Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Heliyon ; 10(16): e36516, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253258

RESUMEN

Background: Oral squamous cell carcinoma (OSCC) is the most lethal oral malignant tumor, however, clinical outcomes remain unsatisfactory. The Hedgehog/Gli2 pathway plays a pivotal role in tumor progression, yet the regulatory mechanism governing its involvement in the malignant evolution process of OSCC remains elusive. Methods: OSCC animal tissue samples were used to detect the activation of the Hedgehog/Gli2 pathway in OSCC. Based on the clinical information of oral cancer patients in TCGA database, the role of this pathway in patients was analyzed, and the activation status of this pathway was verified in human OSCC cells. After activating or inhibiting the Hedgehog pathway, the effects of this pathway on the biological function of OSCC cells and its regulatory mechanism were examined. Interfering the expression of Gli2, a key transcription factor in this pathway, revealed the role of Hedgehog/Gli2 pathway in the malignant evolution of OSCC cells. Results: The Hedgehog pathway exhibits abnormal activation in animal models of OSCC. Clinical data from TCGA demonstrate a significant enrichment of the Hedgehog pathway in patients with OSCC, and Gli2, a key downstream factor of this pathway, is closely associated with the occurrence and progression of OSCC. Cellular studies have revealed aberrant activation of this pathway in human OSCC cells, which exerts its function by modulating the activation of epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin pathways. Subsequent investigations further confirm the pivotal involvement of Gli2 in the Hedgehog pathway activation, underscoring its potential as a therapeutic target for inhibiting malignant proliferation and metastasis of OSCC cells through modulation of EMT and Wnt/ß-catenin pathways. Conclusion: The Hedgehog/Gli2 pathway induces EMT and activates Wnt/ß-catenin pathway to trigger the malignant proliferation and metastasis of OSCC cells, and Gli2 plays a key role in this process, which suggests that targeting Gli2 may be a promising therapeutic strategy for inhibiting the proliferation and metastasis of OSCC.

2.
J Cell Mol Med ; 28(17): e70035, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245790

RESUMEN

Diabetes-related bone loss represents a significant complication that persistently jeopardizes the bone health of individuals with diabetes. Primary cilia proteins have been reported to play a vital role in regulating osteoblast differentiation in diabetes-related bone loss. However, the specific contribution of KIAA0753, a primary cilia protein, in bone loss induced by diabetes remains unclear. In this investigation, we elucidated the pivotal role of KIAA0753 as a promoter of osteoblast differentiation in diabetes. RNA sequencing demonstrated a marked downregulation of KIAA0753 expression in pro-bone MC3T3 cells exposed to a high glucose environment. Diabetes mouse models further validated the downregulation of KIAA0753 protein in the femur. Diabetes was observed to inhibit osteoblast differentiation in vitro, evidenced by downregulating the protein expression of OCN, OPN and ALP, decreasing primary cilia biosynthesis, and suppressing the Hedgehog signalling pathway. Knocking down KIAA0753 using shRNA methods was found to shorten primary cilia. Conversely, overexpression KIAA0753 rescued these changes. Additional insights indicated that KIAA0753 effectively restored osteoblast differentiation by directly interacting with SHH, OCN and Gli2, thereby activating the Hedgehog signalling pathway and mitigating the ubiquitination of Gli2 in diabetes. In summary, we report a negative regulatory relationship between KIAA0753 and diabetes-related bone loss. The clarification of KIAA0753's role offers valuable insights into the intricate mechanisms underlying diabetic bone complications.


Asunto(s)
Diferenciación Celular , Proteínas Asociadas a Microtúbulos , Osteoblastos , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Línea Celular , Cilios/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteogénesis/genética , Proteínas Asociadas a Microtúbulos/metabolismo
3.
J Invest Dermatol ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39182559

RESUMEN

Systemic sclerosis is a typical fibrotic disease of unknown etiology that is characterized by abnormal fibroblast activation and excessive deposition of extracellular matrix. Unfortunately, effective therapeutic approaches are lacking. FGF21 plays a key role in mediating a variety of biological activities. However, its specific function in systemic sclerosis is unclear. In this study, we found that the expression of FGF21 was significantly downregulated in fibrotic skin tissue and in TGF-ß-stimulated fibroblasts. Furthermore, our studies demonstrated that treatment with recombinant FGF21 in the skin significantly alleviated bleomycin-induced and TBRI-activated fibrosis and inhibited the activation of fibroblasts, whereas skin fibrosis was exacerbated by deletion of FGF21. Mechanistically, FGF21 inhibits the activity of CK2α and promotes the degradation of GLI2. In conclusion, these results indicate that FGF21 attenuates skin fibrosis through the CK2α/GLI2 signaling pathway and therefore may be a potential therapeutic target for systemic sclerosis.

4.
Technol Cancer Res Treat ; 23: 15330338241274337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166273

RESUMEN

BACKGROUND: Transforming growth factor-ß1 (TGF-ß1) is an immunosuppressive cytokine that is highly expressed in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). TGF-ß1 plays important roles in regulating tumor metastasis and chemotherapy resistance. However, the specific molecular mechanisms by which TGF-ß1 regulates cisplatin resistance in the TAM of LUAD remain unclear. MATERIALS AND METHODS: THP-1 induced macrophages were co-cultured with A549 and H1975 cells, and subsequently transfected with silencing TGF-ß1 (siTGF-ß1), GLI2 (siGLI2), a GLI2 overexpression plasmid, and their negative controls. Cellular activity was measured by CCK-8 and colony formation assays. Cell apoptosis was evaluated by flow cytometry and TUNEL staining. Transwell assays were performed to assess cell migration and invasion capabilities. The levels of Smad2/3, GLI2, cyclin D, and cyclin E expression were evaluated by qPCR, western blotting, and immunofluorescence methods. TGF-ß1 levels were determined by ELISA. RESULTS: Macrophages suppressed the apoptosis and promoted the migration and invasion of LUAD cells. TAM siTGF-ß1 downregulated the Smad2/3 signaling pathways and GLI2 expression, deceased cell proliferation, and promoted apoptosis. SiGLI2 increased apoptosis and decreased the proliferation of LUAD cell lines. GLI2 decreased cisplatin resistance in LUAD cells. CONCLUSION: High expression of TGF-ß1 in the TAM positively activates GLI2 expression via the Smad2/3 pathway, which subsequently regulates cyclin D and cyclin E expression, and promotes the cisplatin resistance of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Movimiento Celular , Cisplatino , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Macrófagos Asociados a Tumores , Proteína Gli2 con Dedos de Zinc , Humanos , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Resistencia a Antineoplásicos/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína smad3/metabolismo , Cisplatino/farmacología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Macrófagos Asociados a Tumores/metabolismo , Proteína Smad2/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Proteínas Nucleares
5.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39149265

RESUMEN

Meibomian glands secrete lipid-rich meibum, which prevents tear evaporation. Aging-related Meibomian gland shrinkage may result in part from stem cell exhaustion and is associated with evaporative dry eye disease, a common condition lacking effective treatment. The identities and niche of Meibomian gland stem cells and the signals controlling their activity are poorly defined. Using snRNA-seq, in vivo lineage tracing, ex vivo live imaging, and genetic studies in mice, we identified markers for stem cell populations that maintain distinct regions of the gland and uncovered Hh signaling as a key regulator of stem cell proliferation. Consistent with this, human Meibomian gland carcinoma exhibited increased Hh signaling. Aged glands displayed decreased Hh and EGF signaling, deficient innervation, and loss of collagen I in niche fibroblasts, indicating that alterations in both glandular epithelial cells and their surrounding microenvironment contribute to age-related degeneration. These findings suggest new approaches to treat aging-associated Meibomian gland loss.

6.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968120

RESUMEN

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Asunto(s)
Quinasas DyrK , Proteínas Hedgehog , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Transducción de Señal , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc , Animales , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Humanos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Proliferación Celular , Cilios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Nucleares , Proteínas Represoras
7.
Transl Oncol ; 46: 101994, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776708

RESUMEN

Cervical cancer ranks fourth in women in terms of incidence and mortality. The RNA-binding protein YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) contributes to cancer progression by incompletely understood mechanisms. We show how YTHDF2 controls the fate of cervical cancer cells and whether YTHDF2 could be a valid target for the therapy of cervical cancer. Sphere formation and alkaline phosphatase staining assays were performed to evaluate tumor stemness of cervical cancer cells following YTHDF2 knockdown. Apoptosis was detected by flow cytometry and TUNEL assay. The compounds 4PBA and SP600125 were used to investigate the correlation between JNK, endoplasmic reticulum stress, tumor stemness, and apoptosis. Data from The Cancer Genome Atlas (TCGA) databases and Gene Expression Omnibus (GEO) revealed that GLI family zinc finger 2 (GLI2) might be the target of YTHDF2. The transcription inhibitor actinomycin D and dual-luciferase reporter gene assays were employed to investigate the association between the GLI2 mRNA and YTHDF2. Nude mouse xenografts were generated to assess the effects of YTHDF2 knockdown on cervical cancer growth in vivo. Knockdown of YTHDF2 up-regulated the expression of GLI2, leading to JNK phosphorylation and endoplasmic reticulum stress. These processes inhibited the proliferation of cervical cancer cells and their tumor cell stemness and promotion of apoptosis. In conclusion, the knockdown of YTHDF2 significantly affects the progression of cervical cancer cells, making it a potential target for treating cervical cancer.

8.
Stem Cells Transl Med ; 13(7): 678-692, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761090

RESUMEN

Cardiomyocyte (CM) proliferation and maturation are highly linked processes, however, the extent to which these processes are controlled by a single signaling axis is unclear. Here, we show the previously undescribed role of Hedgehog (HH)-GLI2-CKS1B cascade in regulation of the toggle between CM proliferation and maturation. Here we show downregulation of GLI-signaling in adult human CM, adult murine CM, and in late-stage hiPSC-CM leading to their maturation. In early-stage hiPSC-CM, inhibition of HH- or GLI-proteins enhanced CM maturation with increased maturation indices, increased calcium handling, and transcriptome. Mechanistically, we identified CKS1B, as a new effector of GLI2 in CMs. GLI2 binds the CKS1B promoter to regulate its expression. CKS1B overexpression in late-stage hiPSC-CMs led to increased proliferation with loss of maturation in CMs. Next, analysis of datasets of patients with heart disease showed a significant enrichment of GLI2-signaling in patients with ischemic heart failure (HF) or dilated-cardiomyopathy (DCM) disease, indicating operational GLI2-signaling in the stressed heart. Thus, the Hh-GLI2-CKS1B axis regulates the proliferation-maturation transition and provides targets to enhance cardiac tissue engineering and regenerative therapies.


Asunto(s)
Proliferación Celular , Miocitos Cardíacos , Proteína Gli2 con Dedos de Zinc , Miocitos Cardíacos/metabolismo , Humanos , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Animales , Ratones , Proteínas Hedgehog/metabolismo , Transducción de Señal , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular
9.
Cell Rep ; 43(4): 114083, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602877

RESUMEN

A common cause of deafness in humans is dysregulation of the endocochlear potential generated by the stria vascularis (SV). Thus, proper formation of the SV is critical for hearing. Using single-cell transcriptomics and a series of Shh signaling mutants, we discovered that the Shh receptor Patched1 (Ptch1) is essential for marginal cell (MC) differentiation and SV formation. Single-cell RNA sequencing analyses revealed that the cochlear roof epithelium is already specified into discrete domains with distinctive gene expression profiles at embryonic day 14, with Gsc as a marker gene of the MC lineage. Ptch1 deficiency leads to defective specification of MC precursors along the cochlear basal-apical regions. We demonstrated that elevated Gli2 levels impede MC differentiation through sustaining Otx2 expression and maintaining the progenitor state of MC precursors. Our results uncover an early specification of cochlear non-sensory epithelial cells and establish a crucial role of the Ptch1-Gli2 axis in regulating the development of SV.


Asunto(s)
Diferenciación Celular , Cóclea , Receptor Patched-1 , Estría Vascular , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Animales , Ratones , Estría Vascular/metabolismo , Estría Vascular/citología , Cóclea/metabolismo , Cóclea/embriología , Cóclea/citología , Transducción de Señal , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética
10.
Environ Toxicol ; 39(7): 3833-3845, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546377

RESUMEN

Depleted uranium (DU) retains the radiological toxicities, which accumulates preferentially in the kidneys. Hedgehog (Hh) pathway plays a critical role in tissue injury. However, the role of Hh in DU-induced nephrotoxicity was still unclear. This study was carried out to investigate the effect of Gli2, which was an important transcription effector of Hh signaling, on DU induced nephrotoxicity. To clarify it, CK19 positive tubular epithelial cells specific Gli2 conditional knockout (KO) mice model was exposed to DU, and then histopathological damage and Hh signaling pathway activation was analyzed. Moreover, HEK-293 T cells were exposed to DU with Gant61 or Gli2 overexpression, and cytotoxicity of DU as analyzed. Results showed that DU caused nephrotoxicity accompanied by activation of Hh signaling pathway. Meanwhile, genetic KO of Gli2 reduced DU-induced nephrotoxicity by normalizing biochemical indicators and reducing Hh pathway activation. Pharmacologic inhibition of Gli1/2 by Gant61 reduced DU induced cytotoxicity by inhibiting apoptosis, ROS formation and Hh pathway activation. However, overexpression of Gli2 aggravated DU-induced cytotoxicity by increasing the levels of apoptosis and ROS formation. Taken together, these results revealed that Hh signaling negatively regulated DU-inducted nephrotoxicity, and that inhibition of Gli2 might serve as a promising nephroprotective target for DU-induced kidney injury.


Asunto(s)
Proteínas Hedgehog , Riñón , Ratones Noqueados , Transducción de Señal , Proteína Gli2 con Dedos de Zinc , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Humanos , Células HEK293 , Transducción de Señal/efectos de los fármacos , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Ratones , Uranio/toxicidad , Apoptosis/efectos de los fármacos , Piridinas/farmacología , Piridinas/toxicidad , Masculino , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Pirimidinas/farmacología , Pirimidinas/toxicidad , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
11.
Kaohsiung J Med Sci ; 40(5): 422-434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38385859

RESUMEN

Diabetic foot ulcer (DFU) is a serious complication of diabetic patients which negatively affects their foot health. This study aimed to estimate the role and mechanism of the miR-200 family in DNA damage of diabetic wound healing. Human foreskin fibroblasts (HFF-1 cells) were stimulated with high glucose (HG). Db/db mice were utilized to conduct the DFU in vivo model. Cell viability was evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. Superoxide dismutase activity was determined using detection kits. Reactive oxygen species determination was conducted via dichlorodihydrofluorescein-diacetate assays. Enzyme-linked immunosorbent assay was used to evaluate 8-oxo-7,8-dihydro-2'deoxyguanosine levels. Genes and protein expression were analyzed by quantitative real-time polymerase chain reaction, western blotting, or immunohistochemical analyses. Luciferase reporter gene and RNA immunoprecipitation assays determined the interaction with miR-200a/b/c-3p and GLI family zinc finger protein 2 (GLI2) or ataxia telangiectasia mutated (ATM) kinase. HG repressed cell proliferation and DNA damage repair, promoted miR-200a/b/c-3p expression, and suppressed ATM and GLI2. MiR-200a/b/c-3p inhibition ameliorated HG-induced cell proliferation and DNA damage repair repression. MiR-200a/b/c-3p targeted ATM. Then, the silenced ATM reversed the miR-200a/b/c-3p inhibition-mediated alleviative effects under HG. Next, GLI2 overexpression alleviated the HG-induced cell proliferation and DNA damage repair inhibition via miR-200a/b/c-3p. MiR-200a/b/c-3p inhibition significantly promoted DNA damage repair and wound healing in DFU mice. GLI2 promoted cell proliferation and DNA damage repair by regulating the miR-200/ATM axis to enhance diabetic wound healing in DFU.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Reparación del ADN , Fibroblastos , MicroARNs , Cicatrización de Heridas , Animales , Humanos , Ratones , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proliferación Celular , Pie Diabético/patología , Pie Diabético/metabolismo , Pie Diabético/genética , Daño del ADN , Fibroblastos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Piel/patología , Piel/metabolismo , Cicatrización de Heridas/genética
12.
Arch. endocrinol. metab. (Online) ; 68: e220254, 2024. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1520079

RESUMEN

ABSTRACT Objective: Congenital hypopituitarism (CH) is a rare disease characterized by one or more hormone deficiencies of the pituitary gland. To date, many genes have been associated with CH. In this study, we identified the allelic variant spectrum of 11 causative genes in Turkish patients with CH. Materials and methods: This study included 47 patients [21 girls (44.6%) and 26 boys (55.4%)] from 45 families. To identify the genetic etiology, we screened 11 candidate genes associated with CH using next-generation sequencing. To confirm and detect the status of the specific familial variant in relatives, Sanger sequencing was also performed. Results: We identified 12 possible pathogenic variants in GHRHR, GH1, GLI2, PROP-1, POU1F1, and LHX4 in 11 patients (23.4%), of which six were novel variants: two in GHRHR, two in POU1F1, one in GLI2, and one in LHX4. In all patients, these variants were most frequently found in GLI2, followed by PROP-1 and GHRHR. Conclusion: Genetic causes were determined in only 23.4% of all patients with CH and 63% of molecularly diagnosed patients (7/11) from consanguineous families. Despite advances in genetics, we were unable to identify the genetic etiology of most patients with CH, suggesting the effect of unknown genes or environmental factors. More genetic studies are necessary to understand the etiology of CH.

13.
Elife ; 122023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38096226

RESUMEN

The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis through the Gli family of transcription factors. Gli is thought to be activated at the tip of primary cilium, but the underlying mechanism has remained poorly understood. Here, we show that Unc-51-like kinase 4 (Ulk4), a pseudokinase and a member of the Ulk kinase family, acts in conjunction with another Ulk family member Stk36 to promote Gli2 phosphorylation and Hh pathway activation. Ulk4 interacts with Stk36 through its N-terminal region containing the pseudokinase domain and with Gli2 via its regulatory domain to bridge the kinase and substrate. Although dispensable for Hh-induced Stk36 kinase activation, Ulk4 is essential for Stk36 ciliary tip localization, Gli2 phosphorylation, and activation. In response to Hh, both Ulk4 and Stk36 colocalize with Gli2 at ciliary tip, and Ulk4 and Stk36 depend on each other for their ciliary tip accumulation. We further show that ciliary localization of Ulk4 depends on Stk36 kinase activity and phosphorylation of Ulk4 on Thr1023, and that ciliary tip accumulation of Ulk4 is essential for its function in the Hh pathway. Taken together, our results suggest that Ulk4 regulates Hh signaling by promoting Stk36-mediated Gli2 phosphorylation and activation at ciliary tip.


Asunto(s)
Proteínas Hedgehog , Factores de Transcripción de Tipo Kruppel , Femenino , Embarazo , Humanos , Fosforilación , Proteínas Hedgehog/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Arch Endocrinol Metab ; 68: e220254, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948564

RESUMEN

Objective: Congenital hypopituitarism (CH) is a rare disease characterized by one or more hormone deficiencies of the pituitary gland. To date, many genes have been associated with CH. In this study, we identified the allelic variant spectrum of 11 causative genes in Turkish patients with CH. Materials and methods: This study included 47 patients [21 girls (44.6%) and 26 boys (55.4%)] from 45 families. To identify the genetic etiology, we screened 11 candidate genes associated with CH using next-generation sequencing. To confirm and detect the status of the specific familial variant in relatives, Sanger sequencing was also performed. Results: We identified 12 possible pathogenic variants in GHRHR, GH1, GLI2, PROP-1, POU1F1, and LHX4 in 11 patients (23.4%), of which six were novel variants: two in GHRHR, two in POU1F1, one in GLI2, and one in LHX4. In all patients, these variants were most frequently found in GLI2, followed by PROP-1 and GHRHR. Conclusion: Genetic causes were determined in only 23.4% of all patients with CH and 63% of molecularly diagnosed patients (7/11) from consanguineous families. Despite advances in genetics, we were unable to identify the genetic etiology of most patients with CH, suggesting the effect of unknown genes or environmental factors. More genetic studies are necessary to understand the etiology of CH.


Asunto(s)
Hipopituitarismo , Femenino , Humanos , Masculino , Alelos , Hipopituitarismo/diagnóstico , Hipopituitarismo/genética , Mutación , Proteínas Nucleares/genética , Factor de Transcripción Pit-1/genética , Factores de Transcripción/genética , Proteína Gli2 con Dedos de Zinc/genética
15.
Aging (Albany NY) ; 15(20): 11131-11151, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37851362

RESUMEN

Epithelial ovarian cancer (EOC), the most predominant subtype of ovarian cancer (OC), involves poor prognosis and exhibits high aggression. Triptolide (TPL), like other Chinese herbs, has historically played a significant role in modern medicine. The screening system based on Gli-dependent luciferase reporter activity assessed the effects of over 800 natural medicinal materials on hedgehog (Hh) signaling pathway activity and discovered that TPL had an excellent inhibitory effect on Hh signaling pathway activity. However, the significance and mechanism of TPL involvement in regulating the Hh pathway have not been well explored. Thus, this work aimed to understand better how TPL affects the Hh pathway activity, which, in turn, influences the biological behavior of EOC. Our findings observed that Smo agonist SAG-induced EOC cell proliferation, migration, and invasion were drastically reversed by TPL in a concentration-dependent pattern. Further evidence suggested that TPL promotes the degradation of Gli1 and Gli2 to inhibit the activity of the Hh signaling pathway by relying on Gli1 and Gli2 ubiquitination. Our in vivo studies also confirmed that TPL could significantly inhibit the tumor growth of EOC. Taken together, our results revealed that one of the antitumor mechanisms of TPL was the targeted inhibition of the Hh/Gli pathway.


Asunto(s)
Proteínas Hedgehog , Neoplasias Ováricas , Humanos , Femenino , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Transducción de Señal/fisiología , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral
16.
Cells ; 12(19)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830570

RESUMEN

ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation.


Asunto(s)
Cilios , Glioma , Humanos , Cilios/metabolismo , Glioma/genética , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Receptor Smoothened/metabolismo
17.
Biochem Biophys Res Commun ; 676: 182-189, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523816

RESUMEN

It has been reported that cadherin 6 (CDH6) upregulation is associated with enhanced epithelial-to-mesenchymal transition (EMT) in several types of solid tumor cells. The current study aimed to explore the effect of CDH6 on the migration and invasion of stomach adenocarcinoma (STAD) cells, the transcription factors involved in CDH6 dysregulation and their effect on mitochondrial fission. Bioinformatics analysis was performed using data extracted from the Genotype-Tissue Expression Project, the Cancer Genome Atlas and Kaplan-Meier plotter. AGS and HGC27 cells were used to establish an in vitro STAD cell model. The results showed that higher CDH6 expression was associated with significantly shorter overall survival in patients with STAD. In addition, CDH6 overexpression promoted wound healing, enhanced the invasion ability of tumor cells and increased mitochondrial fission. Glioma-associated oncogene family zinc finger 2 (GLI2) could bind to the CDH6 promoter and activate its transcription. Fluorescent labeling also showed that GLI2 overexpression promoted mitochondrial fission. However, CDH6 silencing significantly reduced mitochondrial fragmentation. Besides, GLI2 overexpression notably upregulated phosphorylated-focal adhesion kinase and dynamin-related protein 1. However, the above effects were largely abrogated by CDH6 knockdown. In conclusion, the present study suggested that the novel GLI2/CDH6 axis could enhance the migration, invasion and mitochondrial fission of STAD cells.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Dinámicas Mitocondriales , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Proteína Gli2 con Dedos de Zinc/metabolismo
18.
Cancer Sci ; 114(9): 3608-3622, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37417427

RESUMEN

Increasing evidence has shown that circular RNAs (circRNAs) interact with RNA-binding proteins (RBPs) and promote cancer progression. However, the function and mechanism of the circRNA/RBP complex in esophageal squamous cell carcinoma (ESCC) are still largely unknown. Herein, we first characterized a novel oncogenic circRNA, circ-FIRRE, by RNA sequencing (Ribo-free) profiling of ESCC samples. Furthermore, we observed marked circ-FIRRE overexpression in ESCC patients with high TNM stage and poor overall survival. Mechanistic studies indicated that circ-FIRRE, as a platform, interacts with the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein to stabilize GLI2 mRNA by directly binding to its 3'-UTR in the cytoplasm, thereby resulting in elevated GLI2 protein expression and subsequent transcription of its target genes MYC, CCNE1, and CCNE2, ultimately contributing to ESCC progression. Moreover, HNRNPC overexpression in circ-FIRRE knockdown cells notably abolished circ-FIRRE knockdown-mediated Hedgehog pathway inhibition and ESCC progression impairment in vitro and in vivo. Clinical specimen results showed that circ-FIRRE and HNRNPC expression was positively correlated with GLI2 expression, which reveals the clear significance of the circ-FIRRE/HNRNPC-GLI2 axis in ESCC. In summary, our results indicate that circ-FIRRE could serve as a valuable biomarker and potential therapeutic target for ESCC and highlight a novel mechanism of the circ-FIRRE/HNRNPC complex in ESCC progression regulation.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Carcinoma de Células Escamosas de Esófago/patología , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Esofágicas/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , ARN Mensajero/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , MicroARNs/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Línea Celular Tumoral , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteínas Nucleares/genética
19.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37444470

RESUMEN

Liposarcomas are the most diagnosed soft tissue sarcoma, with most cases consisting of well-differentiated (WDLPS) or dedifferentiated (DDLPS) histological subtypes. While both tumor subtypes can have clinical recurrence due to incomplete resections, DDLPS often has worse prognosis due to a higher likelihood of metastasis compared to its well-differentiated counterpart. Unfortunately, targeted therapeutic interventions have lagged in sarcoma oncology, making the need for molecular targeted therapies a promising future area of research for this family of malignancies. In this work, previously published data were analyzed to identify differential pathways that may contribute to the dedifferentiation process in liposarcoma. Interestingly, Gli-mediated Hedgehog signaling appeared to be enriched in dedifferentiated adipose progenitor cells and DDLPS tumors, and coincidentally Gli1 is often co-amplified with MDM2 and CDK4, given its genomic proximity along chromosome 12q13-12q15. However, we find that Gli2, but not Gli1, is differentially expressed between WDLPS and DDLPS, with a noticeable co-expression signature between Gli2 and genes involved in ECM remodeling. Additionally, Gli2 co-expression had a noticeable transcriptional signature that could suggest Gli-mediated Hedgehog signaling as an associated pathway contributing to poor immune infiltration in these tumors.

20.
Oncol Rep ; 50(1)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37264957

RESUMEN

Following the publication of the above article, a concerned reader drew to the Editor's attention that, in the above paper, they had identified multiple instances of overlapping data panels comparing the TUNEL assay data shown in Fig. 2C and D on p. 750 with that shown in Fig. 4C on p. 752, suggesting that data purportedly showing results obtained under different experimental conditions had been derived from a smaller number of original sources. Upon informing the authors about this matter, they consulted their original data and requested a corrigendum to take account of the overlapping data in Figs. 2 and 4; however, given the number of instances of overlapping data panels that were identified comparing these two figures, the Editor of Oncology Reports has decided that this article should be retracted from the publication owing to a lack of overall confidence in the presented data. Upon informing the authors of this decision, they did not accepted the decision to retract this article. The Editor apologizes to the readership for any inconvenience resulting from the retraction of this article. [Oncology Reports 39: 747­754, 2018; DOI: 10.3892/or.2017.6150].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA