Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
J Microelectromech Syst ; 33(5): 543-549, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39364062

RESUMEN

Gold nanorods (GNRs) are one of the most promising biomaterial choices for the photothermal activation of neurons due to their relative biocompatibility, unique photothermal properties, and broad optical tunability through their synthetic shape control. While photothermal stimulation using randomly accumulated GNRs successfully demonstrates the potential treatment of functional neural disorders by modulating the neuronal activities using localized heating, there are limited demonstrations to translate this new concept into large-arrayed neural stimulations. In this paper, we report an arrayed PDMS micropillar platform in which GNRs are embedded as pixel-like, arrayed photothermal stimulators at the tips of the pillars. The proposed platform will be able to localize GNRs at predetermined pillar positions and create thermal stimulations using near-infrared (NIR) light. This will address the limitations of randomly distributed GNR-based approaches. Furthermore, a flexible PDMS pillar structure will create intimate interfaces on target cells. By characterizing the spatiotemporal temperature change in the platform with rhodamine B dye, we have shown that the localized temperature can be optically modulated within 4°C, which is in the range of temperature variation required for neuromodulation using NIR light. We envision that our proposed platform has the potential to be applied as a photothermal, neuronal stimulation interface with high spatiotemporal resolution.

2.
Int J Nanomedicine ; 19: 9973-9987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360036

RESUMEN

Introduction: Breast cancer ranks among the most prevalent cancers in women, characterized by significant morbidity, disability, and mortality. Presently, chemotherapy is the principal clinical approach for treating breast cancer; however, it is constrained by limited targeting capability and an inadequate therapeutic index. Photothermal therapy, as a non-invasive approach, offers the potential to be combined with chemotherapy to improve tumor cellular uptake and tissue penetration. In this research, a mesoporous polydopamine-coated gold nanorod nanoplatform, encapsulating doxorubicin (Au@mPDA@DOX), was developed. Methods: This nanoplatform was constructed by surface coating mesoporous polydopamine (mPDA) onto gold nanorods, and doxorubicin (DOX) was encapsulated in Au@mPDA owing to π-π stacking between mPDA and DOX. The dynamic diameter, zeta potential, absorbance, photothermal conversion ability, and drug release behavior were determined. The cellular uptake, cytotoxicity, deep penetration, and anti-tumor effects were subsequently investigated in 4T1 cells. After that, fluorescence imaging, photothermal imaging and pharmacodynamics studies were utilized to evaluate the anti-tumor effects in tumor-bearing mice model. Results: This nanoplatform exhibited high drug loading capacity, excellent photothermal conversion and, importantly, pH/photothermal dual-responsive drug release behavior. The in vitro results revealed enhanced photothermal-facilitated cellular uptake, drug release and tumor penetration of Au@mPDA@DOX under near-infrared irradiation. In vivo studies confirmed that, compared with monotherapy with either chemotherapy or photothermal therapy, the anti-tumor effects of Au@mPDA@DOX are synergistically improved. Conclusion: Together with good biosafety and biocompatibility, the Au@mPDA@DOX nanoplatform provides an alternative method for safe and synergistic treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina , Oro , Indoles , Nanotubos , Terapia Fototérmica , Polímeros , Animales , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/farmacocinética , Doxorrubicina/administración & dosificación , Femenino , Oro/química , Ratones , Indoles/química , Indoles/farmacología , Indoles/farmacocinética , Terapia Fototérmica/métodos , Línea Celular Tumoral , Nanotubos/química , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Polímeros/química , Ratones Endogámicos BALB C , Liberación de Fármacos , Terapia Combinada , Humanos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , Fototerapia/métodos
3.
Biomater Adv ; 166: 214056, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39388801

RESUMEN

Gold nanorods (AuNRs) are important photothermal therapeutic agents; however, a single therapy does not achieve satisfactory outcomes, and the synthesis process often leads to the adsorption of cetyltrimethylammonium bromide on the surface of AuNRs, which reduces its biocompatibility. Natural polyphenols are abundant in natural plants and have good biocompatibility. The metal-polyphenol network is formed by the coordination of metal ions and polyphenols, which has good drug loading, surface adhesion, and biocompatibility. In this study, the metal-polyphenol network structure formed by a transition metal (iron) and natural polyphenol tannic acid was used to modify the surface of gold nanorods (AuNRs@TF). Additionally, the surfaces of AuNRs were modified using the targeted functional molecule mercapto folic acid (AuNRs@TFF). The constructed composite nanomaterials AuNRs@TFF has good biocompatibility and tumor targeting ability. Tannic acid­iron degrades in the tumor microenvironment and releases iron ions that catalyze the Fenton reaction, thereby facilitating chemodynamic therapy. The good photo-thermal ability of AuNRs generate good photoacoustic signals to facilitate photoacoustic imaging mediation and enhances photothermal and chemodynamic therapy performance. This study expands on the application of AuNRs in the field of nanomedicine. The simple and effective design of AuNRs@TFF provides a strategy for the development of synergistic therapeutic agents for photothermal therapy and chemodynamic therapy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39428947

RESUMEN

Plasmon resonance using metal nanostructures enables the realization of high-performance optoelectronic devices via field enhancements in the vicinity of the metal nanostructure. This study proposes an ultrabroadband MoS2 photodetector based on the gap-mode plasmon of gold nanorods. The use of MoS2 as a gap spacer for the gap-mode plasmon effect and as a channel material for the photodetector is demonstrated. The proposed photodetector demonstrates superior performance, a high photoresponsivity of 2.8 A/W at a near-infrared wavelength of 1100 nm, and a fast response time of 17 µs. In addition to the gap-mode plasmon effect of the gold nanorod enhancing the photoresponsivity from 1.13 to 8.7 A/W, the lateral surface plasmon resonance of the gold nanorods enhances the absorption of the longitudinal mode of the gold nanorods (near-infrared to infrared range). Further, the gap-mode plasmon effect of the gold nanorods enhances the absorption of the transverse mode of the gold nanorods (visible range), thus realizing ultrabroadband photodetection. Therefore, the proposed device design strategy contributes significantly to overcoming the trade-off between photoresponsivity and response time.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39228174

RESUMEN

Alpha-synuclein oligomers play a crucial role in the early diagnosis of Parkinson's disease (PD). In this study, a mercaptoundecanoic acid (MUA)-capped gold nanorod (GNR)-coated and chitosan (CH)-immobilized fiber optic probe has shown considerable sensitivity of its detection. The proposed U-shaped fiber optic biosensor based on localized surface plasmon resonance (LSPR) was applied to detect α-syn oligomer (OA) biomarker. By analyzing OA concentrations, the biosensor achieved a limit of detection of (LOD) 11 pM within the concentration range of 10-100 pM and the sensitivity value was found as 502.69 Δλ/RIU. Upon analysis of the CV% (coefficient of variation) and accuracy/recovery values, it is revealed that the sensor successfully fulfilled the criteria for success, displaying accuracy/recovery values within the range of 80%-120% and CV% values below 20%. This sensor presents significant advantages, including high sensitivity, specificity, and ability to detect very low concentrations of OA. In conclusion, the suggested U-shaped fiber optic biosensor has the potential to be valuable in the early detection of PD from a clinical perspective.

6.
Nanomedicine ; 62: 102781, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163902

RESUMEN

Gold nanorods (GNR) produce heat upon irradiation with near-infrared light, enabling a tumor-targeted photothermal therapy. In this study, we prepared GNR coated with sulfated hyaluronic acid (sHA) with a binding affinity for CD44 via electrostatic interactions to deliver GNR to tumors efficiently and stably, and evaluated their usefulness for photothermal therapy. Cationic GNR modified with trimethylammonium groups electrostatically interacted with native HA or sHA with varying degrees of sulfation to form complexes. While GNR/HA was unstable in saline, GNR/sHA maintained the absorbance peak in the near-infrared region, particularly for GNR/sHA with higher degrees of sulfation. GNR/sHA exhibited an intense photothermal effect upon irradiation with near-infrared light. Furthermore, in vitro and in vivo studies revealed that GNR coated with sHA containing approximately 1.2 sulfated groups per HA unit could accumulate in CD44-positive tumors via an HA-specific pathway. These findings indicate the effectiveness of GNR/sHA as a tumor-targeted photothermal therapeutic agent.

7.
ACS Appl Mater Interfaces ; 16(34): 45763-45770, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39143515

RESUMEN

Chemical interface damping (CID) is a recently proposed plasmon-damping pathway based on the interfacial hot-electron transfer from metal to adsorbate molecules. However, the in situ reversible tuning of CID in single gold nanorods (AuNRs) has remained a considerable challenge. In this study, we used total internal reflection scattering microscopy and spectroscopy to investigate the CID induced by p-aminoazobenzene (p-AAB), which has fast photoisomerization characteristics, attached to single AuNRs. We demonstrated the in situ reversible tuning of CID in single AuNRs by switching between ultraviolet (UV, 365 nm) and visible (vis, 465 nm) irradiation to induce photoresponsive structural conversions between the cis and trans forms of p-AAB in ethanol, leading to different lowest unoccupied molecular orbital (LUMO) energies for both forms. The localized surface plasmon resonance (LSPR) line width was wide under vis irradiation but narrow under UV irradiation, indicating that hot electrons are more efficiently transferred to trans-p-AAB with a low LUMO energy level. We further investigated the in situ photoreversible tuning of CID by manipulating supramolecular host-guest interactions between cucurbit[8]uril (CB[8]) and p-AAB in the single AuNRs. Additionally, real-time in situ reversible tuning of CID in single AuNRs was achieved through photonic switching of the cis-trans forms of p-AAB inside CB[8]. The LSPR line width was narrow under vis irradiation but gradually widened under UV irradiation before narrowing again upon returning to vis irradiation, unlike the case with p-AAB only. These results can be ascribed to the fact that cis-p-AAB completely encapsulated within CB[8] in water is thermodynamically more favorable than trans-p-AAB. Therefore, we have discovered a new strategy for tuning the CID by performing p-AAB photoisomerization and adjusting the wavelength of incident light in single AuNRs. In addition, this study demonstrates that CID can be effectively applied to the development of biosensors to detect guest molecules and their structural changes inside the cavity of CB[8] in single AuNRs.

8.
Adv Funct Mater ; 34(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966003

RESUMEN

4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed. Here, we report on the fabrication of 3D printed shape memory bioplastics with photo-activated shape recovery. Protein-based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate and gold nanorods were developed for vat photopolymerization. These 3D printed bioplastics were mechanically deformed under high loads, and the proteins served as mechanoactive elements that unfolded in an energy-dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape-programmed state under ambient conditions. Subsequently, up to 99% shape recovery was achieved within 1 min of irradiation with near-infrared light. Mechanical characterization and small angle X-ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape-morphing devices for robotics and medicine.

9.
J Control Release ; 373: 105-116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992622

RESUMEN

Nanomedicines hold promise for the treatment of various diseases. However, treating cancer metastasis remains highly challenging. In this study, we synthesized gold nanorods (AuNRs) containing (α-GC), an immune stimulator, for the treatment of primary cancer, metastasis, and recurrence of the cancer. Therefore, the AuNR were coated with lipid bilayers loaded with α-GC (α-LA). Upon irradiation with 808 nm light, α-LA showed a temperature increase. Intra-tumoral injection of α-LA in mice and local irradiation of the 4T1 breast cancer tumor effectively eliminated tumor growth. We found that the presence of α-GC in α-LA activated dendritic cells and T cells in the spleen, which completely blocked the development of lung metastasis. In mice injected with α-LA for primary breast cancer treatment, we observed antigen-specific T cell responses and increased cytotoxicity against 4T1 cells. We conclude that α-LA is promising for the treatment of both primary breast cancer and its metastasis.


Asunto(s)
Neoplasias de la Mama , Oro , Inmunoterapia , Neoplasias Pulmonares , Ratones Endogámicos BALB C , Nanotubos , Fototerapia , Animales , Oro/química , Oro/administración & dosificación , Nanotubos/química , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Inmunoterapia/métodos , Fototerapia/métodos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos
10.
Eur J Med Chem ; 272: 116469, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704939

RESUMEN

Accurate diagnosis and effective antiviral treatments are urgently needed for the prevention and control of flu caused by influenza viruses. In this study, a novel oleanic acid (OA) functionalized gold nanorod OA-AuNP was prepared through a convenient ligand-exchange reaction. As hemagglutinin (HA) on the viral surface binds strongly to the multiple OA molecules on the surface of the nanoparticle, the prepared OA-AuNP was found to exhibit potent antiviral activity against a wide range of influenza A virus strains. Furthermore, the change in color resulting from the specific binding between HA and OA and the resultant aggregation of the OA-AuNP can be visually observed or measured by UV-vis spectra with a detection limit of 2 and 0.18 hemagglutination units (HAU), respectively, which is comparable to the commercially available influenza colloid gold rapid diagnostic kits. These findings demonstrate the potential of the OA-AuNP for the development of novel multivalent antiviral conjugates and the diagnosis of influenza virus.


Asunto(s)
Antivirales , Oro , Nanotubos , Oro/química , Nanotubos/química , Antivirales/farmacología , Antivirales/química , Virus de la Influenza A/efectos de los fármacos , Humanos , Nanopartículas del Metal/química , Estructura Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Pruebas de Sensibilidad Microbiana , Perros , Animales , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad
11.
Int J Biol Macromol ; 268(Pt 1): 131673, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642681

RESUMEN

Bacterial infections trigger inflammation and impede the closure of skin wounds. The misuse of antibiotics exacerbates skin infections by generating multidrug-resistant bacteria. In this study, we developed chemo-photothermal therapy (chemo-PTT) based on near-infrared (NIR)-irradiated chitosan/gold nanorod (GNR) clusters as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. The nanocomposites exhibited an average size of 223 nm with a surface charge of 36 mV. These plasmonic nanocomposites demonstrated on-demand and rapid hyperthermal action under NIR. The combined effect of positive charge and PTT by NIR-irradiated nanocomposites resulted in a remarkable inhibition rate of 96 % against planktonic MRSA, indicating a synergistic activity compared to chitosan nanoparticles or GNR alone. The nanocomposites easily penetrated the biofilm matrix. The combination of chemical and photothermal treatments by NIR-stimulated clusters significantly damaged the biofilm structure, eradicating MRSA inside the biomass. NIR-irradiated chitosan/GNR clusters increased the skin temperature of mice by 13 °C. The plasmonic nanocomposites induced negligible skin irritation in vivo. In summary, this novel nanosystem demonstrated potent antibacterial effects against planktonic and biofilm MRSA, showcasing the possible efficacy in treating skin infections.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Oro , Staphylococcus aureus Resistente a Meticilina , Nanotubos , Terapia Fototérmica , Quitosano/química , Quitosano/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Oro/química , Oro/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Nanotubos/química , Animales , Terapia Fototérmica/métodos , Ratones , Plancton/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/terapia , Nanocompuestos/química , Pruebas de Sensibilidad Microbiana
12.
Int J Nanomedicine ; 19: 3697-3714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681091

RESUMEN

Introduction: Over 75% of clinical microbiological infections are caused by bacterial biofilms that grow on wounds or implantable medical devices. This work describes the development of a new poly(diallyldimethylammonium chloride) (PDADMAC)/alginate-coated gold nanorod (GNR/Alg/PDADMAC) that effectively disintegrates the biofilms of Staphylococcus aureus (S. aureus), a prominent pathogen responsible for hospital-acquired infections. Methods: GNR was synthesised via seed-mediated growth method, and the resulting nanoparticles were coated first with Alg and then PDADMAC. FTIR, zeta potential, transmission electron microscopy, and UV-Vis spectrophotometry analysis were performed to characterise the nanoparticles. The efficacy and speed of the non-coated GNR and GNR/Alg/PDADMAC in disintegrating S. aureus-preformed biofilms, as well as their in vitro biocompatibility (L929 murine fibroblast) were then studied. Results: The synthesised GNR/Alg/PDADMAC (mean length: 55.71 ± 1.15 nm, mean width: 23.70 ± 1.13 nm, aspect ratio: 2.35) was biocompatible and potent in eradicating preformed biofilms of methicillin-resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) when compared to triclosan, an antiseptic used for disinfecting S. aureus colonisation on abiotic surfaces in the hospital. The minimum biofilm eradication concentrations of GNR/Alg/PDADMAC (MBEC50 for MRSA biofilm = 0.029 nM; MBEC50 for MSSA biofilm = 0.032 nM) were significantly lower than those of triclosan (MBEC50 for MRSA biofilm = 10,784 nM; MBEC50 for MRSA biofilm 5967 nM). Moreover, GNR/Alg/PDADMAC was effective in eradicating 50% of MRSA and MSSA biofilms within 17 min when used at a low concentration (0.15 nM), similar to triclosan at a much higher concentration (50 µM). Disintegration of MRSA and MSSA biofilms was confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy. Conclusion: These findings support the potential application of GNR/Alg/PDADMAC as an alternative agent to conventional antiseptics and antibiotics for the eradication of medically important MRSA and MSSA biofilms.


Asunto(s)
Alginatos , Antibacterianos , Biopelículas , Oro , Nanotubos , Polietilenos , Compuestos de Amonio Cuaternario , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Oro/química , Oro/farmacología , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Alginatos/química , Alginatos/farmacología , Nanotubos/química , Animales , Ratones , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Antibacterianos/farmacología , Antibacterianos/química , Polietilenos/química , Polietilenos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Línea Celular , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/química
13.
ACS Appl Mater Interfaces ; 16(10): 12217-12231, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480984

RESUMEN

Psoriasis, a prevalent chronic inflammatory skin ailment affecting approximately 2-3% of the global population, is characterized by persistent symptoms. Dexamethasone, a primary corticosteroid for treating psoriasis, demonstrates notable efficacy; however, its limited skin permeation results in documented adverse effects. To address this, the presented study employed a novel strategy to conjugate gold nanorod and dexamethasone and evaluate their potential for mitigating psoriatic inflammation using an imiquimod-induced mouse model and human skin cells. Our findings revealed enhanced cutaneous penetration of gold nanorod and dexamethasone conjugates compared with that of dexamethasone, owing to superior skin penetration. Gold nanorod and dexamethasone conjugates demonstrated an optimal pharmacological impact at minimal dosages without toxicity during extended use. To further enhance the effectiveness of gold nanorod and dexamethasone conjugates, 808 nm near-infrared laser irradiation, which reacts to gold, was additionally applied to achieve thermal elevation to expedite drug skin penetration. Supplementary laser irradiation at 808 nm significantly ameliorated psoriatic symptoms following deep gold nanorod and dexamethasone conjugates penetration. This corresponded with restored peroxisome proliferator-activated receptor-γ levels and accelerated dexamethasone release from the gold nanorod and dexamethasone conjugates complex. These findings highlight the potential of gold nanorod and dexamethasone conjugates to enhance drug penetration through dermal layers, thereby aiding psoriasis treatment. Moreover, its compatibility with photothermal therapy offers prospects for novel therapeutic interventions across various inflammatory skin disorders.


Asunto(s)
Nanotubos , Psoriasis , Animales , Ratones , Humanos , Terapia Fototérmica , Oro/farmacología , Oro/uso terapéutico , Psoriasis/tratamiento farmacológico , Dexametasona/farmacología , Dexametasona/uso terapéutico , Inflamación/tratamiento farmacológico
14.
J Pharm Sci ; 113(8): 2232-2244, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38492845

RESUMEN

Hyperthermia can be integrated with tumor-killing chemotherapy, radiotherapy and immunotherapy to give rise to an anti-tumor response. To this end, a nano-delivery system is built, which can connect hyperthermia and immunotherapy. On this basis, the impact of such a combination on the immune function of dendritic cells (DCs) is explored. The core of this system is the photothermal material gold nanorod (GNR), and its surface is covered with a silica shell. Additionally, it also forms a hollow mesoporous structure using the thermal etching approach, followed by modification of targeted molecule folic acid (FA) on its surface, and eventually forms a hollow mesoporous silica gold nanorod (GNR@void@mSiO2) modified by FA. GNR@void@mSiO2-PEG-FA (GVS-FA) performs well in photothermal properties, drug carriage and release and tumor targeting performance. Furthermore, the thermotherapy of tumor cells through in vitro NIR irradiation can directly kill tumor cells by inhibiting proliferation and inducing apoptosis. GVS-FA loaded with imiquimod (R837) can be used as a adjuvant to enhance the immune function of DCs through hyperthermia.


Asunto(s)
Células Dendríticas , Oro , Inmunoterapia , Nanotubos , Neoplasias , Terapia Fototérmica , Oro/química , Nanotubos/química , Inmunoterapia/métodos , Terapia Fototérmica/métodos , Humanos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Neoplasias/terapia , Neoplasias/inmunología , Porosidad , Línea Celular Tumoral , Terapia Combinada/métodos , Animales , Imiquimod/administración & dosificación , Ácido Fólico/química , Ratones , Silicio/química , Dióxido de Silicio/química , Apoptosis/efectos de los fármacos
15.
Chembiochem ; 25(10): e202400009, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38545627

RESUMEN

Calcium (Ca2+) ions play a crucial role in the functioning of neurons, governing various aspects of neuronal activity such as rapid modulation and alterations in gene expression. Ca2+ signaling has a significant impact on the development of diseases and the impairment of neuronal functions. Herein, the study reports a Ca2+ ion sensor in neuronal cells using a gold nanorod. The gold nanorod (GA-GNR) conjugated glutamic acid developed in the study was used as a nano-bio probe for the experimental and in vitro detection of calcium. The nanosensor is colloidally stable, preserves plasmonic properties, and shows good viability in neuronal cells, as well as promoting neuron cell line growth. The cytotoxicity and cell penetration of the nanosensor are studied using Raman spectroscopy, brightfield and darkfield microscopy imaging, and MTT assays. The quantification of Ca2+ ions in neuronal cells is determined by monitoring the surface plasmon resonance (SPR) of the GA-GNR. The change in the intensity profile in the presence of Ca2+ incubated neurons was effectively used to develop a portable prototype of an optical Ca2+ sensor, proposing it as a tool for neurodegenerative disease diagnosis and neuromodulation evaluation.


Asunto(s)
Calcio , Ácido Glutámico , Oro , Nanotubos , Neuronas , Oro/química , Calcio/metabolismo , Calcio/análisis , Neuronas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Nanotubos/química , Ácido Glutámico/análisis , Resonancia por Plasmón de Superficie , Animales , Técnicas Biosensibles , Humanos , Iones/análisis , Iones/química , Supervivencia Celular/efectos de los fármacos
16.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396695

RESUMEN

In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate the photothermal therapeutic effects of four different sizes of gold nanorods (GNRs). The results show that the uptake of short GNRs with aspect ratios 3.3-3.5 by cells is higher than that of GNRs with aspect ratios 4-5.5. Using a laser with single pulse energy as low as 28 pJ laser for 20 s can induce the death of liver cancer cells co-cultured with short GNRs. Long GNRs required twice the energy to achieve the same therapeutic effect. The dual-temperature model is used to simulate the photothermal response of intracellular clusters irradiated by a laser. It is found that small GNRs are easier to compact because of their morphological characteristics, and the electromagnetic coupling between GNRs is better, which increases the internal field enhancement, resulting in higher local temperature. Compared with a single GNR, GNR clusters are less dependent on polarization and wavelength, which is more conducive to the flexible selection of excitation laser sources.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Nanotubos , Terapia Fototérmica , Oro/farmacología , Hipertermia Inducida/métodos , Nanopartículas del Metal/uso terapéutico
17.
ACS Nano ; 18(4): 3575-3582, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235729

RESUMEN

The applications of ultrasound imaging are often limited due to low contrast, which arises from the comparable acoustic impedance of normal tissues and disease sites. To improve the low contrast, we propose a contrast agent called gas-generating laser-activatable nanorods for contrast enhancement (GLANCE), which enhances ultrasound imaging contrast in two ways. First, GLANCE absorbs near-infrared lasers and generates nitrogen gas bubbles through the photocatalytic function of gold nanorods and photolysis of azide compounds. These gas bubbles decrease the acoustic impedance and highlight the injection site from the surrounding tissues. Second, GLANCE exhibits photoacoustic properties owing to the gold nanorods that emit photoacoustic signals upon laser irradiation. Additionally, GLANCE offers several benefits for biomedical applications such as nanometer-scale size, adjustable optical absorption, and biocompatibility. These distinctive features of GLANCE would overcome the limitations of conventional ultrasound imaging and facilitate the accurate diagnosis of various diseases.


Asunto(s)
Nanotubos , Técnicas Fotoacústicas , Oro , Técnicas Fotoacústicas/métodos , Diagnóstico por Imagen , Ultrasonografía/métodos , Medios de Contraste
18.
Phys Med Biol ; 69(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38286017

RESUMEN

Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.


Asunto(s)
Nanopartículas del Metal , Nanotubos , Fármacos Sensibilizantes a Radiaciones , Oro/farmacología , Oro/química , Nanopartículas del Metal/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/química , Simulación por Computador
19.
Pharmaceutics ; 16(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276508

RESUMEN

Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer patients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer nanotheranostics. Herein, we constructed a new type of mesoporous silica-layered gold nanorod core@silver shell nanostructures loaded with methylene blue (GNR@Ag@mSiO2-MB) as a multifunctional nanotheranostic agent for intracellular SERS imaging and phototherapy. The synthesized GNR@Ag@mSiO2-MB nanostructures possessed a uniform core-shell structure, strong near-infrared (NIR) absorbance, photothermal conversion efficiency (65%), dye loading ability, SERS signal, and Raman stability under phototherapy conditions. Under single 785 nm NIR laser irradiation, the intracellular GNR@Ag@mSiO2-MB nanostructures were dramatically decreased to <9%, which showed excellent photothermal and photodynamic effects toward cancer cell killing, indicating that the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) of the GNR@Ag@mSiO2-MB nanostructures could greatly enhance the therapeutic efficacy of cancer cell death. GNR@Ag@mSiO2-MB nanostructures demonstrated a strong Raman signal at 450 and 502 cm-1, corresponding to the δ(C-N-C) mode, suggesting that the Raman bands of GNR@Ag@mSiO2-MB nanostructures were more efficient to detect CT-26 cell SERS imaging with high specificity. Our results indicate that GNR@Ag@mSiO2-MB nanostructures offer an excellent multifunctional nanotheranostic platform for SERS imaging and synergistic anticancer phototherapy in the future.

20.
Biosens Bioelectron ; 246: 115871, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38035516

RESUMEN

Matrix metalloproteinases (MMPs) are attractive biomarkers for cancer diagnosis and treatment, while it is still a challenge to precise analysis of MMP activities owing to their very low abundance in the biological samples, especially at the early stages of tumors. Herein, a peptide microarray-based metal-enhanced fluorescence assay (PMMEFA) is proposed to simultaneously detect MMP-1, -2, -3, -7, -9, and -13 activities. The assay involves immobilization of Förster resonance energy transfer dye pair decorated peptides (FRET-peptides) on a poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) coated gold nanorod modified glass slide (GNR@P(GMA-HEMA)). To fabricate the GNR@P(GMA-HEMA) slide, GNRs are self-assembled onto an aminated glass slide, and a polymer brush (P(GMA-HEMA)) is grown through a surface-initiated atom transfer radical polymerization reaction (SI-ATRP). Upon the addition of MMPs, the FRET pairs are broken due to the specific cleavage of FRET-peptides by enzymes, resulting in the recovery of fluorescence signals and further enhancement by the MEF of GNRs. The fluorescence recovery degree provides a direct indicator for MMP activity. The PMMEFA exhibits excellent sensitivity, which enables to detect MMP-1, -2, -3, -7, -9, and -13 activities, with low limits of detection (LODs) of 1.7 fg mL-1, 0.3 fg mL-1, 2.0 fg mL-1, 1.8 fg mL-1, 2.2 fg mL-1 and 14.0 fg mL-1, respectively. To substantiate the practicability of PMMEFA, MMP activities were measured in a range of matrices, encompassing cell culture medium, serum, and tumor tissue homogenate, and MMP activities can be detected only in 0.15 µL serum and 0.025 mg tumor tissue.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Neoplasias , Humanos , Polímeros , Metaloproteinasa 1 de la Matriz , Oro , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA