Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.932
Filtrar
1.
Front Toxicol ; 6: 1397477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165249

RESUMEN

Glyphosate-based herbicides (GBH) are a widely used group of pesticides that have glyphosate (GLY) as main active compound and are used to control a wide range of weeds. Experimental and epidemiological studies point to neurotoxicity and endocrine disruption as main toxic effects. The aim of this study was to investigate the effects of developmental exposure to GLY and GBH on locomotor behavior, and the possible contribution of GR-mediated signaling. We used zebrafish (Danio rerio) larvae in a continuous exposure regimen to GLY or GBH in the rearing medium. Alongside TL wildtype, we used a mutant line carrying a mutation in the GR which prevents the GR from binding to DNA (grs357), as well as a transgenic strain expressing a variant of enhanced green fluorescent protein (d4eGFP) controlled by a promoter carrying multiple GR response elements (SR4G). We found that acute exposure to GBH, but not GLY, activates GR-mediated signaling. Using a continuous developmental exposure regime, we show that wildtype larvae exposed to GBH display decreased spontaneous activity and attenuated response to environmental stimuli, a pattern of alteration similar to the one observed in grs357 mutant larvae. In addition, developmental exposure to GBH has virtually no effects on the behavior of grs357 mutant larvae. Taken together, our data indicate that developmental exposure to GBH has more pronounced effects than GLY on behavior at 5 dpf, and that interference with GR-mediated signaling may have a relevant contribution.

2.
Appl Spectrosc ; : 37028241267920, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090839

RESUMEN

Growing demand for pesticides has created an environment prone to deceptive activities, where counterfeit or adulterated pesticide products infiltrate the market, often escaping rapid detection. This situation presents a significant challenge for sensor technology, crucial in identifying authentic pesticides and ensuring agricultural safety practices. Raman spectroscopy emerges as a powerful technique for detecting adulterants. Coupling the electrochemical techniques allows a more specific and selective detection and compound identification. In this study, we evaluate the efficacy of spectroelectrochemical measurements by coupling a potentiostat and Raman spectrograph to identify paraquat, a nonselective herbicide banned in several countries. Our findings demonstrate that applying -0.70 V during measurements yields highly selective Raman spectra, highlighting the primary vibrational bands of paraquat. Moreover, the selective Raman signal of paraquat was discernible in complex samples, including tap water, apple, and green cabbage, even in the presence of other pesticides such as diquat, acephate, and glyphosate. These results underscore the potential of this technique for reliable pesticide detection in diverse and complex matrices.

3.
Foods ; 13(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39123643

RESUMEN

Glyphosate is the most used herbicide in agriculture. Its major metabolite is AMPA (aminomethylphosphonic acid), but N-acetyl-AMPA and N-acetylglyphosate are also metabolites of interest. For risk assessment, a general residue definition was proposed as the sum of glyphosate, AMPA, N-acetyl-glyphosate and N-acetyl-AMPA, expressed as glyphosate. A confirmatory method for glyphosate in fat, liver and kidneys, as well as a confirmatory method for AMPA and N-acetyl-glyphosate in all matrices, are still missing. In this paper, we present a method for the quantitative determination of glyphosate residues and its metabolites AMPA, N-acetyl-AMPA and N-acetyl-glyphosate by liquid chromatography-mass spectrometry (LC-MS/MS) in adipose tissue, liver, eggs, milk and honey without derivatization. Different chromatographic columns were tested, with the Hypercarb column providing the best results. The analytes were eluted with mobile phases of acidified water with 1.2% formic acid and 0.5% formic acid in acetonitrile. Sample purification procedures were also optimized by varying the solvent extraction mixtures (water, methanol and mixture ψ (methanol, water) = 1:1, each with the addition of 1% formic acid (v/v)), using different sorbents in solid phase extraction (SPE) (polymeric cationic (PCX) and anionic (PAX)) and using dispersive solid phase extraction (dSPE) (C18 and PSA) by modifying the extraction procedures. Finally, the analytes were extracted from the samples with 1% formic acid in water (v/v). Milk and adipose tissue were purified by the addition of dichloromethane, while liver and egg samples were purified by SPE with a mixed cation exchange sorbent and ultrafiltration with cut-off filters. The proposed analytical procedures were validated according to SANTE/11312/2021 guidelines: linearity, limits of quantification, precision and accuracy were determined for all matrices. The limits of quantification (LOQs) ranged from 0.025 to 0.2 mg kg-1. Precision, expressed as relative standard deviation, was <20%, while accuracy, expressed as analytical recovery, ranged from 70% to 120%. During method validation, the measurement uncertainty was estimated to be <50% for all analytes. Good validation parameters according to the SANTE document were achieved for all analytes. Therefore, the method can be considered reliable and sensitive enough for routine monitoring of polar pesticides. The application of the accredited method in routine analysis will provide data that are useful for the re-evaluation of risk assessment studies in foods of animal origin.

4.
Ecotoxicol Environ Saf ; 284: 116901, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178762

RESUMEN

Glyphosate is the active ingredient in the herbicide (i.e., Roundup, Touchdown and Erasure), the safety of which has become a social concern. Hawthorn-leaf flavonoid (HF) possesses various biological functions, including antioxidant, regulating lipid metabolism and intestinal microbiota. Whether HF could reduce the health risk of pure glyphosate to birds remain unknown. The experiment aimed to evaluate the effects of pure glyphosate (25 mg/kg added to water) on the intestinal health and microbiota of chicks and the protective roles of HF (60 mg/kg added to the diet). Exposure to glyphosate decreased growth performance, ileal morphology structure, and antioxidant capacity, and increased the serum level of lipid and pro-inflammatory factors. 16S rRNA sequencing indicated that glyphosate decreased bacterial richness and the abundance of Lactobacillus, and increased proportions of pathogens in the ileum. Metabolomic results revealed that glyphosate increased the level of the cholic acid and fatty acids in the ileac digesta. Meanwhile, glyphosate down-regulated the protein expression associated with lipid transport, antioxidant and tight junction in the ileal mucosal tissue, and up-regulated the pro-inflammatory, oxidative stress proteins. However, dietary HF supplementation effectively mitigated the adverse effects of glyphosate and improved intestinal health of chicks. Therefore, dietary HF can ameliorate the harmful effects of glyphosate on birds, which highlights the potential application of HF in reducing the health risks.

5.
Aquat Toxicol ; 275: 107050, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39178750

RESUMEN

Glyphosate, a prevalent herbicide, has raised concerns due to its potential ecological impact, especially on aquatic ecosystems. While it is crucial for managing agricultural productivity, its inadvertent effects on non-target aquatic species like the red swamp crayfish, Procambarus clarkii, are not fully understood. In the present study, the neurotoxicity, oxidative stress, and immune suppression of glyphosate on P. clarkii were investigated. Sublethal glyphosate exposure (5, 10 and 20 mg/L) for 96 h was found to significantly decrease AChE activity in both brain and hepatopancreas, correlating with reduced foraging efficiency and increased turnover time. Oxidative stress was evident through increased lipid peroxidation (LPO) and malondialdehyde (MDA) levels and altered antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). In addition, the total antioxidative capacity (T-AOC) was inhibited at 10 and 20 mg/L of glyphosate exposure. Immune assays revealed a decrease in total hemocyte counts (THC) and suppression of key immune enzyme activities and transcriptional expressions at higher concentrations, suggesting compromised immune defenses. The findings demonstrate that glyphosate can induce considerable neurotoxic and immunotoxic effects in P. clarkii, disrupting essential physiological functions and behavior.

6.
Toxicology ; 508: 153902, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094917

RESUMEN

Glyphosate, the world's most widely used herbicide, has a low toxicity rating despite substantial evidence of adverse health effects. Furthermore, glyphosate-based formulations (GBFs) contain several other chemicals, some of which are known to be harmful. Additionally, chronic, and acute exposure to GBFs among rural workers may lead to health impairments, such as neurodegenerative diseases and cancer. P53 is known as a tumor suppressor protein, acting as a key regulator of the cellular response to stress and DNA damage. Therefore, mutations in the TP53 gene, which encodes p53, are common genetic alterations found in various types of cancer. Therefore, this study aimed to evaluate the cytotoxicity and genotoxicity of GBF in two glioblastoma cell lines: U87MG (TP53-proficient) and U251MG (TP53-mutant). Additionally, the study aimed to identify the main proteins involved in the response to GBF exposure using Systems Biology in a network containing p53 and another network without p53. The MTT assay was used to study the toxicity of GBF in the cell lines, the clonogenic assay was used to investigate cell survival, and the Comet Assay was used for genotoxicity evaluation. For data analysis, bioinformatics tools such as String 12.0 and Stitch 5.0 were applied, serving as a basis for designing binary networks in the Cytoscape 3.10.1 program. From the in vitro test analyses, it was observed a decrease in cell viability at doses starting from 10 ppm. Comet Assay at concentrations of 10 ppm and 30 ppm for the U251MG and U87MG cell lines, respectively observed DNA damage. The network generated with systems biology showed that the presence of p53 is important for the regulation of biological processes involved in genetic stability and neurotoxicity, processes that did not appear in the TP53-mutant network.

7.
Mikrochim Acta ; 191(9): 564, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190188

RESUMEN

A simple and efficient dual-signal electrochemical sensor was designed for glyphosate (GLYP) determination based on the one-step electro-synthesized Cu-Hemin MOFs/CNTs nanocrystals. Cu-Hemin MOFs/CNTs were directly modified on the electrode through electrodeposition, avoiding complicated synthesis and modification processes. The incorporation of CNTs greatly boosted the conductivity of Cu-Hemin MOFs and the sensitivity of the electrochemical sensor. Cu active sites in Cu-Hemin MOFs were converted to CuCl, allowing the specific detection of GLYP with the turn of CuCl into non-electroactive Cu-GLYP. Meanwhile, GLYP showed highly effective inhibition effect on the inherent peroxidase-like activity of Cu-Hemin MOFs, therefore generating the second electrochemical signal with Cu-Hemin MOFs-catalyzed o-phenylenediamine (o-PD) + H2O2 system. The Cu-Hemin MOFs/CNTs based sensor with two electrochemical signals showed good linearities of 1.0 × 10-10 M - 3.0 × 10-6 M and 1.0 × 10-10 M - 5.0 × 10-5 M, with detection limits of 5.17 × 10-12 M and 6.81 × 10-12 M for the CuCl signal based assay and nanozyme catalyzed o-PD + H2O2 procedure, respectively. This simple and robust dual-signal sensor with excellent selectivity, accuracy, and stability allowed GLYP quantification in real samples, highlighting the potential application of this approach for food and environmental monitoring.

8.
Environ Toxicol Pharmacol ; 110: 104539, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173985

RESUMEN

This study examines the effects of Roundup Transorb® (RDT) exposure on reproductive functions and ovarian miRNA expression in Austrolebias charrua. Exposure to RDT (at 0.065 or 5 mg. L-1 for 96 h) significantly disrupts fertility, evidenced by changes in fertilization rates and egg diameter. Profiling of ovarian miRNAs identified a total 205 miRNAs in A. charrua. Among these, three miRNAs were upregulated (miR-10b-5p, miR-132-3p, miR-100-5p), while ten miRNAs were downregulated (miR-499-5p, miR-375, miR-205-5p, miR-206-3p, miR-203a-3p, miR-133b-3p, miR-203b-5p, miR-184, miR-133a-3p, miR-2188-5p) compared to non-exposed fish. This study reveals that differentially expressed miRNAs are linked to molecular pathways such as steroid hormone biosynthesis, lipid and carbohydrate metabolism, bioenergetics, and antioxidant defense. It also analyzes molecular interactions between miRNAs and target genes during RDT exposure in annual killifish, providing insights into biomarkers in ecotoxicology. Moreover, it provides scope for developing environmental health assessment models based on epigenomic endpoints, supporting the protection of biodiversity and ecosystem services through the quantification of stress responses in living organisms exposed to pesticides.

9.
Toxics ; 12(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39195661

RESUMEN

Glyphosate is the most widely used herbicide in the world. This study aimed to evaluate the relationships among urinary glyphosate, all-cause mortality and cardiovascular diseases (CVD)-related mortality in the general US population of adults, and to determine the role of alkaline phosphatase (ALP), an inflammation marker that is associated with glyphosate exposure, in these relationships. Subjects from the National Health and Nutrition Examination Survey (NHANES) 2013-2018 cycles were included. Survey-weighted Cox regression analysis was applied to estimate the relationship of glyphosate with overall and CVD mortalities. Restricted cubic spline (RCS) analysis was utilized to detect the linearity of associations. The intermediary role of ALP was explored by mediation analysis. Our results found consistent and positive associations of glyphosate with all-cause mortality (HR: 1.29, 95%CI: 1.05-1.59) and CVD mortality (HR: 1.32, 95%CI: 1.02-1.70). RCS curves further validated linear and positive dose-dependent relationships between glyphosate and mortality-related outcomes. Moreover, serum ALP was identified as a mediator in these associations and explained 12.1% and 14.0% of the total associations between glyphosate and all-cause death and CVD death risk, respectively. Our study indicated that glyphosate was associated with increased all-cause and CVD mortality in humans. Increased ALP may play an essential role in these associations.

10.
Toxics ; 12(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39195693

RESUMEN

Perinatal exposure to a glyphosate-based herbicide (GBH) or its active ingredient, glyphosate (Gly), has been demonstrated to increase implantation failure in rats. This study investigates potential mechanisms of action, analyzing uterine preparation towards the receptive state. Pregnant Wistar rats (F0) were treated orally with GBH or Gly (3.8 and 3.9 mg Gly/kg/day, respectively) from gestational day (GD) 9 until weaning. Adult F1 females became pregnant and uterine samples were collected on GD5 (preimplantation period). Histomorphological uterine parameters were assessed. Immunohistochemistry was applied to evaluate cell proliferation and protein expression of estrogen receptors (ERα and ERß), cell cycle regulators (PTEN, cyclin G1, p27, and IGF1R-α), and the Wnt5a/ß-catenin/FOXA2/Lif pathway. Both GBH and Gly females showed increased stromal proliferation, associated with a high expression of ERs. Dysregulation of PTEN and cyclin G1 was also observed in the Gly group. Reduced gland number was observed in both groups, along with decreased expression of Wnt5a/ß-catenin/FOXA2/Lif pathway in the glandular epithelium. Overall, GBH and Gly perinatal exposure disrupted intrinsic uterine pathways involved in endometrial proliferation and glandular function, providing a plausible mechanism for glyphosate-induced implantation failure by compromising uterine receptivity. Similar effects between GBH and Gly suggest the active principle mainly drives the adverse outcomes.

11.
Toxics ; 12(8)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39195702

RESUMEN

Widespread glyphosate contamination in the environment and its endocrine-disrupting potential are concerning. However, evidence of glyphosate's effects on glycemic health is limited. To examine the association between glyphosate and glucose homeostasis in the general US population, a total of 3038 individuals were enrolled from the 2013-2016 cycles of the National Health and Nutrition Examination Survey (NHANES). Survey-weighted linear regression and restricted cubic spline curves were used to detect the associations between glyphosate and glycemic disorders. The effects of interactions between sex hormones and glyphosate on glycemic outcomes were evaluated. The results showed that glyphosate was significantly linked to increased glycated hemoglobin A1c (HbA1c) levels (ß = 0.01; 95%CI, 0.01 to 0.02; p = 0.001) and the compromised homeostatic model assessment of beta-cell function (HOMA-beta) scores (ß = -0.09; 95%CI, -0.17 to -0.01; p = 0.024). More importantly, these "glyphosate-glycemic disorder" associations were significantly modified by sex hormone-binding globulin (SHBG; P for interaction < 0.05), with more pronounced relationships being identified in individuals with low SHBG levels. Our findings indicate that glyphosate is correlated with glucose dyshomeostasis. Individuals with low SHBG levels exhibited susceptibility to glyphosate-related glycemic toxicity; therefore, it might be prudent to determine glycemic health in those subjects with glyphosate exposure.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124845, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106718

RESUMEN

This work aims at the detection of the important herbicide glyphosate based on the previous modification of glyphosate in two stages and final detection by surface-enhanced Raman spectroscopy (SERS). In a first step, the affinity of glyphosate for metal plasmonic surfaces was increased by inclusion of a sulphur containing group (dithiocarbamate). In a second step, the cyclization of the latter intermediate rendered a thiazole derivative of the herbicide. The latter compound exhibits higher Raman cross section which leads to stronger SERS enhancement factors. The second step was possible thanks to the plasmon catalysis driven by metal nanoparticles, specifically silver adatoms created at the surface, and irradiated at a proper wavelength. This methodology was optimized by selecting the most appropriate experimental conditions for the chemical reactions. Density Functional Theory treatment of all the involved molecules was done in order to obtain the theoretical spectra and to identify the structural marker bands. A key goal of this work was to develop an effective system of glyphosate detection based on portable PickMolTM technology developed and patented by the SAFTRA Photonics Ltd. company to ensure an easy, quick, low cost, in-situ, and univocal detection of glyphosate in the environment.

13.
Sci Total Environ ; 951: 175606, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159698

RESUMEN

Glyphosate (GLY) is the most universally used herbicide worldwide and its application has caused extensive pollution to the ecological environment. Increasing evidence has revealed the multi-organ toxicity of GLY in different species, but its male reproductive toxicity in avian species remains unknown. Thus, in vivo and in vitro studies were conducted to clarify this issue. Data firstly showed that chronic GLY exposure caused testicular pathological damage. Intriguingly, we identified and verified a marked down-regulation gap junction gene Connexin 43 (Cx43) in GLY-exposed rooster testis by transcriptome analysis. Cx43 generated by Sertoli cells acts as a key component of blood-testis barrier (BTB). To further investigate the cause of GLY-induced downregulation of Cx43 to disrupt BTB, we found that autophagy activation is revealed in GLY-exposed rooster testis and primary avian Sertoli cells. Moreover, GLY-induced Cx43 downregulation was significantly alleviated by ATG5 knockdown or CQ administration, respectively, demonstrating that GLY-induced autophagy activation contributed to Cx43 degradation. Mechanistically, GLY-induced autophagy activation and resultant Cx43 degradation was due to its direct interaction with ER-α. In summary, these findings demonstrate that chronic GLY exposure activates autophagy to induce Cx43 degradation, which causes BTB damage and resultant reproductive toxicity in roosters.

14.
Proc Natl Acad Sci U S A ; 121(35): e2317027121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159366

RESUMEN

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) functions in the shikimate pathway which is responsible for the production of aromatic amino acids and precursors of other essential secondary metabolites in all plant species. EPSPS is also the molecular target of the herbicide glyphosate. While some plant EPSPS variants have been characterized with reduced glyphosate sensitivity and have been used in biotechnology, the glyphosate insensitivity typically comes with a cost to catalytic efficiency. Thus, there exists a need to generate additional EPSPS variants that maintain both high catalytic efficiency and high glyphosate tolerance. Here, we create a synthetic yeast system to rapidly study and evolve heterologous EPSP synthases for these dual traits. Using known EPSPS variants, we first validate that our synthetic yeast system is capable of recapitulating growth characteristics observed in plants grown in varying levels of glyphosate. Next, we demonstrate that variants from mutagenesis libraries with distinct phenotypic traits can be isolated depending on the selection criteria applied. By applying strong dual-trait selection pressure, we identify a notable EPSPS mutant after just a single round of evolution that displays robust glyphosate tolerance (Ki of nearly 1 mM) and improved enzymatic efficiency over the starting point (~2.5 fold). Finally, we show the crystal structure of corn EPSPS and the top resulting mutants and demonstrate that certain mutants have the potential to outperform previously reported glyphosate-resistant EPSPS mutants, such as T102I and P106S (denoted as TIPS), in whole-plant testing. Altogether, this platform helps explore the trade-off between glyphosate resistance and enzymatic efficiency.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa , Glicina , Glifosato , Saccharomyces cerevisiae , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , 3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Herbicidas/farmacología , Herbicidas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a los Herbicidas/genética
15.
Pest Manag Sci ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101354

RESUMEN

BACKGROUND: Giant ragweed (Ambrosia trifida L.) is one of the most troublesome weed species in corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] cropping systems. Following numerous reports in 2018 of suspected herbicide resistance in several Ambrosia trifida populations from Wisconsin, our objective was to characterize the response of these accessions to acetolactate synthase (ALS), enolpyruvyl shikimate phosphate synthase (EPSPS), and protoporphyrinogen oxidase (PPO) inhibitors applied POST. RESULTS: Four accessions (AT1, AT4, AT6, and AT10) exhibited ≥ 50% plant survival after exposure to the cloransulam 3× rate. Two accessions (AT8 and AT10) and one accession (AT2) exhibited ≥ 50% plant survival after exposure to glyphosate and fomesafen 1× rates, respectively. The AT10 accession exhibited multiple resistance to cloransulam and glyphosate. The AT12 accession was 28.8-fold resistant to fomesafen and 3.7-fold resistant to lactofen. A codon change in PPX2 conferring a R98L substitution was identified as the most likely mechanism conferring PPO-inhibitor resistance. CONCLUSION: To our knowledge, this is the first confirmed case of PPO-inhibitor resistance in Ambrosia trifida globally and we identified the genetic mutation likely conferring resistance. Proactive and diversified integrated weed management strategies are of paramount importance for sustainable long-term Ambrosia trifida management. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

16.
Environ Pollut ; 359: 124554, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013514

RESUMEN

The proceeding study aimed to isolate glyphosate-degrading bacteria from soil and determine optimal degradation conditions through single-factor experiments and response surface methodology. The detoxifying efficacy of the isolate on glyphosate was assessed using earthworm model. The results indicate that Pseudomonas putida HE exhibited the highest glyphosate degradation rate. Optimal conditions for glyphosate degradation were observed at an inoculation percentage of approximately 5%, a pH of 7, and a temperature of 30 °C. Glyphosate induced notable neurotoxicity and reproductive toxicity in earthworms, evidenced by reduced activity of the neurotoxicity-associated enzyme AChE. Additionally, an increase in the activities of catalase, superoxide dismutase, and lactate dehydrogenase was observed. H&E staining revealed structural disruptions in the earthworm clitellum, with notable atrophy in the structure of spermathecae. Furthermore, glyphosate activation of earthworm immune systems led to increased expression of immune-related genes, specifically coelomic cytolytic factor and lysozyme. Notably, the introduction of strain HE mitigated the glyphosate toxicity to the earthworms mentioned above. P. putida HE was able to increase soil enzyme activities that were reduced due to glyphosate. The isolate P. putida HE, emerged as an effective and cost-efficient remedy for glyphosate degradation and toxicity reduction in natural settings, showcasing potential applications in real ecological settings.

17.
J Hazard Mater ; 477: 135216, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047560

RESUMEN

Heavy metal Cu2+ emitted in industry and residues of glyphosate pesticides are pervasive in ecosystems, accumulated in water bodies and organisms' overtime, constituting hazard to human and ecological balance. The development of rapid, highly selective, reversibility and sensitive biosensor in vivo detection for Cu2+ and glyphosate was imminent. A novel dual-recognition fluorescence biosensor MPH was successfully synthesized based on triphenylamine, which demonstrated remarkable ratiometric fluorescence quenching toward Cu2+, while MPH-Cu2+ (1:1) ensemble exhibited ratiometric fluorescence restoration for glyphosate, both with observable color changes in daylight and UV lamp. The biosensor exhibited rapid, outstanding selectivity, anti-interference, and multiple cycles reversibility through "turn-off-on" fluorescence towards Cu2+ and glyphosate, respectively. Surprisingly, the clearly binding mechanisms of MPH to Cu2+ and MPH-Cu2+ ensemble to glyphosate were determined, respectively, based on the Job's plot, FT-IR, ESI-HRMS, 1H NMR titration and theoretical calculations of dynamics and thermodynamics. In addition, biosensor MPH demonstrated successful detection of Cu2+ and glyphosate across diverse environmental samples including tap water, extraction solutions of traditional Chinese medicine honeysuckle and soil samples. In the meantime, fluorescence imaging of Cu2+ and glyphosate at both micro and macro scales in various living organisms, such as rice roots, MCF-7 cells, zebrafish, and mice, were successfully achieved. Overall, this work was expected to become a promising and versatile fluorescence biosensor for rapid and reversible detection of Cu2+ and glyphosate both in vitro and vivo.


Asunto(s)
Técnicas Biosensibles , Cobre , Glicina , Glifosato , Herbicidas , Pez Cebra , Cobre/análisis , Cobre/química , Glicina/análogos & derivados , Glicina/análisis , Glicina/química , Técnicas Biosensibles/métodos , Animales , Herbicidas/análisis , Herbicidas/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Humanos , Fluorescencia , Ratones , Colorantes Fluorescentes/química
18.
Bull Environ Contam Toxicol ; 113(2): 17, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068350

RESUMEN

Roundup Transorb® (RDT) is the most popular glyphosate-based herbicide (GHB) used in agriculture, and its impact extends to non-target organisms. The annual killifish Austrolebias charrua is an endangered species endemic to southern South America and inhabits temporary ponds. This study evaluates the effects of RDT concentrations (0.065 and 5 mg/L GAE) on A. charrua exposed for 96 h. Gene expression of cat, sod2, gstα, gclc, and ucp1 was evaluated on the liver and gills. Highlighting that even at low concentrations permitted by Brazilian legislation, the RDT can have adverse effects on A. charrua.


Asunto(s)
Antioxidantes , Glicina , Glifosato , Herbicidas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Herbicidas/toxicidad , Glicina/análogos & derivados , Glicina/toxicidad , Proyectos Piloto , Fundulidae/genética , Expresión Génica/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Brasil , Branquias/metabolismo , Peces Killi
19.
Neurosci Lett ; 837: 137912, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39032801

RESUMEN

Glyphosate (Gly) is the active ingredient of several widely used herbicide formulations. Studies on Gly and glyphosate-based herbicide (GBH) exposure in different experimental models have suggested that the nervous system represented a key target for its toxicity, especially the prefrontal cortex (PFC). However, it is still unknown whether exposure to GBH affects higher brain functions dependent on PFC circuitry. The present work aimed to examine the effects of subtoxic doses of GBH on social cognition and cognitive flexibility as two functions belonging to higher brain function in mice. To do so, adult male mice were exposed daily to GBH by gavage at doses of 250 or 500 mg/kg for a sub-chronic period lasting 6 weeks. Then, mice were subjected to behavioral testing using the three-chamber and the Barnes maze paradigms. Our results indicate that GBH did not affect sociability. However, we found that GBH affects social cognition expressed by a lower discrimination index in the three-chamber test. Moreover, spatial memories evaluated during the probe trial, and cognitive flexibility evaluated during the reversal probe, were affected in mice exposed to GBH. Based on these results, exposure to subtoxic doses of GBH led to neurobehavioral alterations affecting the integrity of social cognition and cognitive flexibility functions. Finally, these data urge a thorough investigation of the cellular and molecular mechanisms underlying these alterations.


Asunto(s)
Cognición , Glicina , Glifosato , Herbicidas , Animales , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Masculino , Ratones , Cognición/efectos de los fármacos , Cognición Social , Aprendizaje por Laberinto/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Conducta Social
20.
Plant J ; 119(5): 2375-2384, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024389

RESUMEN

Weeds in agricultural settings continually adapt to stresses from ecological and anthropogenic sources, in some cases leading to resistant populations. However, consequences of repeated sub-lethal exposure of these stressors on fitness and stress "memory" over generations remain poorly understood. We measured plant performance over a transgenerational experiment with Arabidopsis thaliana where plants were exposed to sub-lethal stress induced by the herbicides glyphosate or trifloxysulfuron, stresses from clipping or shading in either one (G1) or four successive generations (G1-G4), and control plants that never received stress. We found that fourth-generation (G4) plants that had been subjected to three generations of glyphosate or trifloxysulfuron stress produced higher post-stress biomass, seed weight, and rosette area as compared to that produced by plants that experienced stress only in the first generation (G1). By the same measure, clipping and shade were more influential on floral development time (shade) and seed weight (clipping) but did not show responsive phenotypes for vegetative metrics after multiple generations. Overall, we found that plants exhibited more rapid transgenerational vegetative "stress memory" to herbicides while reproductive plasticity was stressor dependent and similar between clipping/shade and anthropogenic stressors. Our study suggests that maternal plant stress memory aids next-generation plants to respond and survive better under the same stressors.


Asunto(s)
Arabidopsis , Herbicidas , Herbivoria , Fenotipo , Estrés Fisiológico , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Herbicidas/farmacología , Herbicidas/toxicidad , Glicina/análogos & derivados , Glicina/farmacología , Glicina/toxicidad , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA