Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
ACS Synth Biol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238421

RESUMEN

Genome integration enables host organisms to stably carry heterologous DNA messages, introducing new genotypes and phenotypes for expanded applications. While several genome integration approaches have been reported, a scalable tool for DNA message storage within site-specific genome landing pads is still lacking. Here, we introduce an iterative genome integration method utilizing orthogonal serine integrases, enabling the stable storage of multiple heterologous genes in the chromosome of Escherichia coli MG1655. By leveraging serine integrases TP901-1, Bxb1, and PhiC31, along with engineered integration vectors, we demonstrate high-efficiency, marker-free integration of DNA fragments up to 13 kb in length. To further simplify the procedure, we then develop a streamlined integration method and showcase the system's versatility by constructing an engineered E. coli strain capable of storing and expressing multiple genes from diverse species. Additionally, we illustrate the potential utility of these engineered strains for synthetic biology applications, including in vivo and in vitro protein expression. Our work extends the application scope of serine integrases for scalable gene integration cascades, with implications for genome manipulation and gene storage applications in synthetic biology.

2.
Access Microbiol ; 6(7)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130741

RESUMEN

Synthetic biology and genome engineering capabilities have facilitated the utilization of bacteria for a myriad of applications, ranging from medical treatments to biomanufacturing of complex molecules. The bacterial outer membrane, specifically the lipopolysaccharide (LPS), plays an integral role in the physiology, pathogenesis, and serves as a main target of existing detection assays for Gram-negative bacteria. Here we use CRISPR/Cas9 recombineering to insert Yersinia pestis lipid A biosynthesis genes into the genome of an Escherichia coli strain expressing the lipid IVa subunit. We successfully inserted three genes: kdsD, lpxM, and lpxP into the E. coli genome and demonstrated their expression via reverse transcription PCR (RT-PCR). Despite observing expression of these genes, analytical characterization of the engineered strain's lipid A structure via MALDI-TOF mass spectrometry indicated that the Y. pestis lipid A was not recapitulated in the E. coli background. As synthetic biology and genome engineering technologies advance, novel applications and utilities for the detection and treatments of dangerous pathogens like Yersinia pestis will continue to be developed.

3.
Biotechnol Adv ; 76: 108421, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127411

RESUMEN

Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.

4.
mBio ; 15(9): e0139224, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39105596

RESUMEN

Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiont Snodgrassella alvi. We are also able to engineer the genomes of multiple strains of S. alvi and another species, Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont, Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout in S. alvi using this approach is recA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCE: Honey bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.


Asunto(s)
Microbioma Gastrointestinal , Genoma Bacteriano , Simbiosis , Animales , Abejas/microbiología , Simbiosis/genética , Microbioma Gastrointestinal/genética , Ingeniería Genética/métodos , Plásmidos/genética
5.
Bioresour Technol ; 410: 131214, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127361

RESUMEN

Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of ß-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO2 similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO3- uptake and CO2 fixation in C. necator, providing new pathways for CO2-based biomanufacturing.


Asunto(s)
Dióxido de Carbono , Cupriavidus necator , Dióxido de Carbono/metabolismo , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Bicarbonatos/metabolismo , Ciclo del Carbono/fisiología , Anhidrasas Carbónicas/metabolismo , Procesos Autotróficos , Halothiobacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo
6.
Synth Syst Biotechnol ; 9(4): 820-827, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39072146

RESUMEN

In synthetic biology, microbial chassis including yeast Saccharomyces cerevisiae are iteratively engineered with increasing complexity and scale. Wet-lab genetic engineering tools are developed and optimised to facilitate strain construction but are often incompatible with each other due to shared regulatory elements, such as the galactose-inducible (GAL) promoter in S. cerevisiae. Here, we prototyped the cyanamide-induced I- SceI expression, which triggered double-strand DNA breaks (DSBs) for selectable marker removal. We further combined cyanamide-induced I- SceI-mediated DSB and maltose-induced MazF-mediated negative selection for plasmid-free in situ promoter substitution, which simplified the molecular cloning procedure for promoter characterisation. We then characterised three tetracycline-inducible promoters showing differential strength, a non-leaky ß-estradiol-inducible promoter, cyanamide-inducible DDI2 promoter, bidirectional MAL32/MAL31 promoters, and five pairs of bidirectional GAL1/GAL10 promoters. Overall, alternative regulatory controls for genome engineering tools can be developed to facilitate genomic engineering for synthetic biology and metabolic engineering applications.

7.
Plants (Basel) ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065411

RESUMEN

Genetic engineering has become an essential element in developing climate-resilient crops and environmentally sustainable solutions to respond to the increasing need for global food security. Genome editing using CRISPR/Cas [Clustered regulatory interspaced short palindromic repeat (CRISPR)-associated protein (Cas)] technology is being applied to a variety of organisms, including plants. This technique has become popular because of its high specificity, effectiveness, and low production cost. Therefore, this technology has the potential to revolutionize agriculture and contribute to global food security. Over the past few years, increasing efforts have been seen in its application in developing higher-yielding, nutrition-rich, disease-resistant, and stress-tolerant "crops", fruits, and vegetables. Cas proteins such as Cas9, Cas12, Cas13, and Cas14, among others, have distinct architectures and have been used to create new genetic tools that improve features that are important for agriculture. The versatility of Cas has accelerated genomic analysis and facilitated the use of CRISPR/Cas to manipulate and alter nucleic acid sequences in cells of different organisms. This review provides the evolution of CRISPR technology exploring its mechanisms and contrasting it with traditional breeding and transgenic approaches to improve different aspects of stress tolerance. We have also discussed the CRISPR/Cas system and explored three Cas proteins that are currently known to exist: Cas12, Cas13, and Cas14 and their potential to generate foreign-DNA-free or non-transgenic crops that could be easily regulated for commercialization in most countries.

8.
Genes (Basel) ; 15(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062741

RESUMEN

The identification of accurate gene insertion sites on chicken sex chromosomes is crucial for advancing sex control breeding materials. In this study, the intergenic region NC_006127.4 on the chicken Z chromosome and the non-repetitive sequence EE0.6 on the W chromosome were selected as potential gene insertion sites. Gene knockout vectors targeting these sites were constructed and transfected into DF-1 cells. T7E1 enzyme cleavage and luciferase reporter enzyme analyses revealed knockout efficiencies of 80.00% (16/20), 75.00% (15/20), and 75.00% (15/20) for the three sgRNAs targeting the EE0.6 site. For the three sgRNAs targeting the NC_006127.4 site, knockout efficiencies were 70.00% (14/20), 60.00% (12/20), and 45.00% (9/20). Gel electrophoresis and high-throughput sequencing were performed to detect potential off-target effects, showing no significant off-target effects for the knockout vectors at the two sites. EdU and CCK-8 proliferation assays revealed no significant difference in cell proliferation activity between the knockout and control groups. These results demonstrate that the EE0.6 and NC_006127.4 sites can serve as gene insertion sites on chicken sex chromosomes for gene editing without affecting normal cell proliferation.


Asunto(s)
Pollos , Edición Génica , Cromosomas Sexuales , Animales , Pollos/genética , Edición Génica/métodos , Cromosomas Sexuales/genética , Mutagénesis Insercional , Sistemas CRISPR-Cas , Línea Celular , Técnicas de Inactivación de Genes/métodos , Femenino , Masculino
9.
BMC Plant Biol ; 24(1): 665, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997669

RESUMEN

Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.


Asunto(s)
Arabidopsis , Marcación de Gen , Arabidopsis/genética , Marcación de Gen/métodos , Transformación Genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Plantas Modificadas Genéticamente/genética
10.
Curr Opin Chem Biol ; 81: 102493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971129

RESUMEN

Growing environmental concerns and the urgency to address climate change have increased demand for the development of sustainable alternatives to fossil-derived fuels and chemicals. Microbial systems, possessing inherent biosynthetic capabilities, present a promising approach for achieving this goal. This review discusses the coupling of systems and synthetic biology to enable the elucidation and manipulation of microbial phenotypes for the production of chemicals that can substitute for petroleum-derived counterparts and contribute to advancing green biotechnology. The integration of artificial intelligence with metabolic engineering to facilitate precise and data-driven design of biosynthetic pathways is also discussed, along with the identification of current limitations and proposition of strategies for optimizing biosystems, thereby propelling the field of chemical biology towards sustainable chemical production.


Asunto(s)
Ingeniería Metabólica , Biología Sintética , Ingeniería Metabólica/métodos , Biología Sintética/métodos , Bacterias/metabolismo , Bacterias/genética , Vías Biosintéticas , Inteligencia Artificial , Biotecnología/métodos
11.
aBIOTECH ; 5(2): 247-261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974861

RESUMEN

Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.

12.
Biotechnol Bioeng ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956879

RESUMEN

Acetogenic Clostridia are obligate anaerobes that have emerged as promising microbes for the renewable production of biochemicals owing to their ability to efficiently metabolize sustainable single-carbon feedstocks. Additionally, Clostridia are increasingly recognized for their biosynthetic potential, with recent discoveries of diverse secondary metabolites ranging from antibiotics to pigments to modulators of the human gut microbiota. Lack of efficient methods for genomic integration and expression of large heterologous DNA constructs remains a major challenge in studying biosynthesis in Clostridia and using them for metabolic engineering applications. To overcome this problem, we harnessed chassis-independent recombinase-assisted genome engineering (CRAGE) to develop a workflow for facile integration of large gene clusters (>10 kb) into the human gut acetogen Eubacterium limosum. We then integrated a non-ribosomal peptide synthetase gene cluster from the gut anaerobe Clostridium leptum, which previously produced no detectable product in traditional heterologous hosts. Chromosomal expression in E. limosum without further optimization led to production of phevalin at 2.4 mg/L. These results further expand the molecular toolkit for a highly tractable member of the Clostridia, paving the way for sophisticated pathway engineering efforts, and highlighting the potential of E. limosum as a Clostridial chassis for exploration of anaerobic natural product biosynthesis.

13.
Methods Mol Biol ; 2819: 157-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028507

RESUMEN

The development of novel DNA assembly methods in recent years has paved the way for the construction of synthetic replicons to be used for basic research and biotechnological applications. A learning-by-building approach can now answer questions about how chromosomes must be constructed to maintain genetic information. Here we describe an efficient pipeline for the design and assembly of synthetic, secondary chromosomes in Escherichia coli based on the popular modular cloning (MoClo) system.


Asunto(s)
Escherichia coli , Biología Sintética , Escherichia coli/genética , Biología Sintética/métodos , Clonación Molecular/métodos , Ingeniería Genética/métodos , Replicón/genética , Cromosomas Bacterianos/genética , Plásmidos/genética , Cromosomas/genética
14.
RNA ; 30(9): 1227-1245, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38960642

RESUMEN

R2 non-long terminal repeat retrotransposons insert site-specifically into ribosomal RNA genes (rDNA) in a broad range of multicellular eukaryotes. R2-encoded proteins can be leveraged to mediate transgene insertion at 28S rDNA loci in cultured human cells. This strategy, precise RNA-mediated insertion of transgenes (PRINT), relies on the codelivery of an mRNA encoding R2 protein and an RNA template encoding a transgene cassette of choice. Here, we demonstrate that the PRINT RNA template 5' module, which as a complementary DNA 3' end will generate the transgene 5' junction with rDNA, influences the efficiency and mechanism of gene insertion. Iterative design and testing identified optimal 5' modules consisting of a hepatitis delta virus-like ribozyme fold with high thermodynamic stability, suggesting that RNA template degradation from its 5' end may limit transgene insertion efficiency. We also demonstrate that transgene 5' junction formation can be either precise, formed by annealing the 3' end of first-strand complementary DNA with the upstream target site, or imprecise, by end-joining, but this difference in junction formation mechanism is not a major determinant of insertion efficiency. Sequence characterization of imprecise end-joining events indicates surprisingly minimal reliance on microhomology. Our findings expand the current understanding of the role of R2 retrotransposon transcript sequence and structure, and especially the 5' ribozyme fold, for retrotransposon mobility and RNA-templated gene synthesis in cells.


Asunto(s)
Retroelementos , Transgenes , Retroelementos/genética , Humanos , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Catalítico/química , Conformación de Ácido Nucleico , Secuencia de Bases , Moldes Genéticos
15.
ACS Synth Biol ; 13(8): 2505-2514, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39033464

RESUMEN

Eubacterium limosum is a Clostridial acetogen that efficiently utilizes a wide range of single-carbon substrates and contributes to metabolism of health-associated compounds in the human gut microbiota. These traits have led to interest in developing it as a platform for sustainable CO2-based biofuel production to combat carbon emissions, and for exploring the importance of the microbiota in human health. However, synthetic biology and metabolic engineering in E. limosum have been hindered by the inability to rapidly make precise genomic modifications. Here, we screened a diverse library of recombinase proteins to develop a highly efficient oligonucleotide-based recombineering system based on the viral recombinase RecT. Following optimization, the system is capable of catalyzing ssDNA recombination at an efficiency of up to 2%. Addition of a Cas9 counterselection system eliminated unrecombined cells, with up to 100% of viable cells encoding the desired mutation, enabling creation of genomic point mutations in a scarless and markerless manner. We deployed this system to create a clean knockout of the extracellular polymeric substance (EPS) gene cluster, generating a strain incapable of biofilm formation. This approach is rapid and simple, not requiring laborious homology arm cloning, and can readily be retargeted to almost any genomic locus. This work overcomes a major bottleneck in E. limosum genetic engineering by enabling precise genomic modifications, and provides both a roadmap and associated recombinase plasmid library for developing similar systems in other Clostridia of interest.


Asunto(s)
Sistemas CRISPR-Cas , Eubacterium , Eubacterium/genética , Sistemas CRISPR-Cas/genética , Ingeniería Metabólica/métodos , Recombinación Genética/genética , Genoma Bacteriano/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , Ingeniería Genética/métodos , Edición Génica/métodos , Familia de Multigenes
16.
Appl Environ Microbiol ; 90(7): e0208223, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38899886

RESUMEN

Genetic engineering at the genomic scale provides a rapid means to evolve microbes for desirable traits. However, in many filamentous fungi, such trials are daunted by low transformation efficiency. Differentially expressed genes under certain conditions may contain important regulatory factors. Accordingly, although manipulating these subsets of genes only can largely reduce the time and labor, engineering at such a sub-genomic level may also be able to improve the microbial performance. Herein, first using the industrially important cellulase-producing filamentous fungus Trichoderma reesei as a model organism, we constructed suppression subtractive hybridization (SSH) libraries enriched with differentially expressed genes under cellulase induction (MM-Avicel) and cellulase repression conditions (MM-Glucose). The libraries, in combination with RNA interference, enabled sub-genomic engineering of T. reesei for enhanced cellulase production. The ability of T. reesei to produce endoglucanase was improved by 2.8~3.3-fold. In addition, novel regulatory genes (tre49304, tre120391, and tre123541) were identified to affect cellulase expression in T. reesei. Iterative manipulation using the same strategy further increased the yield of endoglucanase activity to 75.6 U/mL, which was seven times as high as that of the wild type (10.8 U/mL). Moreover, using Humicola insolens as an example, such a sub-genomic RNAi-assisted strain evolution proved to be also useful in other industrially important filamentous fungi. H. insolens is a filamentous fungus commonly used to produce catalase, albeit with similarly low transformation efficiency and scarce knowledge underlying the regulation of catalase expression. By combining SSH and RNAi, a strain of H. insolens producing 28,500 ± 288 U/mL of catalase was obtained, which was 1.9 times as high as that of the parent strain.IMPORTANCEGenetic engineering at the genomic scale provides an unparalleled advantage in microbial strain improvement, which has previously been limited only to the organisms with high transformation efficiency such as Saccharomyces cerevisiae and Escherichia coli. Herein, using the filamentous fungus Trichoderma reesei as a model organism, we demonstrated that the advantage of suppression subtractive hybridization (SSH) to enrich differentially expressed genes and the convenience of RNA interference to manipulate a multitude of genes could be combined to overcome the inadequate transformation efficiency. With this sub-genomic evolution strategy, T. reesei could be iteratively engineered for higher cellulase production. Intriguingly, Humicola insolens, a fungus with even little knowledge in gene expression regulation, was also improved for catalase production. The same strategy may also be expanded to engineering other microorganisms for enhanced production of proteins, organic acids, and secondary metabolites.


Asunto(s)
Celulasa , Hypocreales , Interferencia de ARN , Celulasa/genética , Celulasa/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Ingeniería Genética/métodos
17.
Biotechnol Bioeng ; 121(9): 2808-2819, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38877869

RESUMEN

Using microorganisms for bioproduction requires the reorientation of metabolic fluxes from biomass synthesis to the production of compounds of interest. We previously engineered a synthetic growth switch in Escherichia coli based on inducible expression of the ß- and ß'-subunits of RNA polymerase. Depending on the level of induction, the cells stop growing or grow at a rate close to that of the wild-type strain. This strategy has been successful in transforming growth-arrested bacteria into biofactories with a high production yield, releasing cellular resources from growth towards biosynthesis. However, high selection pressure is placed on a growth-arrested population, favoring mutations that allow cells to escape from growth control. Accordingly, we made the design of the growth switch more robust by building in genetic redundancy. More specifically, we added the rpoA gene, encoding for the α-subunit of RNA polymerase, under the control of a copy of the same inducible promoter used for expression control of ßß'. The improved growth switch is much more stable (escape frequency <10-9), while preserving the capacity to improve production yields. Moreover, after a long period of growth inhibition the population can be regenerated within a few generations. This opens up the possibility to alternate biomass accumulation and product synthesis over a longer period of time and is an additional step towards the dynamical control of bioproduction.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Ingeniería Metabólica/métodos , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Inestabilidad Genómica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica
19.
Cell ; 187(14): 3741-3760.e30, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843831

RESUMEN

Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.


Asunto(s)
Elementos Transponibles de ADN , Humanos , Elementos Transponibles de ADN/genética , Ingeniería Genética/métodos , Genoma Humano , Animales , Evolución Molecular
20.
Biology (Basel) ; 13(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38927301

RESUMEN

Biotic stressors pose significant threats to crop yield, jeopardizing food security and resulting in losses of over USD 220 billion per year by the agriculture industry. Plants activate innate defense mechanisms upon pathogen perception and invasion. The plant immune response comprises numerous concerted steps, including the recognition of invading pathogens, signal transduction, and activation of defensive pathways. However, pathogens have evolved various structures to evade plant immunity. Given these facts, genetic improvements to plants are required for sustainable disease management to ensure global food security. Advanced genetic technologies have offered new opportunities to revolutionize and boost plant disease resistance against devastating pathogens. Furthermore, targeting susceptibility (S) genes, such as OsERF922 and BnWRKY70, through CRISPR methodologies offers novel avenues for disrupting the molecular compatibility of pathogens and for introducing durable resistance against them in plants. Here, we provide a critical overview of advances in understanding disease resistance mechanisms. The review also critically examines management strategies under challenging environmental conditions and R-gene-based plant genome-engineering systems intending to enhance plant responses against emerging pathogens. This work underscores the transformative potential of modern genetic engineering practices in revolutionizing plant health and crop disease management while emphasizing the importance of responsible application to ensure sustainable and resilient agricultural systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA