Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Animal ; 18(7): 101208, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38905776

RESUMEN

Small ruminant farming is of socio-economic and environmental importance to many rural communities around the world. The SMARTER H2020 project aims to redefine genetic selection criteria to increase the sustainability of the sector. The objective of this study was to analyse the selection and breeding management practices of small ruminant producers and breeders, linked with socio-technical elements that shape them. The study is based on farm surveys using semi-structured interviews conducted in five countries (France, Spain, Italy, Greece, and Uruguay) across 272 producers and breeders of 13 sheep and goat breeds, and 15 breed × system combinations. The information was collected in four sections. The first and second sections dealt with general elements of structure and management of the system and the flock/herd. The third section focused on selection and breeding management practices: criteria for culling and replacement of females, selection criteria for males, use of estimated breeding values and global indexes, and preferences for indexing new traits to increase the sustainability of their system. The fourth section aimed to collect socio-technical information. We used a data abstraction method to standardise the representation of these data. A mixed data factor analysis followed by a hierarchical ascending classification allowed the characterisation of three profiles of selection and breeding management: (1) a profile of producers (n = 93) of small flocks/herds, with little knowledge or use of genetic selection and improvement tools (selection index, artificial insemination, performance recording); these farmers do not feel that new traits are needed to improve the sustainability of their system. (2) a profile of producers (n = 34) of multibreed flocks/herds that rely significantly on grazing; they are familiar with genetic tools, they currently use AI; they would like the indexes to include more health and robustness characteristics, to make their animals more resistant and to increase the sustainability of their system. And (3) a profile of producers or breeders (n = 145) of large flocks/herds, with specific culling criteria; these farmers are satisfied with the current indexes to maintain the sustainability of their system. These results are elements that can be used by private breeding companies and associations to support the evolution of selection objectives to increase the resilience of animals and to improve the sustainability of the small ruminant breeding systems.

2.
Microbiome ; 12(1): 116, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943206

RESUMEN

BACKGROUND: Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS: We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION: We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.


Asunto(s)
Heces , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , Porcinos/microbiología , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Metagenómica/métodos , Prevotella/genética , Prevotella/clasificación , Ruminococcus/genética , Treponema/genética
3.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892198

RESUMEN

Carpel number (CN) is an important trait affecting the fruit size and shape of melon, which plays a crucial role in determining the overall appearance and market value. A unique non-synonymous single nucleotide polymorphism (SNP) in CmCLAVATA3 (CmCLV3) is responsible for the variation of CN in C. melo ssp. agrestis (hereafter agrestis), but it has been unclear in C. melo ssp. melo (hereafter melo). In this study, one major locus controlling the polymorphism of 5-CN (multi-CN) and 3-CN (normal-CN) in melo was identified using bulked segregant analysis (BSA-seq). This locus was then fine-mapped to an interval of 1.8 Mb on chromosome 12 using a segregating population containing 1451 progeny. CmCLV3 is still present in the candidate region. A new allele of CmCLV3, which contains five other nucleotide polymorphisms, including a non-synonymous SNP in coding sequence (CDS), except the SNP reported in agrestis, was identified in melo. A cis-trans test confirmed that the candidate gene, CmCLV3, contributes to the variation of CNs in melo. The qRT-PCR results indicate that there is no significant difference in the expression level of CmCLV3 in the apical stem between the multi-CN plants and the normal-CN plants. Overall, this study provides a genetic resource for melon fruit development research and molecular breeding. Additionally, it suggests that melo has undergone similar genetic selection but evolved into an independent allele.


Asunto(s)
Cucumis melo , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Alelos , Mapeo Cromosómico , Cucumis melo/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Genes de Plantas , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo
4.
Viruses ; 16(5)2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793694

RESUMEN

White spot syndrome virus (WSSV) is marked as one of the most economically devastating pathogens in shrimp aquaculture worldwide. Infection of cultured shrimp can lead to mass mortality (up to 100%). Although progress has been made, our understanding of WSSV's infection process and the virus-host-environment interaction is far from complete. This in turn hinders the development of effective mitigation strategies against WSSV. Infection models occupy a crucial first step in the research flow that tries to elucidate the infectious disease process to develop new antiviral treatments. Moreover, since the establishment of continuous shrimp cell lines is a work in progress, the development and use of standardized in vivo infection models that reflect the host-pathogen interaction in shrimp is a necessity. This review critically examines key aspects of in vivo WSSV infection model development that are often overlooked, such as standardization, (post)larval quality, inoculum type and choice of inoculation procedure, housing conditions, and shrimp welfare considerations. Furthermore, the usefulness of experimental infection models for different lines of WSSV research will be discussed with the aim to aid researchers when choosing a suitable model for their research needs.


Asunto(s)
Acuicultura , Interacciones Huésped-Patógeno , Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Virus del Síndrome de la Mancha Blanca 1/fisiología , Virus del Síndrome de la Mancha Blanca 1/patogenicidad , Animales , Penaeidae/virología , Modelos Animales de Enfermedad
5.
Animal ; : 101141, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38641517

RESUMEN

Interest in dairy cow health continues to grow as we better understand health's relationship with production potential and animal welfare. Over the past decade, efforts have been made to incorporate health traits into national genetic evaluations. However, they have focused on the mature cow, with calf health largely being neglected. Diarrhoea and respiratory disease comprise the main illnesses with regard to calf health. Conventional methods to control calf disease involve early separation of calves from the dam and housing calves individually. However, public concern regarding these methods, and growing evidence that these methods may negatively impact calf development, mean the dairy industry may move away from these practices. Genetic selection may be a promising tool to address these major disease issues. In this review, we examined current literature for enhancing calf health through genetics and discussed alternative approaches to improve calf health via the use of epidemiological modelling approaches, and the potential of indirectly selecting for improved calf health through improving colostrum quality. Heritability estimates on the observed scale for diarrhoea ranged from 0.03 to 0.20, while for respiratory disease, estimates ranged from 0.02 to 0.24. The breadth in these ranges is due, at least in part, to differences in disease prevalence, population structure, data editing and models, as well as data collection practices, which should be all considered when comparing literature values. Incorporation of epidemiological theory into quantitative genetics provides an opportunity to better determine the level of genetic variation in disease traits, as it accounts for disease transmission among contemporaries. Colostrum intake is a major determinant of whether a calf develops either respiratory disease or diarrhoea. Colostrum traits have the advantage of being measured and reported on a continuous scale, which removes the issues classically associated with binary disease traits. Overall, genetic selection for improved calf health is feasible. However, to ensure the maximum response, first steps by any industry members should focus efforts on standardising recording practices and encouragement of uploading information to genetic evaluation centres through herd management software, as high-quality phenotypes are the backbone of any successful breeding programme.

6.
Heliyon ; 10(5): e26996, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495176

RESUMEN

Background: Heterologous expression of active, native-folded protein in Escherichia coli is critical in both academic research and biotechnology settings. When expressing non-native recombinant proteins in E. coli, obtaining soluble and active protein can be challenging. Numerous techniques can be used to enhance a proteins solubility, and largely focus on either altering the expression strain, plasmid vector features, growth conditions, or the protein coding sequence itself. However, there is no one-size-fits-all approach for addressing issues with protein solubility, and it can be both time and labor intensive to find a solution. An alternative approach is to use the co-expression of chaperones to assist with increasing protein solubility. By designing a genetic system where protein solubility is linked to viability, the appropriate protein folding factor can be selected for any given protein of interest. To this end, we developed a Split Antibiotic Selection (SAS) whereby an insoluble protein is inserted in-frame within the coding sequence of the hygromycin B resistance protein, aminoglycoside 7″-phosphotransferase-Ia (APH(7″)), to generate a tripartite fusion. By creating this tripartite fusion with APH(7″), the solubility of the inserted protein can be assessed by measuring the level of hygromycin B resistance of the cells. Results: We demonstrate the functionality of this system using a known protein and co-chaperone pair, the human mitochondrial Hsp70 ATPase domain (ATPase70) and its co-chaperone human escort protein (Hep). Insertion of the insoluble ATPase70 within APH(7'') renders the tripartite fusion insoluble and results in sensitivity to hygromycin B. Antibiotic resistance can be rescued by expression of the co-chaperone Hep which assists in the folding of the APH(7'')-ATPase70-APH(7'') tripartite fusion and find that cellular hygromycin B resistance correlates with the total soluble fusion protein. Finally, using a diverse chaperone library, we find that SAS can be used in a pooled genetic selection to identify chaperones capable of improving client protein solubility. Conclusions: The tripartite APH(7'') fusion links the in vivo solubility of the inserted protein of interest to hygromycin B resistance. This construct can be used in conjunction with a chaperone library to select for chaperones that increase the solubility of the inserted protein. This selection system can be applied to a variety of client proteins and eliminates the need to individually test chaperone-protein pairs to identify those that increase solubility.

7.
Poult Sci ; 103(4): 103538, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387293

RESUMEN

The early posthatch period is crucial to intestinal development, shaping long-term growth, metabolism, and health of the chick. The objective of this study was to determine the effect of genetic selection on morphological characteristics and gene expression during early intestinal development. Populations of White Plymouth Rocks have been selected for high weight (HWS) and low weight (LWS) for over 63 generations, and some LWS display symptoms of anorexia. Intestinal structure and function of these populations were compared to a commercial broiler Cobb 500 (Cobb) during the perihatch period. Egg weights, yolk-free embryo BW, yolk weights, and jejunal samples from HWS, LWS, and Cobb were collected on embryonic day (e) 17, e19, day of hatch, day (d) 3, d5, and d7 posthatch for histology and gene expression analysis. The RNAscope in-situ hybridization method was used to localize expression of the stem cell marker, olfactomedin 4 (Olfm4). Villus height (VH), crypt depth (CD), and VH/CD were measured from Olfm4 stained images using ImageJ. mRNA abundance for Olfm4, stem cell marker Lgr5, peptide transporter PepT1, goblet cell marker Muc2, marker of proliferation Ki67, and antimicrobial peptide LEAP2 were examined. Two-factor ANOVA was performed for measurements and Turkey's HSD was used for mean separation when appropriate. Cobb were heaviest and LWS the lightest (P < 0.01). at each timepoint. VH increased in Cobb and CD increased in HWS compared to LWS (P < 0.01). PepT1 mRNA was upregulated in LWS (P < 0.01), and Muc2 mRNA was decreased in both HWS and LWS compared to Cobb (P < 0.01). Selection for high or low 8-wk body weight has caused differences in intestinal gene expression and morphology when compared to a commercial broiler.


Asunto(s)
Pollos , Duodeno , Animales , Hibridación in Situ/veterinaria , Duodeno/metabolismo , ARN Mensajero/genética , Peso Corporal
8.
Poult Sci ; 103(3): 103438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232621

RESUMEN

The growth rate of chickens has made remarkable progress in recent decades through continuous breeding efforts. However, this advancement has also led to a decline in fertility among commercially bred chickens. Therefore, it is crucial to understand and improve factors that influence fertility to ensure the continued success of the industry. Here, we conduct a 3-generation selection experiment within 2 purebred female lines, with the aim of increasing the duration of fertility (DF). Duration of fertility refers to the length of time hens remain capable of producing fertilized eggs and is a crucial factor that directly impacts chick output. The results showed that significant genetic progress was achieved in embryo survival rates and the fertility duration day during both the peak and late laying periods. Moreover, after 3 generations of selective breeding, the disparities in embryo survival and chick health rates from setting eggs between 8-d and 5-d insemination intervals in the grandparent stock were significantly reduced. The rates decreased from 1.83% and 2.39 to 0.72% and 0.33%, respectively. Surprisingly, the hatching performances of hens with an 8-d interval were comparable to those hens that had not undergone genetic selection for DF and had a 5-d interval. We further discussed the possibility of extending the insemination interval to 8 d in parent stock for commercial practices. The parental populations exhibited remarkable performance in terms of percentages of embryo survival and healthy chicks from the setting eggs, with rates exceeding 94 and 90%, respectively. Thus, it can be inferred that an extended insemination interval is feasible by genetic selection for DF. These findings will provide valuable insights into the efficacy of genetic selection in enhancing DF and its practical application in commercial breeding programs.


Asunto(s)
Pollos , Óvulo , Animales , Femenino , Pollos/genética , Fertilidad/genética , Estado de Salud , Cigoto
9.
J Dairy Sci ; 107(4): 2194-2206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37923210

RESUMEN

The ability of a dairy cow to perform reliably over time is an interesting trait to include in dairy cattle breeding programs aimed at improving dairy cow resilience. Consistency, defined as the quality of performing as expected each day of the lactation, could be highly associated with resilience, defined as animal's ability to maintain health and performance in the presence of environmental challenges, including pathogens, heat waves, and nutritional changes. A total of 51,415,022 daily milk weights collected from 2018 to 2023 were provided for 255,191 multiparous Holstein cows milked 3 times daily in conventional parlor systems on farms in 32 states. The temporal variance (TEMPVAR) of milk yield from 5 to 305 d postpartum was computed as the log-transformed variance of daily deviations between observed and expected individual milk weights. Lower values of TEMPVAR imply smaller day-to-day deviations from expectations, indicating consistent performance, whereas larger values indicate inconsistent performance. Expected daily milk weights were computed using 3 nonparametric and parametric regression models: (1) loceally estimated scatterplot smoothing regression with a 0.75 span; (2) polynomial quantile regression using the median (0.5 quantile), and (3) polynomial quantile regression using a 0.7 quantile. The univariate statistical model included age at first calving and herd-year-season as fixed effects and cow as a random effect. Heritability estimates (standard errors) of TEMPVAR phenotypes calculated over the entire lactation ranged between 0.227 (0.011) and 0.237 (0.011), demonstrating that cows are genetically predisposed to display consistent or inconsistent performance. Estimated genetic correlations calculated using a multiple-trait model between TEMPVAR traits and between lactations were high (>0.95), indicating TEMPVAR is repeatable across lactations and robust to the model used to compute expected daily milk yield. Higher TEMPVAR phenotypes reflect more variation in performance, hence greater inconsistency, which is undesirable. Therefore, correlations between predicted transmitting abilities (PTA) for TEMPVAR and milk yield of 0.57 indicate that high-producing cows exhibit more day-to-day variation in performance. Correlations with productive life and livability were -0.38 and -0.48, respectively. Correlations between PTA for TEMPVAR and those of postpartum health traits were also negative, ranging from -0.41 to -0.08. Given that health traits are derived from disease resistance measurements, and higher health trait PTA are preferred, our results indicate that more consistent cows tend to have fewer health problems and greater longevity. Overall, our findings suggest that temporal variation in daily milk weights can be used to identify consistent animals that maintain expected performance throughout the lactation, which will enable selection for greater resilience to management and environmental perturbations.


Asunto(s)
Enfermedades de los Bovinos , Leche , Embarazo , Femenino , Bovinos/genética , Animales , Lactancia/genética , Periodo Posparto , Enfermedades de los Bovinos/genética , Paridad
10.
Anim Genet ; 55(1): 47-54, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37946616

RESUMEN

Genetic selection for milk production traits in US Holsteins has affected numerous genes associated with reproduction and immunity. This study compares the transcriptomic response of peripheral blood mononuclear cells to an in vitro Brucella abortus strain RB51 (RB51) bacterial challenge between contemporary Holsteins and Holsteins that have not been selected for milk production traits since the mid-1960s. Total RNA was extracted from peripheral blood mononuclear cells from four contemporary and four unselected lactating, primiparous cows following 24-h incubation with or without stimulation with RB51 bacteria. RNA was sequenced and reads analyzed using tools from galaxy.scinet.usda.gov. A total of 412 differentially expressed genes (false discovery rate p < 0.05, log fold change > |1|) were identified. The upregulated genes (genes with higher expression in contemporary than unselected cattle) were enriched for 19 terms/pathways, including alanine, aspartate, and glutamate metabolism, indicating a cellular stress response. Downregulated genes (genes with higher expression in unselected than contemporary cows) were enriched for 37 terms/pathways, representing diverse immune responses, including natural killer cell-mediated immunity, interferon-γ production, negative regulation of interleukin-10 production, and cytokine receptor activity indicating a broad immune response with an emphasis on immune defense. These results provide evidence that differences exist between the two genotypes in response to in vitro bacterial challenge. This suggests that contemporary cows, genetically selected for milk production, may have reduced immune function, including limitations in response to intracellular bacteria.


Asunto(s)
Brucella abortus , Leucocitos Mononucleares , Femenino , Bovinos/genética , Animales , Brucella abortus/genética , Lactancia , Genotipo , ARN , Inmunidad
11.
J Anim Breed Genet ; 141(3): 304-316, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38108572

RESUMEN

The Katahdin hair breed gained popularity in the United States as low input and prolific, with a propensity to exhibit parasite resistance. With the introduction of genomically enhanced estimated breeding values (GEBV) to the Katahdin genetic evaluation, defining the diversity present in the breed is pertinent. Utilizing pedigree records (n = 92,030) from 1984 to 2019 from the National Sheep Improvement Program, our objectives were to (i) estimate the completeness and quality of the pedigree, (ii) calculate diversity statistics for the whole pedigree and relevant reference subpopulations and (iii) assess the impact of current diversity on genomic selection. Reference 1 was Katahdins born from 2017 to 2019 (n = 23,494), while reference 2 was a subset with at least three generations of Katahdin ancestry (n = 9327). The completeness of the whole pedigree, and the pedigrees of reference 1 and reference 2, were above 50% through the fourth, fifth and seventh generation of ancestors, respectively. Effective population size (Ne) averaged 111 animals with a range from 42.2 to 451.0. The average generation interval was 2.9 years for the whole pedigree and reference 1, and 2.8 years for reference 2. The mean individual inbreeding and average relatedness coefficients were 1.62% and 0.91%, 1.74% and 0.90% and 2.94% and 1.46% for the whole pedigree, reference 1, and reference 2, respectively. There were over 300 effective founders in the whole pedigree and reference 1, with 169 in reference 2. Effective number of ancestors were over 150 for the whole pedigree and reference 1, while there were 67 for reference 2. Prediction accuracies increased as the reference population grew from 1k to 7.5k and plateaued at 15k animals. Given the large number of founders and ancestors contributing to the base genetic variation in the breed, the Ne is sufficient to maintain diversity while achieving progress with selection. Stable low rates of inbreeding and relatedness suggest that incorporating genetic conservation in breeding decisions is currently not of high priority. Current Ne suggests that with limited genotyping, high levels of accuracy for genomic prediction can be achieved. However, intense selection on GEBV may cause loss of genetic diversity long term.


Asunto(s)
Variación Genética , Endogamia , Ovinos/genética , Animales , Linaje , Densidad de Población , Selección Genética
12.
Front Genet ; 14: 1318679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075675

RESUMEN

Introduction: Body measurement traits are integral in cattle production, serving as pivotal criteria for breeding selection. Wenshan cattle, a local breed in China's Yunnan province, exhibit remarkable genetic diversity. However, the molecular mechanisms regulating body measurement traits in Wenshan cattle remain unexplored. Methods: In this study, we performed a genome-wide association method to identify genetic architecture for body height body length hip height back height (BAH), waist height and ischial tuberosity height using the Bovine 50 K single nucleotide polymorphism Array in 1060 Wenshan cattles. Results: This analysis reveals 8 significant SNPs identified through the mixed linear model (MLM), with 6 SNPs are associated with multiple traits and 4 SNPs are associated with all 6 traits. Furthermore, we pinpoint 21 candidate genes located in proximity to or within these significant SNPs. Among them, Scarb1, acetoacetyl-CoA synthetase and HIVEP3 were implicated in bone formation and rarely encountered in livestock body measurement traits, emerge as potential candidate genes regulating body measurement traits in Wenshan cattle. Discussion: This investigation provides valuable insights into the genetic mechanisms underpinning body measurement traits in this unique cattle breed, paving the way for further research in this domain.

13.
Animals (Basel) ; 13(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38066975

RESUMEN

A total of 338 weaned rabbits (from the R line, selected for post-weaning growth rate) were used to evaluate the response to 18 generations of selection for increased growth rate on rabbit performance. Animals were obtained from two vitrified populations of the R line: R19V, belonging to the 18th generation (n = 165), and R37V, belonging to the 36th generation (n = 173), were allocated in individual and collective pens (178 and 160, respectively). A fattening trial was conducted from weaning (28 d of age until 63 d of age). During the trial, the body weight (BW), daily feed intake (DFI), average daily gain (ADG) and feed conversion ratio (FCR) were weekly monitored. Additionally, mortality and morbidity were daily registered. On days 49 to 53, an apparent faecal digestibility trial was also performed (12 animals per generation). Our results indicate that the generation of selection for growth rate did not affect mortality and morbidity. There were no differences in the diet digestibility according to the generation of selection. Regarding performance traits, R37V animals showed higher global BW (+6.7%; p = 0.0011) than R19V animals. R37V animals showed the same BW at weaning; however, R37V animals showed higher BW values in the last three weeks compared with R19V animals. Animals from the R37V generation also showed a higher DFI from 56 to 63 d of age (+12%; p = 0.0152) than R19V animals. However, there were no differences in global ADG and FCR between generations. These results indicate that the selection for growth rate in growing rabbits has slowed down, suggesting a lack of effectiveness in the genetic progress.

14.
Cell Rep Methods ; 3(11): 100637, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37949066

RESUMEN

Peptide-domain interactions mediated by short linear motifs (SLiMs) play crucial roles in cellular biology. The simplicity of SLiMs poses challenges in their computational identification. Existing high-throughput methods for discovering SLiMs lack cellular context as they are typically performed in vitro. We developed a functional selection method using yeast to identify peptides that interact with the endogenous yeast nuclear proteome. Remarkably, peptides selected for in yeast also mediated nuclear import in human cells. Notably, the identified peptides did not resemble classical nuclear localization sequences. This platform has the potential to identify and investigate motifs that interact with the nuclear proteome of yeast and human and to aid in the identification and understanding of alternative protein nuclear import mechanisms.


Asunto(s)
Proteoma , Saccharomyces cerevisiae , Humanos , Proteoma/genética , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos , Péptidos/química
15.
Trop Anim Health Prod ; 55(6): 363, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857943

RESUMEN

The domestication of animals has rendered horns less necessary for survival. Moreover, the use of polled and disbudded animals is interesting in order to avoid injuries of animals and handlers, among other advantages. We therefore conducted a comparative economic analysis of different traditional disbudding techniques versus selective breeding for polledness in Nelore cattle, the main beef breed of tropical systems in Brazil. The cost to obtain animals without horns was estimated in three different scenarios: disbudding with hot iron, disbudding with caustic paste, and phenotypic selection for polled animals. Price quotations of the materials were obtained in different states of the country and averaged. An initial frequency of horned animals of 92.16% was obtained based on the records of the Brazilian Association of Zebu Breeders. Selective breeding was found to be the best cost-effective scenario. This result differs from intensive production systems of dairy cattle in which traditional disbudding continues to be the best cost-effective scenario. The main explanation is the lack of difference in the price of Nelore semen from polled and horned bulls. Phenotypic selection for polled animals is the best cost-effective method, and it is in accordance with welfare practices. Care should be taken regarding the intensive use of few polled breeding animals in order to avoid inbreeding depression in other traits.


Asunto(s)
Cuernos , Bovinos , Animales , Masculino , Selección Artificial , Fenotipo , Semen , Industria Lechera/métodos
16.
Diagnostics (Basel) ; 13(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37685354

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder marked by motor and non-motor symptoms that have a severe impact on the quality of life of the affected individuals. This study explores the effect of filter feature selection, followed by ensemble learning methods and genetic selection, on the detection of PD patients from attributes extracted from voice clips from both PD patients and healthy patients. Two distinct datasets were employed in this study. Filter feature selection was carried out by eliminating quasi-constant features. Several classification models were then tested on the filtered data. Decision tree, random forest, and XGBoost classifiers produced remarkable results, especially on Dataset 1, where 100% accuracy was achieved by decision tree and random forest. Ensemble learning methods (voting, stacking, and bagging) were then applied to the best-performing models to see whether the results could be enhanced further. Additionally, genetic selection was applied to the filtered data and evaluated using several classification models for their accuracy and precision. It was found that in most cases, the predictions for PD patients showed more precision than those for healthy individuals. The overall performance was also better on Dataset 1 than on Dataset 2, which had a greater number of features.

17.
Animal ; 17(10): 100969, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37742501

RESUMEN

Fast, accurate, and reliable estimates of backfat depth, loin depth, and intramuscular fat percentage in swine breeding stock are used to increase genetic improvement and farm profitability. The objective of this study was to develop an equation-based model for the estimation of swine backfat depth, loin depth, and intramuscular fat percentage estimates obtained from longitudinal ultrasound images. Images were collected from purebred Duroc (n = 230), purebred Large White (n = 154), and commercial (n = 190) pigs born in January 2021 at three farms located in North Carolina. An Exapad ultrasound machine captured longitudinal images across the 10th to 13th ribs at 182 (±12.8 SD) days of pig age. The total number of images processed for Duroc, Large White, and commercial pigs was 1 385, 928, and 1 168 images, respectively. To establish a standard measurement for model comparison, trained personnel following standard company procedures using the BioSoft Toolbox (v4.0.1.2; Biotronics Inc., Ames, IA) obtained backfat and loin depth measurements from the images. Longissimus muscle intramuscular fat percentage was predicted using near-infrared spectroscopy at approximately 22 h postmortem. Backfat and loin depth estimation were conducted only for commercial pigs (n = 190) while intramuscular fat estimation was conducted on all pigs (n = 574). Average backfat depth, loin depth, and intramuscular fat percentage were 14.6 (±2.6 SD) mm, 63.7 (±5.5 SD) mm, and 2.21 (±0.82 SD) %. Image analysis and estimation model development were conducted in MATLAB R2021a. Edge detection via the image gradient was applied to segment ultrasound images into backfat, loin, and rib regions. Segmented images were used to estimate backfat depth, loin depth, and loin intramuscular fat percentage. After image quality control and filtering, the image inclusion rate for each breed-trait combination ranged from 76 to 97%. All Duroc and commercial pigs and 97% of Large White pigs were represented by at least one image for trait estimation. Coefficient of determination of models for the estimation of backfat depth, loin depth, and intramuscular fat percentage were 0.58, 0.57, and 0.56, respectively. Root mean square error of backfat depth, loin depth, and intramuscular fat estimation were 1.65 mm, 3.58 mm, and 0.54%, respectively. Results demonstrate the feasibility of using ultrasound image gradient and an equation-based approach to estimate swine backfat and loin depth, and intramuscular fat percentage. This equation-based approach to estimate carcass traits in live swine can enhance genetic improvement.

18.
Anim Reprod ; 20(2): e20230066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638256

RESUMEN

Sustainability - the new hype of the 21st century has brought discomfort for the government and society. Sustainable agriculture is essential to face our most concerning challenges: climate change, food security, and the environmental footprint, all of which add to consumers' opinions and choices. Improvements in reproductive indexes can enhance animal production and efficiency, guaranteeing profit and sustainability. Estrus detection, artificial insemination (AI), embryo transfer (ET), estrus synchronization (ES), and multiple ovulations are some strategies used to improve animal reproduction. This review highlights how reproductive strategies and genetic selection can contribute to sustainable ruminant production. Improved reproductive indices can reduce the number of nonproductive cows in the herd, reducing methane emissions and land use for production while preserving natural resources.

19.
Front Plant Sci ; 14: 1218665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546253

RESUMEN

Since the introduction of genomic selection in plant breeding, high genetic gains have been realized in different plant breeding programs. Various methods based on genomic estimated breeding values (GEBVs) for selecting parental lines that maximize the genetic gain as well as methods for improving the predictive performance of genomic selection have been proposed. Unfortunately, it remains difficult to measure to what extent these methods really maximize long-term genetic values. In this study, we propose oracle selection, a hypothetical frame of mind that uses the ground truth to optimally select parents or optimize the training population in order to maximize the genetic gain in each breeding cycle. Clearly, oracle selection cannot be applied in a true breeding program, but allows for the assessment of existing parental selection and training population update methods and the evaluation of how far these methods are from the optimal utopian solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA