RESUMEN
BACKGROUND: The Japanese cedar (Cryptomeria japonica D. Don) is one of the most important Japanese forest trees, occupying approximately 44% of artificial forests and planted in East Asia, the Azores Archipelago, and certain islands in the Indian Ocean. Although the huge genome of the species (ca. 9 Gbp) with abundant repeat elements may have represented an obstacle for genetic analysis, this species is easily propagated by cutting, flowered by gibberellic acid, transformed by Agrobacterium, and edited by CRISPR/Cas9. These characteristics of C. japonica recommend it as a model conifer species for which reference genome sequences are necessary. RESULTS: Herein, we report the first chromosome-level assembly of C. japonica (2n = 22) using third-generation selfed progeny (estimated homozygosity rate = 0.96). Young leaf tissue was used to extract high molecular weight DNA (> 50 kb) for HiFi PacBio long-read sequencing and to construct an Hi-C/Omni-C library for Illumina short-read sequencing. The 29× and 26× genome coverage of HiFi and Illumina reads, respectively, for de novo assembly yielded 2,651 contigs (9.1 Gbp, N50 contig size 12.0 Mbp). Hi-C analysis mapped 97% of the nucleotides on 11 chromosomes. The assembly was verified through comparison with a consensus linkage map comprising 7,781 markers. BUSCO analysis identified â¼ 91% conserved genes. CONCLUSIONS: Annotations of genes and comparisons of repeat elements with other Cupressaceae and Pinaceae species provide a fundamental resource for conifer research.
Asunto(s)
Cromosomas de las Plantas , Cryptomeria , Genoma de Planta , Cryptomeria/genética , Cromosomas de las Plantas/genética , Anotación de Secuencia Molecular , Genómica/métodosRESUMEN
Apocynum pictum Schrenk is a semishrub of the Apocynaceae family with a wide distribution throughout the Tarim Basin that holds significant ecological, medicinal, and economic values. Here, we report the assembly of its chromosome-level reference genome using Nanopore long-read, Illumina HiSeq paired-end, and high-throughput chromosome conformation capture sequencing. The final assembly is 225.32â Mb in length with a scaffold N50 of 19.64â Mb. It contains 23,147 protein-coding genes across 11 chromosomes, 21,148 of which (91.36%) have protein functional annotations. Comparative genomics analysis revealed that A. pictum diverged from the closely related species Apocynum venetum approximately 2.2 million years ago and has not undergone additional polyploidizations after the core eudicot WGT-γ event. Karyotype evolution analysis was used to characterize interchromosomal rearrangements in representative Apocynaceae species and revealed that several A. pictum chromosomes were derived entirely from single chromosomes of the ancestral eudicot karyotype. Finally, we identified 50 members of the well-known stress-responsive WRKY transcription factor family and used transcriptomic data to document changes in their expression at 2 stages of drought stress, identifying a number of promising candidate genes. Overall, this study provides high-quality genomic resources for evolutionary and comparative genomics of the Apocynaceae, as well as initial molecular insights into the drought adaptation of this valuable desert plant.
RESUMEN
Phalaenopsis deliciosa (Rchb. f.), an ornamental orchid known for vibrant flowers, has a 148,090 bp chloroplast genome with 36.78% GC content. It includes an 85,241 bp large single-copy (LSC) region, an 11,649 bp small single-copy (SSC) region, and two 13,800 bp inverted repeats (IRs), encoding 122 genes (76 protein-coding, 38 tRNA, and 8 rRNA). This genome data refines the Phalaenopsis gene database and supports research on phylogeny and molecular breeding.
RESUMEN
The future sustainability of viticulture depends on the development of grapevine cultivars with genetic resistance to diseases such as powdery mildew, downy mildew, and Pierce's disease. Recent advances in grape and pathogen genomics have dramatically improved our approach to durable disease resistance. The availability of diploid genome references for wild species, combined with the ability to phase resistance haplotypes and conduct genome-wide association and expression analyses, has greatly enhanced our ability to dissect genetic resistance loci. This progress is yielding candidate genes that will form the foundation for precise breeding, gene stacking, and genome editing in grape improvement programs. As resistance genes are deployed in vineyards, pathogen populations evolve to adapt and evade these defenses, posing ongoing challenges. Understanding the adaptive mechanisms of grapevine pathogens in response to resistant cultivars is crucial. Grape pathogenomics is advancing rapidly, marked by the sequencing of many pathogen genomes, the discovery of effectors, including the first ones responsible for disease resistance breakdown, and the development of graph-based pangenomes. These advancements offer valuable insights into pathogen evolution and inform strategies for sustainable disease management. Together, these genomic tools and insights are paving the way for developing resilient grapevine varieties, ensuring the long-term sustainability of viticulture.
RESUMEN
Myrtaceae are a large family of woody plants, including hundreds that are currently under threat from the global spread of a fungal pathogen, Austropuccinia psidii (G.Winter) Beenken, which causes myrtle rust. A reference genome for the Australian native rainforest tree Rhodamnia argentea Benth. (malletwood) was assembled from Oxford Nanopore Technologies (ONT) long-reads, 10x Genomics Chromium linked-reads, and Hi-C data (N50 = 32.3 Mbp and BUSCO completeness 98.0%) with 99.0% of the 347 Mbp assembly anchored to 11 chromosomes (2n = 22). The R. argentea genome will inform conservation efforts for Myrtaceae species threatened by myrtle rust, against which it shows variable resistance. We observed contamination in the sequencing data and further investigation revealed an arthropod source. This study emphasises the importance of checking sequencing data for contamination, especially when working with non-model organisms. It also enhances our understanding of a tree that faces conservation challenges, contributing to broader biodiversity initiatives.
RESUMEN
The Yarlung Tsangpo River on the Tibetan Plateau provides a unique natural environment for studying fish evolution and ecology. However, the genomes and genetic diversity of plateau fish species have been rarely reported. Schizopygopsis younghusbandi, a highly specialized Schizothoracine species and economically important fish inhabiting the Yarlung Tsangpo River, is threatened by overfishing and biological invasion. Herein, we generated a chromosome-level genome of S. younghusbandi and whole-genome resequencing data for 59 individuals from six locations of the river. The results showed that the divergence time between S. younghusbandi and other primitive Schizothoracine species was â¼4.2 Mya, coinciding with the major phase of the Neogene Tibetan uplift. The expanded gene families enriched in DNA integration and replication, ion binding and transport, energy storage, and metabolism likely contribute to the adaption of this species. The S. younghusbandi may have diverged from other highly specialized Schizothoracine species in the Zanda basin during the Pliocene epoch, which underwent major population reduction possibly due to the drastic climate change during the last glacial period. Population analysis indicated that the ancient population might have originated upstream before gradually adapting to evolve into the populations inhabiting the mid-stream and downstream regions of the Yarlung Tsangpo River. In conclusion, the chromosome-level genome and population diversity of S. younghusbandi provide valuable genetic resources for the evolution, ecology, and conservation studies of endemic fishes on the Tibetan Plateau.
RESUMEN
Originating 30 million years ago, shrews (Soricidae) have diversified into around 400 species worldwide. Shrews display a wide array-array of adaptations, with some species having developed distinctive traits such as echolocation, underwater diving, and venomous saliva. Accordingly, these tiny insectivores are ideal to study the genomic mechanisms of evolution and adaptation. We conducted a comparative genomic analysis of four shrew species and 16 other mammals to identify genomic variations unique to shrews. Using two existing shrew genomes and two de novo assemblies for the maritime (Sorex maritimensis) and smoky (S. fumeus) shrews, we identified mutations in conserved regions of the genomes, also known as accelerated regions, gene families that underwent significant expansion, and positively selected genes. Our analyses unveiled shrew-specific genomic variants in genes associated with the nervous, metabolic, and auditory systems, which can be linked to unique traits in shrews. Notably, genes suggested to be under convergent evolution in echolocating mammals exhibited accelerated regions in shrews, and pathways linked to putative body size plasticity were detected. These findings provide insight into the evolutionary mechanisms shaping shrew species, shedding light on their adaptation and divergence over time.
RESUMEN
Brown spot disease of rice caused by Bipolaris oryzae results in severe yield losses. A high-quality genome was assembled using Nanopore sequencing data, resulting in a 36-Mb nuclear genome with 19 contigs and a mitogenome. This assembly provides valuable genetic resources for investigations of rice-B. oryzae interactions.
RESUMEN
The Mexican fruit fly, Anastrepha ludens, is a polyphagous true fruit fly (Diptera: Tephritidae) considered one of the most serious insect pests in Central and North America to various economically relevant fruits. Despite its agricultural relevance, a high-quality genome assembly has not been reported. Here, we described the generation of a chromosome-level genome for the A. ludens using a combination of PacBio high fidelity long-reads and chromatin conformation capture sequencing data. The final assembly consisted of 140 scaffolds (821 Mb, N50 = 131 Mb), containing 99.27% complete conserved orthologs (BUSCO) for Diptera. We identified the sex chromosomes using three strategies: 1) visual inspection of Hi-C contact map and coverage analysis using the HiFi reads, 2) synteny with Drosophila melanogaster, and 3) the difference in the average read depth of autosomal versus sex chromosomal scaffolds. The X chromosome was found in one major scaffold (100 Mb) and eight smaller contigs (1.8 Mb), and the Y chromosome was recovered in one large scaffold (6.1 Mb) and 35 smaller contigs (4.3 Mb). Sex chromosomes and autosomes showed considerable differences of transposable elements and gene content. Moreover, evolutionary rates of orthologs of A. ludens and Anastrepha obliqua revealed a faster evolution of X-linked, compared to autosome-linked, genes, consistent with the faster-X effect, leading us to new insights on the evolution of sex chromosomes in this diverse group of flies. This genome assembly provides a valuable resource for future evolutionary, genetic, and genomic translational research supporting the management of this important agricultural pest.
RESUMEN
To counteract the growing population and climate changes, resilient varieties adapted to regional environmental changes are required. Landraces are valuable genetic resources for achieving this goal. Recent advances in sequencing technology have enabled national seed/gene banks to share genomic and genetic information from their collections including landraces, promoting the more efficient utilization of germplasms. In this study, we developed genomic and genetic resources for Myanmar rice germplasms. First, we assembled a diversity panel consisting of 250 accessions representing the genetic diversity of Myanmar indica varieties, including an elite lowland variety, Inn Ma Yebaw (IMY). Our population genetic analyses illustrated that the diversity panel represented Myanmar indica varieties well without any apparent population structure. Second, de novo genome assembly of IMY was conducted. The IMY assembly was constructed by anchoring 2888 contigs, which were assembled from 30× coverage of long reads, into 12 chromosomes. Although many gaps existed in the IMY genome assembly, our quality assessments indicated high completeness in the gene-coding regions, identical to other near-gap-free assemblies. Together with dense variant information, the diversity panel and IMY genome assembly will facilitate deeper genetic research and breeding projects that utilize the untapped Myanmar rice germplasms.
RESUMEN
BACKGROUND: Mesorhabditis is known for its somatic genome being only a small portion of the germline genome due to programmed DNA elimination. This phenotype may be associated with the maintenance of telomeres at the ends of fragmented somatic chromosomes. OBJECTIVE: To comprehensively investigate the telomeric regions of Mesorhabditis nematodes at the sequence level, we endeavored to collect a Mesorhabditis nematode in the Republic of Korea and acquire its highly contiguous genome sequences. METHODS: We isolated a Mesorhabditis nematode and assembled its 108-Mb draft genome using both 6.3 Gb (53 ×) of short-read and 3.0 Gb (25 × , N50 = 5.7 kb) of nanopore-based long-read sequencing data. Our genome assembly exhibits comparable quality to the public genome of Mesorhabditis belari in terms of contiguity and evolutionary conserved genes. RESULTS: Unexpectedly, our Mesorhabditis genome has many more interstitial telomeric sequences (ITSs), specifically subtelomeric ones, compared to the genomes of Caenorhabditis elegans and M. belari. Moreover, several subtelomeric sequences containing ITSs had 4-26 homologous sequences, implying they are highly repetitive. Based on this highly repetitive nature, we hypothesize that subtelomeric ITSs might have accumulated through the action of transposable elements containing ITSs. CONCLUSIONS: It still remains elusive whether these ITS-containing units are associated with programmed DNA elimination, but they may facilitate new telomere formation after DNA elimination. Our genomic resources for Mesorhabditis can aid in understanding how its distinct phenotypes have evolved.
RESUMEN
This study explores the role of the vaginal microbiota (VM) in the pathophysiology of asymptomatic bacteriuria (ASB) in a cohort of 1,553 pregnant women. Worldwide, E. coli remains the most common etiological agent of bacteriuria during pregnancy and also a major causative agent of newborn infections. A healthy VM is typically characterized by low diversity and is dominated by lactic acid-producing species, notably those from the Lactobacillus genus. Our results point to decreases in Lactobacillus spp associated with an increase of gut-microbiota-associated species from the Enterobacterales order. Escherichia coli exhibited the most pronounced increase in abundance within the VM during bacteriuria and was notably associated with ASB. Molecular typing and antimicrobial resistance characterization of 72 metagenome assembled E. coli genomes (MAGs) from these pregnant women revealed a genomic signature of extraintestinal pathogenic E. coli ("ExPEC") strains, which are involved in various extraintestinal infections such as urinary tract infections, newborn infections and bacteremia. Microbial diversity within the vaginal samples from which an E. coli MAG was obtained showed a substantial variation, primarily marked by a decrease in abundance of Lactobacillus species. Overall, our study shows how disruption in key bacterial group within the VM can disrupt its stability, potentially leading to the colonization by opportunistic pathogens.
Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Microbiota , Vagina , Femenino , Humanos , Vagina/microbiología , Embarazo , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Adulto , Bacteriuria/microbiología , Complicaciones Infecciosas del Embarazo/microbiología , Lactobacillus/genética , Lactobacillus/aislamiento & purificaciónRESUMEN
Vesicular stomatitis virus (VSV) is a prototype RNA virus that has been instrumental in advancing our understanding of viral molecular biology and has applications in vaccine development, cancer therapy, antiviral screening, and more. Current VSV genome plasmids for purchase or contract virus services provide limited options for modification, restricted to predefined cloning sites and insert locations. Improved methods and tools to engineer VSV will unlock further insights into long-standing virology questions and new opportunities for innovative therapies. Here, we report the design and construction of a full-length VSV genome. The 11,161 base pair synthetic VSV (synVSV) was assembled from four modularized DNA fragments. Following rescue and titration, phenotypic analysis showed no significant differences between natural and synthetic viruses. To demonstrate the utility of a synthetic virology platform, we then engineered VSV with a foreign glycoprotein, a common use case for studying viral entry and developing anti-virals. To show the freedom of design afforded by this platform, we then modified the genome of VSV by rearranging the gene order, switching the positions of VSV-P and VSV-M genes. This work represents a significant technical advance, providing a flexible, cost-efficient platform for the rapid construction of VSV genomes, facilitating the development of innovative therapies.
Asunto(s)
Ingeniería Genética , Genoma Viral , Ingeniería Genética/métodos , Animales , Vesiculovirus/genética , Biología Sintética/métodos , Humanos , Virus de la Estomatitis Vesicular Indiana/genética , Estomatitis Vesicular/virología , Línea CelularRESUMEN
Background: Cirsium nipponicum, a pharmaceutically valuable plant from the Asteraceae family, has been utilized for over 2000 years. Unlike other thistles, it is native to East Asia and found exclusively on Ulleung Island on the Korea Peninsula. Despite its significance, the genome information of C. nipponicum has remained unclear. Methods: In this study, we assembled the genome of C. nipponicum using both short reads from Illumina sequencing and long reads from Nanopore sequencing. Results: The assembled genome is 929.4 Mb in size with an N50 length of 0.7 Mb, covering 95.1% of BUSCO core groups listed in edicots_odb10. Repeat sequences accounted for 70.94% of the assembled genome. We curated 31,263 protein-coding genes, of which 28,752 were functionally annotated using public databases. Phylogenetic analysis of 11 plant species using single-copy orthologs revealed that C. nipponicum diverged from Cynara cardunculus approximately 15.9 million years ago. Gene family evolutionary analysis revealed significant expansion and contraction in genes involved in abscisic acid biosynthesis, late endosome to vacuole transport, response to nitrate, and abaxial cell fate specification. Conclusions: This study provides a reference genome of C. nipponicum, enhancing our understanding of its genetic background and facilitating an exploration of genetic resources for beneficial phytochemicals.
Asunto(s)
Cirsium , Genoma de Planta , Filogenia , Cirsium/genética , Evolución Molecular , Anotación de Secuencia MolecularRESUMEN
Museum collections harbor millions of samples, largely unutilized for long-read sequencing. Here, we use ethanol-preserved samples containing kilobase-sized DNA to show that amplification-free protocols can yield contiguous genome assemblies. Additionally, using a modified amplification-based protocol, employing an alternative polymerase to overcome PCR bias, we assembled the 3.1 Gb maned sloth genome, surpassing the previous 500 Mb protocol size limit. Our protocol also improves assemblies of other difficult-to-sequence molluscs and arthropods, including millimeter-sized organisms. By highlighting collections as valuable sample resources and facilitating genome assembly of tiny and challenging organisms, our study advances efforts to obtain reference genomes of all eukaryotes.
RESUMEN
OBJECTIVE: Paracidovorax avenae (Pa) is the causative agent of red stripe disease in sugarcane and belongs to the Gram-negative ß-Proteobacteria. Red stripe is a major bacterial disease of sugarcane worldwide. Limited genome sequences of Pa can be used for exploring the phylogenetic and genetic diversity analysis in this pathogen at the complete genome level. In this study, a whole genome sequence of Pa CNGX08 strain isolated from sugarcane in China was assembled and annotated. DATA DESCRIPTION: Genome assembly data from second- and third-generation sequencing revealed that the entire genomic sequence of Pa CNGX08 strain causing red stripe in sugarcane, consisted of a 5,625,582 bp circular chromosome with a GC content of 68.97%. In total, 4,915 protein-coding genes were annotated. Additionally, 9 ribosomal RNAs and 52 transfer RNAs were identified. This genomic resource will facilitate the genome-based taxonomic classification of the genus Paracidovorax and the exploration of pathogenic mechanisms underlying sugarcane red stripe disease caused by Pa.
Asunto(s)
Genoma Bacteriano , Enfermedades de las Plantas , Saccharum , Saccharum/microbiología , Genoma Bacteriano/genética , Enfermedades de las Plantas/microbiología , Filogenia , Secuenciación Completa del GenomaRESUMEN
We report the draft genome assembly of strain 4866-2_S43 isolated from a eucalyptus lesion in Argentina and what until recently was caused by Xanthomonas citri pv. eucalyptorum (Xce). The genome size is 5â188â607 bp, with a G+C content of 64.66%. Comparative analysis reveals that the closest relative of strain 4866-2_S43 is Xce LPF 602, isolated in Brazil. Comparison of the whole genome sequences revealed an average nucleotide identity (ANI) of 99.96% between the two strains. ANIs were determined between the whole genome sequence of strain 4866-2_S43 and the genomes of all currently validated Xanthomonas spp. These results revealed that strain 4866-2_S43 shared >95% similarity with X. citri pv. citri and X. citri pv. phaseoli, and <95% with X. euvesicatoria pv. alfalfae, X. euvesicatoria pv. perforans, and X. euvesicatoria pathovars euvesicatoria and eucalyptii.
RESUMEN
Diamondback terrapins (Malaclemys terrapin centrata) exhibit strong environmental adaptability and live in both freshwater and saltwater. However, the genetic basis of this adaptability has not been the focus of research. In this study, we successfully constructed a â¼2.21-Gb chromosome-level genome assembly for M. t. centrata using high-coverage and high-depth genomic sequencing data generated on multiple platforms. The M. t. centrata genome contains 25 chromosomes and the scaffold N50 of â¼143.75 Mb, demonstrating high continuity and accuracy. In total, 53.82% of the genome assembly was composed of repetitive sequences, and 22 435 protein-coding genes were predicted. Our phylogenetic analysis indicated that M. t. centrata was closely related to the red-eared slider turtle (Trachemys scripta elegans), with divergence approximately â¼23.6 million years ago (Mya) during the early Neogene period of the Cenozoic era. The population size of M. t. centrata decreased significantly over the past â¼14 Mya during the Cenozoic era. Comparative genomic analysis indicated that 36 gene families related to ion transport were expanded and several genes (AQP3, solute carrier subfamily, and potassium channel genes) underwent specific amino acid site mutations in the M. t. centrata genome. Changes to these ion transport-related genes may have contributed to the remarkable salinity adaptability of diamondback terrapin. The results of this study not only provide a high-quality reference genome for M. t. centrata but also elucidate the possible genetic basis for salinity adaptation in this species.
RESUMEN
Timorese crabgrass (Digitaria radicosa) is a grass species commonly found in Southeast Asia and Oceania. Digitaria species have high intraspecific and interspecific genetic and phenotypic diversity, suggesting their potential usefulness as a genetic resource. However, as the only high-quality reference genome available is for a tetraploid Digitaria species, a reference genome of the diploid species D. radicosa would be a useful resource for genomic studies of Digitaria and Poaceae plants. Here, we present a chromosome-level genome assembly of D. radicosa and describe its genetic characteristics; we also illustrate its usefulness as a genomic resource for Poaceae. We constructed a 441.6 Mb draft assembly consisting of 61 contigs with an N50 contig length of 41.5 Mb, using PacBio HiFi long reads. We predicted 26,577 protein-coding genes, reaching a BUSCO score of 96.5%. To demonstrate the usefulness of the D. radicosa reference genome, we investigated the evolution of Digitaria species and the genetic diversity of Japanese Digitaria plants based on our new reference genome. We also defined the syntenic blocks between D. radicosa and 2 Poaceae crops, fonio and rice, and the diverse distribution of representative resistance genes in D. radicosa. The D. radicosa reference genome presented here should help elucidate the genetic relatedness of Digitaria species and the genetic diversity of Digitaria plants. In addition, the D. radicosa genome will be an important genomic resource for Poaceae genomics and crop breeding.
RESUMEN
Magnolia sieboldii K. Koch (M. sieboldii) stands as an elegant tree species within the Magnoliaceae family, esteemed for its exquisite beauty, cultural significance and economic advantages. The species faces challenges in seed germination under natural conditions, primarily attributed to morphological dormancy. Despite its significance, the molecular mechanisms governing M. sieboldii seed germination remain elusive, compounded by the absence of genomic resources specific to this species. In this study, we present the first chromosome-scale genome assembly of M. sieboldii, with a total genome size of 2.01 Gb, including 1096 scaffolds assigned to 19 chromosomes (N50 = 102.4 Mb). Phylogenetic analyses, incorporating 13 plant species, illuminate the evolutionary independence of Magnoliids from monocots and eudicots, positioning them as a sister clade. Through RNA-seq analysis, we identify pivotal genes and pathways contributing to seed dormancy and germination. In addition, our investigation delves into the the far-red-impaired response (FAR1) transcription factor gene family, revealing their enrichment throughout evolution and their involvement in the intricate process of seed germination. This comprehensive genome sequencing initiative offers invaluable insights into the biological attributes of M. sieboldii, with a specific emphasis on unravelling the complexities of seed dormancy and germination.