larger and more diverse populations is warranted to validate these findings and explore the underlying mechanisms involved.

15.
CNS Neurosci Ther ; 30(10): e70070, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39354865

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease caused by a combination of aging, environmental, and genetic factors. Previous research has implicated both causative and susceptibility genes in PD development. Nogo-A, a neurite outgrowth inhibitor, has been shown to impact axon growth through ligand-receptor interactions negatively, thereby involved in the deterioration of dopaminergic neurons. However, rare genetic studies have identified the relationship between neurite outgrowth inhibitor (Nogo)-associated genes and PD from a signaling pathway perspective. METHODS: We enrolled 3959 PD patients and 2931 healthy controls, categorized into two cohorts based on their family history and age at onset: sporadic early Parkinson's disease & familial Parkinson's disease (sEOPD & FPD) cohort and sporadic late Parkinson's disease (sLOPD) cohort. We selected 17 Nogo-associated genes and stratified them into three groups via their function, respectively, ligand, receptors, and signaling pathway groups. Additionally, we conducted the burden analysis in rare variants, the logistic regression analysis in common variants, and the genotype-phenotype association analysis. Last, bioinformatics analysis and functional experiments were conducted to identify the role of the MTOR gene in PD. RESULTS: Our findings demonstrated that the missense variants in the MTOR gene might increase PD risk, while the deleterious variants in the receptor subtype of Nogo-associated genes might mitigate PD risk. However, common variants of Nogo-associated genes showed no association with PD development in two cohorts. Furthermore, genotype-phenotype association analysis suggested that PD patients with MTOR gene variants exhibited relatively milder motor symptoms but were more susceptible developing dyskinesia. Additionally, bioinformatics analysis results showed MTOR gene was significantly decreased in PD, indicating a potential negative role of the mTOR in PD pathogenesis. Experimental data further demonstrated that MHY1485, a mTOR agonist, could rescue MPP+-induced axon inhibition, further implicating the involvement of mTOR protein in PD by regulating cell growth and axon growth. CONCLUSIONS: Our preliminary investigation highlights the association of Nogo-associated genes with PD onset in the Chinese mainland population and hints at the potential role of the MTOR gene in PD. Further research is warranted to elucidate the mechanistic pathways underlying these associations and their therapeutic implications.


Asunto(s)
Proteínas Nogo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios de Cohortes , Estudios Transversales , Proteínas Nogo/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad/genética
16.
mLife ; 3(3): 417-429, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39359677

RESUMEN

Ammonia-oxidizing archaea (AOA) play crucial roles in marine carbon and nitrogen cycles by fixing inorganic carbon and performing the initial step of nitrification. Evaluation of carbon and nitrogen metabolism popularly relies on functional genes such as amoA and accA. Increasing studies suggest that quorum sensing (QS) mainly studied in biofilms for bacteria may serve as a universal communication and regulatory mechanism among prokaryotes; however, this has yet to be demonstrated in marine planktonic archaea. To bridge this knowledge gap, we employed a combination of metabolic activity markers (amoA, accA, and grs) to elucidate the regulation of AOA-mediated nitrogen, carbon processes, and their interactions with the surrounding heterotrophic population. Through co-transcription investigations linking metabolic markers to potential key QS genes, we discovered that QS molecules could regulate AOA's carbon, nitrogen, and lipid metabolisms under different conditions. Interestingly, specific AOA ecotypes showed a preference for employing distinct QS systems and a distinct QS circuit involving a typical population. Overall, our data demonstrate that QS orchestrates nitrogen and carbon metabolism, including the exchange of organic metabolites between AOA and surrounding heterotrophic bacteria, which has been previously overlooked in marine AOA research.

17.
Front Microbiol ; 15: 1456993, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360322

RESUMEN

Bamboo resources have garnered significant global attention due to their excellent capacity for regeneration and high yield. Rhombic-spot disease, a substantial threat to fishscale bamboo (Phyllostachys heteroclada), is primarily caused by Neostagonosporella sichuanensis. This study first reported the genome assemblies and characteristics of two N. sichuanensis isolates using PacBio and Illumina sequencing platforms. The genomes of N. sichuanensis strain SICAUCC 16-0001 and strain SICAUCC 23-0140, with sizes of 48.0 Mb and 48.4 Mb, respectively, revealed 10,289 and 10,313 protein-coding genes. Additionally, they contained 34.99 and 34.46% repetitive sequences within AT-rich regions, with notable repeat-induced point mutation activity. Comparative genome analysis identified 1,049 contracted and 45 expanded gene families in the genome of N. sichuanensis, including several related to pathogenicity. Several gene families involved in mycotoxin metabolism, secondary metabolism, sterol biosynthesis and transport, and cell wall degradation were contracted. Compared to most analyzed necrotrophic, hemibiotrophic, and phaeosphaeriacous pathogens, the genomes of two N. sichuanensis isolates exhibited fewer secondary metabolite enzymes, carbohydrate-active enzymes, plant cell wall degrading enzymes, secreted proteins, and effectors. Comparative genomics analysis suggested that N. sichuanensis shares more similar characteristics with hemibiotrophic pathogens. Based on single carbon source tests, N. sichuanensis strains demonstrated a higher potential for xylan decomposition than pectin and cellulose. The proportion of cell wall-degrading enzyme effectors occupied a high proportion of the total effectors of the N. sichuanensis genomes. These findings provide valuable insights into uncovering the pathogenesis of N. sichuanensis toward the efficient management of rhombic-spot disease of fishscale bamboo.

18.
J Environ Manage ; 370: 122736, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362162

RESUMEN

Ruminal microbes can efficiently ferment biomass waste to produce volatile fatty acids (VFAs). However, keeping long-term efficient VFA production efficiency has become a bottleneck. In this study, yeast culture (YC) was used to enhance the VFA production in long-term fermentation. Results showed that YC group improved the volatile solid removal and VFA concentration to 47.8% and 7.82 g/L, respectively, 18.6% and 16.1% higher than the control, mainly enhancing the acetic, propionic, and butyric acid production. YC addition reduced the bacterial diversity, changed the bacterial composition, and improved interactions among bacteria. The regulation mechanism of YC was to increase the abundance and activity of hydrolytic and acidogenic bacteria such as Prevotella and Treponema, improve bacterial interactions, and further promote expression of functional genes. Ultimately, a long-term efficient ruminal fermentation of corn straw into VFAs was achieved.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39362467

RESUMEN

BACKGROUND: The emergence and transmission of the multidrug resistance gene cfr have raised public health concerns worldwide. OBJECTIVES: Multidrug-resistant Staphylococcus equorum isolates can pose a threat to public health. In this study, we have characterised the whole-genome of one Staphylococcus equorum isolate harboring two distinct cfr-carrying plasmids. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution. Genomic DNA was sequenced using both the Illumina HiSeq X Ten and Nanopore MinION platforms. De novo hybrid assembly was performed by Unicycler. Genomic data were assessed by in silico prediction and bioinformatic tools. RESULTS: Staphylococcus equorum isolate SN42 exhibited resistance or high MICs to linezolid, erythromycin, tetracycline, oxacillin, clindamycin, virginiamycin, tiamulin, chloramphenicol and florfenicol. It carried two cfr-harboring plasmids: the RepA N-family plasmid pSN42-51K and the Inc18-family plasmid pSN42-50K. These two plasmids exhibited low structural similarities to the so far reported cfr-carrying plasmids. Both plasmids harbored an arsenic resistance operon, copper and cadmium resistance genes as well as the lincosamide-pleuromutilin-streptogramin A resistance gene lsa(B). In addition, plasmid pSN42-51K carried two erm(B) genes for macrolide-lincosamide-streptogramin B resistance, the streptomycin resistance gene ant(6)-Ia as well as mercury resistance genes while pSN42-50K was associated with the heavy metal translocating P-type ATPase gene hmtp. The co-carriage and co-existence of these antimicrobial resistance and heavy metal resistance genes increases the likelihood of co-selection of the cfr-carrying plasmids. CONCLUSION: This is the first report of S. equorum carrying two distinct cfr-carrying plasmids, underscoring the need for ongoing surveillance to address the potential dissemination of multi-drug resistance in bacteria from food-producing animals to ensure food safety and public health.

20.
Br Poult Sci ; : 1-11, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364777

RESUMEN

1. In the following experiment meat quality traits of a Gushi-Anka F2 resource population were measured, and their heritability estimated. Intramuscular fat (IMF) had medium heritability (0.35) but leg muscle fibre density (LMD), leg muscle fibre diameter (LMF), breast muscle fibre density (BMD), fresh fat content (FFA), and absolute dry fat content (AFC) had low heritability (0-0.2). The IMF presented the most important genetic additive effect among the poultry meat quality-related traits studied.2. The phenotypic data of meat quality traits in the Gushi-Anka F2 resource population were combined with genotyping by sequencing (GBS) data to obtain genotype data. Six meat quality traits in 734 birds were analysed by GWAS. Based on these variants, 83 significant (-log10(p) > 4.42) single nucleotide polymorphisms and four quantitative trait loci (QTL) regions corresponding to 175 genes were identified. Further linkage disequilibrium (LD) analysis was conducted on chromosome 13 (Chr13) and chromosome 27 (Chr27) QTL regions.3. Based on the transcriptome data and GWAS results, 12 shared genes - ITGB3, DNAJC27, ETV4, C7orf50, FKBP1B, G3BP1, IGF2BP1, KCNH6, LOC416263, SCARA5, SMIM5 and TBL1XR1 were identified as candidate genes influencing muscle fibre and fat traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA