Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Phycol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924097

RESUMEN

The northward shift of Pyropia yezoensis aquaculture required the breeding of germplasms with tolerance to the oxidative stress due to the high light conditions of the North Yellow Sea area. The MPV17/PMP22 family proteins were identified as a molecule related to reactive oxygen species (ROS) metabolism. Here, one of the MPV17 homolog genes designated as PyM-LP2 was selected for functional identification by introducing the encoding sequence region/reverse complementary fragment into the Py. yezoensis genome. Although the photosynthetic activity, the respiratory rate, and the ROS level in wild type (WT) and different gene-transformed algal strains showed similar levels under normal conditions, the overexpression (OE) strain exhibited higher values of photosynthesis, respiration, and reducing equivalents pool size but lower intracellular ROS production under stress conditions compared with the WT. Conversely, all the above parameters showed opposite variation trends in RNAi strain as those in the OE strain. This implied that the PyM-LP2 protein was involved in the mitigation of the oxidative stress. Sequence analysis revealed that this PyM-LP2 protein was assorted to peroxisomes and might serve as a poring channel for transferring malate (Mal) to peroxisomes. By overexpressing PyM-LP2, the transfer of Mal from chloroplasts to peroxisomes was enhanced under stress conditions, which promoted photorespiration and ultimately alleviated excessive reduction of the photosynthetic electron chain. This research lays the groundwork for the breeding of algae with enhanced resistance to oxidative stresses.

2.
Planta ; 260(1): 16, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833022

RESUMEN

MAIN CONCLUSION: A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Mutación , Plantas Modificadas Genéticamente , Zea mays , Zea mays/genética , Plantas Modificadas Genéticamente/genética , Edición Génica/métodos , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN
3.
Gene ; 916: 148425, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38575102

RESUMEN

Peanut is an important cash crop used in oil, food and feed in our country. The rapid development of sequencing technology has promoted the research on the related aspects of peanut genetic breeding. This paper reviews the research progress of peanut origin and evolution, genetic breeding, molecular markers and their applications, genomics, QTL mapping and genome selection techniques. The main problems of molecular genetic breeding in peanut research worldwide include: the narrow genetic resources of cultivated species, unstable genetic transformation and unclear molecular mechanism of important agronomic traits. Considering the severe challenges regarding the supply of edible oil, and the main problems in peanut production, the urgent research directions of peanut are put forward: The de novo domestication and the exploitation of excellent genes from wild resources to improve modern cultivars; Integration of multi-omics data to enhance the importance of big data in peanut genetics and breeding; Cloning the important genes related to peanut agronomic traits and analyzing their fine regulation mechanisms; Precision molecular design breeding and using gene editing technology to accurately improve the key traits of peanut.


Asunto(s)
Arachis , Fitomejoramiento , Sitios de Carácter Cuantitativo , Arachis/genética , Fitomejoramiento/métodos , Genoma de Planta , Evolución Molecular , Genómica/métodos , Domesticación , Productos Agrícolas/genética , Mapeo Cromosómico
4.
Animals (Basel) ; 14(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254442

RESUMEN

Multi-omics-integrated analysis, known as panomics, represents an advanced methodology that harnesses various high-throughput technologies encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Sheep, playing a pivotal role in agricultural sectors due to their substantial economic importance, have witnessed remarkable advancements in genetic breeding through the amalgamation of multiomics analyses, particularly with the evolution of high-throughput technologies. This integrative approach has established a robust theoretical foundation, enabling a deeper understanding of sheep genetics and fostering improvements in breeding strategies. The comprehensive insights obtained through this approach shed light on diverse facets of sheep development, including growth, reproduction, disease resistance, and the quality of livestock products. This review primarily focuses on the application of principal omics analysis technologies in sheep, emphasizing correlation studies between multiomics data and specific traits such as meat quality, wool characteristics, and reproductive features. Additionally, this paper anticipates forthcoming trends and potential developments in this field.

5.
J Sci Food Agric ; 104(4): 2383-2397, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37961851

RESUMEN

BACKGROUND: Yield, disease tolerance, and climate adaptation are important traits in grapevine genetic breeding programs. Selection for these characteristics causes unpredictable changes in primary and specialized metabolism, affecting the physicochemical properties and chemical composition of the berries and their processed products, juice, and wine. In this study, we investigated the influence of the genetic distance between grapevine genotypes on the chemical signatures of the juices, by integrating comprehensive metabolic profiling to genetic analyses. RESULTS: The studied grapevine cultivars exhibited low genetic diversity. Breeding for agronomic traits promoted higher contents of soluble sugars, total phenolics, and anthocyanins in the juices. Untargeted juice metabolomics identified a total of 147 metabolites, consisting of 30 volatiles, 21 phenolics, and 96 ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) features. Juices from grapes of the most recent cultivars exhibited increased levels of trans-resveratrol, catechin, and luteolin. The blend of volatiles from juices of later cultivars was also more complex, consisting of 29 distinct metabolites in 'BRS Magna'. Grapes from 'BRS Carmem', an intermediate cultivar, gave the most divergent UHPLC-MS juice profile. CONCLUSION: Contents of soluble solids, total phenolics, and anthocyanins in grape juices were increased by controlled crosses and hybrid selection. Integrative analyses demonstrated that the juices' metabolic profiles accurately represent the cultivars' genetic distances. Juices from 'BRS Violeta' and 'BRS Magna' show relevant positive association with health-related phenolics and a distinct set of odor volatiles, although these characteristics were specifically sought by breeding. © 2023 Society of Chemical Industry.


Asunto(s)
Vitis , Vino , Antocianinas/análisis , Fitomejoramiento , Resveratrol/análisis , Vitis/química , Vino/análisis , Fenoles/química , Frutas/química
6.
Plants (Basel) ; 12(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38068686

RESUMEN

The simultaneous analysis of the maximum number of chemical elements present in plant tissues provides more comprehensive information about their chemical constitution and increases the number of characteristics for the selection process in various plant breeding programs. The objective of this study was to analyze productivity, grain yield, and concentration of chemical elements in tissues of Coffea canephora clones to study phenotypic diversity and estimate genetic parameters for use in breeding. This experiment was carried out in Manaus, Amazonas, Brazil, in randomized blocks with four replications. The concentrations of elements in various organs were quantified using total reflection X-ray fluorescence (TXRF). Genetic parameters and genetic divergence were estimated, and genotypes were clustered using the UPGMA hierarchical method and non-metric multidimensional scaling analysis. The study allowed us to differentiate the performance of the clones in terms of the absorption of essential and non-essential chemical elements for plant development and to analyze the correlation of the characteristics in the selection process. TXRF efficiently characterizes the presence and concentration of multiple elements, aiding genotype discrimination for C. canephora improvement.

7.
Proc Natl Acad Sci U S A ; 120(44): e2308984120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874858

RESUMEN

Leymus chinensis, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of L. chinensis with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to Psathyrostachys and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in L. chinensis. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild L. chinensis with features such as polyploidization and self-incompatibility.


Asunto(s)
Fitomejoramiento , Poaceae , Poaceae/genética , Genoma , Evolución Molecular
8.
Plants (Basel) ; 12(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37836216

RESUMEN

Coffee genotypes cultivated in the Amazonian region have been gaining increasing prominence in Brazilian plantations. This study aimed to quantify nutrient accumulation in the fruits, grains, and husks of Robusta coffee genotypes cultivated in the Brazilian Amazon and estimate genetic diversity. The experiment was conducted in Alta Floresta D'Oeste-Rondônia, Brazil. To assess nutrient accumulation, fresh fruits were collected. These were dried, processed, separated into grains and husks, and subjected to chemical analysis. Nutrient accumulation in fruits, grains, and husks, as well as the grain/husk ratio, underwent analysis of variance through the F-test (p < 0.01. For each evaluated trait, the experimental coefficient of 337 variation (CVe), genetic coefficient of variation (CVg), and genotypic determination coefficient (H2) were also estimated. Variability was observed among Robusta coffee genotypes, with VP06, AS4, and AS10 being the most dissimilar. LB080 had the lowest dry fruit weight and the lowest percentage of grains in relation to husks. ZD156 accumulated more K in the grains, while VP06 and AS10 were the genotypes that accumulated more nutrients in the husks. Nutrients N, K, Ca, and P are accumulated in larger quantities, necessitating the calibration of mineral fertilization dosages and distribution.

9.
J Ethnobiol Ethnomed ; 19(1): 40, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37710305

RESUMEN

BACKGROUND: The Luchuan pig is an indigenous breed from Luchuan County, China, with cultural and genetic significance. However, traditional knowledge and conservation status have not been systematically documented. METHODS: Using ethnobiological methods, we surveyed 72 Luchuan pig farmers in 7 townships during 2021-2023. Semi-structured interviews and participant observation were conducted to document traditional knowledge and management practices. RESULTS: The locals reported 51 plant species used as pig feed, with 30 wild species. Growth-stage-specific feeding and seasonal adjustment practices were documented. We recorded 62 ethnoveterinary plant uses, mainly for treating pigs' heat stress and skin conditions. Luchuan pigs play central roles in local Hakka customs, rituals, and cuisine. Additonally, the new ecological farming models minimize the environmental impacts to the local community. However, there are still some challenges remained for conserving and promoting Luchuan pigs. CONCLUSIONS: The Luchuan Hakka people possess rich traditional knowledge and management experience in raising Luchuan pigs. Our study provides extensive documentation of traditional knowledge and recommends integrating cultural and genetic aspects for sustaining this biocultural heritage. Findings can inform initiatives supporting local breed conservation globally.


Asunto(s)
Agricultura , Cruzamiento , Humanos , Porcinos , Animales , China , Cultura , Agricultores
10.
Sci China Life Sci ; 66(10): 2214-2256, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899210

RESUMEN

Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.


Asunto(s)
Genómica , Fitomejoramiento , Humanos , Factores de Transcripción/metabolismo , Biotecnología , Reguladores del Crecimiento de las Plantas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Fibra de Algodón , Regulación de la Expresión Génica de las Plantas
11.
Anim Biotechnol ; 34(4): 1483-1491, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35152846

RESUMEN

Qinchuan cattle has gradually improved in body shape and growth rate in the long-term breeding process from the draft cattle to beef cattle. As the head of the five local yellow cattle in China, the Qinchuan cattle has been designated as a specialized beef cattle breed. We investigated the selection signatures using whole genome sequencing data in Qinchuan cattle. Based on Fst, we detected hundreds of candidate genes under selection across Qinchuan, Red Angus, and Japanese Black cattle. Through protein-protein interaction analysis and functional annotation of candidate genes, the results revealed that KMT2E, LTBP1 and NIPBL were related to brain size, body characteristics, and limb development, respectively, suggesting that these potential genes may affect the growth and development traits in Qinchuan cattle. ARIH2, DACT1 and DNM2, et al. are related to meat quality. Meanwhile, TBXA2R can be used as a gene associated with reproductive function, and USH2A affect coat color. This provided a glimpse into the formation of breeds and molecular genetic breeding. Our findings will promote genome-assisted breeding to improve animal production and health.


Asunto(s)
Genoma , Carne , Bovinos/genética , Animales , Genoma/genética , Fenotipo , China , Polimorfismo de Nucleótido Simple/genética
12.
Yi Chuan ; 45(12): 1114-1127, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764275

RESUMEN

Gene chip is a high-throughput technique for detecting specific DNA sequences by DNA or DNA-RNA complementary hybridization, among which SNP genotyping chips have been widely employed in the animal genetics and breeding, and have made great achievements in cattle (Bos taurus), pigs (Sus scrofa), sheep (Caprinae), chickens (Gallus gallus) and other livestock. However, genomic selection applied in production merely uses genomic information and cannot fully explain the molecular mechanism of complex traits genetics, which limits the accuracy of genomic selection. With the continuous progresses in epigenetic research, the development of commercial methylation chips and the application of the epigenome-wide association study (EWAS), DNA methylation has been extensively used to draw the causal connections between genetics and phenotypes. In the future, it is hopefully expected to develop methylation chips customized for livestock and poultry and explore methylation sites significantly related to economic traits of livestock and poultry through EWAS thereby extending the understanding of causal variation of complex traits. Combining methylation chips and SNP chips, we can capture the epigenomic and genomic information of livestock and poultry, interpret genetic variation more precisely, improve the accuracy of genome selection, and promote the fine evolution of molecular genetic breeding of livestock and poultry. In this review, we summarize the application of SNP chips and depict the prospects of the application of methylation chips in livestock and poultry. This review will provide valuable insights for further application of gene chips in farm animal breeding.


Asunto(s)
Cruzamiento , Ganado , Análisis de Secuencia por Matrices de Oligonucleótidos , Aves de Corral , Animales , Ganado/genética , Aves de Corral/genética , Cruzamiento/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Metilación de ADN , Estudio de Asociación del Genoma Completo/métodos
13.
Natl Sci Rev ; 9(11): nwac152, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36478733

RESUMEN

Intermuscular bones (IBs) are mineralized spicules, present in the myosepta of many, but not all, teleost species. IBs are often small and sharp, and they consequently limit how the fish can be processed; the IBs may cause injury or trauma if lodged in consumers' throats or mouths, and therefore affect the appeal of the fish to many consumers. The development of IBs in teleosts is still not fully understood and the molecular basis of IB development remains to be established. Here, the characteristics of IB tissue are evaluated based on single-cell transcriptomics in wild-type zebrafish. The analysis defined 18 distinct cell types. Differentiation trajectories showed that IBs are derived from tendons and that a core tendon-osteoblast cell lineage is related to IB formation. In particular, the functions of 10 candidate genes were evaluated via CRISPR-Cas9 mutants. Among those, runx2b-/- mutants completely lost IBs, while swimming performance, growth and bone mineral density were not significantly different from runx2b+/+ zebrafish. Comparative single-cell RNA sequencing (scRNA-seq) analysis in runx2b-/- and runx2b+/+ zebrafish revealed the role of osteoblasts in IB formation. In addition, differentially expressed genes were enriched in the transforming growth factor ß/bone morphogenetic protein (TGF-ß/BMP) pathway after runx2b deletion. This study provides evidence for the crucial role of runx2b regulation in IB formation. Genetic breeding can target runx2b regulation and generate strains of commercial fish species without IBs, which can improve the safe consumption and economic value of many farmed fish species.

14.
Yi Chuan ; 44(11): 1009-1027, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36384994

RESUMEN

Quinoa (Chenopodium quinoa, Willd.) as a new health food in the 20th century, its comprehensive nutritional composition, stress resistance and other characteristics have been paid much of attention, and enjoys the reputation of "nutritional gold", "vegetarian king" and "food in the future" in the world. In recent years, with the rapid development of genomics and high-throughput sequencing technology, the high-quality whole genome sequence of quinoa has been completed, and the omics analysis and functional research of a series of key genes have been gradually carried out. In this review, we summarize the research progress in quinoa genomics, gene family analysis of important transcription factors, genetic map construction, QTL mapping of important traits, and genes for important agronomic and yield traits. Moreover, according to the current status of quinoa breeding, this paper also put forward five key problems in quinoa breeding, and pointed out four important directions of genetic improvement and breeding of quinoa in the future, so as to provide reference for the realization of directional genetic improvement of quinoa in the future.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/genética , Fitomejoramiento , Genómica , Fenotipo , Mapeo Cromosómico
15.
Front Genet ; 13: 1019621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386845
16.
Front Plant Sci ; 13: 949541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186008

RESUMEN

One of the most significant environmental factors affecting plant growth, development and productivity is salt stress. The damage caused by salt to plants mainly includes ionic, osmotic and secondary stresses, while the plants adapt to salt stress through multiple biochemical and molecular pathways. Tomato (Solanum lycopersicum L.) is one of the most widely cultivated vegetable crops and a model dicot plant. It is moderately sensitive to salinity throughout the period of growth and development. Biotechnological efforts to improve tomato salt tolerance hinge on a synthesized understanding of the mechanisms underlying salinity tolerance. This review provides a comprehensive review of major advances on the mechanisms controlling salt tolerance of tomato in terms of sensing and signaling, adaptive responses, and epigenetic regulation. Additionally, we discussed the potential application of these mechanisms in improving salt tolerance of tomato, including genetic engineering, marker-assisted selection, and eco-sustainable approaches.

17.
Front Endocrinol (Lausanne) ; 13: 923475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937837

RESUMEN

Human-directed domestication of terrestrial animals traditionally requires thousands of years for breeding. The most prominent behavioral features of domesticated animals include reduced aggression and enhanced tameness relative to their wild forebears, and such behaviors improve the social tolerance of domestic animals toward both humans and crowds of their own species. These behavioral responses are primarily mediated by the hypothalamic-pituitary-adrenal (inter-renal in fish) (HPA/I) endocrine axis, which is involved in the rapid conversion of neuronal-derived perceptual information into hormonal signals. Over recent decades, growing evidence implicating the attenuation of the HPA/I axis during the domestication of animals have been identified through comprehensive genomic analyses of the paleogenomic datasets of wild progenitors and their domestic congeners. Compared with that of terrestrial animals, domestication of most farmed fish species remains at early stages. The present review focuses on the application of HPI signaling attenuation to accelerate the domestication and genetic breeding of farmed fish. We anticipate that deeper understanding of HPI signaling and its implementation in the domestication of farmed fish will benefit genetic breeding to meet the global demands of the aquaculture industry.


Asunto(s)
Domesticación , Sistema Hipófiso-Suprarrenal , Animales , Genómica , Humanos , Sistema Hipotálamo-Hipofisario , Hipotálamo
18.
Zool Res ; 43(4): 537-551, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35616259

RESUMEN

In vitro production of functional gametes can revolutionize reproduction by reducing generation intervals and accelerating genetic breeding in aquaculture, especially in fish with relatively long generations. Nevertheless, functional sperm production from in vitro-cultured spermatogonia remains a challenge in most aquaculture fish. In this study, we isolated and characterized premeiotic spermatogonia from marine four-eyed sleepers ( Bostrychus sinensis), which are prone to ovotesticular or sterile testicular development, and induced the differentiation of the spermatogonia into flagellated sperm in a three-dimensional (3D) culture system. Artificial insemination indicated that the in vitro-derived sperm were capable of fertilizing mature oocytes to develop into normal larvae. Furthermore, melatonin significantly promoted spermatogonia proliferation and differentiation through the ERK1/2 signaling pathway, and thus increased the efficiency in functional sperm production. The 3D culture system and resulting functional sperm hold great promise for improving the genetic breeding of aquaculture fish.


Asunto(s)
Perciformes , Espermatogonias , Animales , Acuicultura , Masculino , Espermatogonias/metabolismo , Espermatozoides , Testículo/metabolismo
19.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38116826

RESUMEN

The Pacific geoduck Panopea generosa (class Bivalvia, order Adapedonta, family Hiatellidae, genus Panopea) is the largest known burrowing bivalve with considerable commercial value. Pacific geoduck and other geoduck clams play important roles in maintaining ecosystem health for their filter feeding habit and coupling pelagic and benthic processes. Here, we report a high-quality chromosome-level genome assembly of P. generosa to characterize its phylogeny and molecular mechanisms of its life strategies. The assembled P. generosa genome consists of 19 chromosomes with a size of 1.47 Gb, a contig N50 length of 1.6 Mb, and a scaffold N50 length of 73.8 Mb. The BUSCO test of the genome assembly showed 93.0% completeness. Constructed chromosome synteny revealed many occurrences of inter- and intrachromosomal rearrangements between P. generosa and Sinonovacula constricta. Of the 35,034 predicted protein-coding genes, 30,700 (87.6%) could be functionally annotated in public databases, indicating the high quality of genome annotation. Comparison of gene copy numbers of gene families among P. generosa and 11 selected species identified 507 rapidly expanded P. generosa gene families that are functionally enriched in immune and gonad development and may be involved in its complex survival strategies. In particular, genes carrying the copine domains underwent additional duplications in P. generosa, which might be important for neuronal development and immune response. The availability of a fully annotated chromosome-level genome provides a valuable dataset for genetic breeding of P. generosa.


Asunto(s)
Bivalvos , Familia de Multigenes , Animales , Bivalvos/genética , Cromosomas/genética , Genoma , Anotación de Secuencia Molecular , Filogenia , Dosificación de Gen
20.
Braz. j. biol ; 82: 1-8, 2022. tab, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468526

RESUMEN

Hops is a new culture in Brazil. Tissue culture can be an important technique for rapid hop propagation. This paper aims to characterize responses from different genotypes under different growth regulators through the interrelationship of response variables important to hop in vitro growth. Three genotypes were cultivated in six culture media with different combinations of growth regulators, BAP (6-benzylaminopurine), IAA (3-indolacetic acid) and GA3 (gibberellic acid). The means were compared by orthogonal contrasts and the interrelationship of the response variables was performed by path analysis. American genotypes showed favorable root development under the BAP + IAA combination, while the use of IAA improved shoot development. The origin of genotypes was important for defining the best protocol for in vitro cultivation. The path coefficient showed that the variable number of shoots has stronger direct effect on the number of nodal segments. Additionally, in tissue culture assays, the use of a covariable and proper error distribution significantly increased experimental accuracy.


O lúpulo é uma nova cultura no Brasil. A cultura de tecidos pode ser uma técnica importante para a propagação rápida do lúpulo. Este artigo tem como objetivo caracterizar respostas de diferentes genótipos sob diferentes reguladores de crescimento através da inter-relação de variáveis de resposta importantes para o crescimento in vitro. Três genótipos foram cultivados em seis meios de cultura com diferentes combinações de reguladores de crescimento, BAP (6-benzilaminopurina), AIA (ácido 3-indolacético) e GA3 (ácido giberélico). As médias foram comparadas por contrastes ortogonais e a inter-relação das variáveis de resposta foi realizada por análise de trilha. Os genótipos americanos apresentaram desenvolvimento radicular favorável sob a combinação BAP + AIA, enquanto o uso do AIA melhorou o desenvolvimento da parte aérea. A origem dos genótipos foi importante para definir o melhor protocolo para o cultivo in vitro. O coeficiente de trilha mostrou que a variável número de brotos tem um efeito direto mais forte no número de segmentos nodais. Adicionalmente, em experimentos com cultura de tecidos, o uso de uma covariável e distribuição de erro adequada aumentou significativamente a precisão experimental.


Asunto(s)
Humulus/crecimiento & desarrollo , Humulus/genética , Mejoramiento Genético/métodos , Reguladores del Crecimiento de las Plantas/análisis , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA