RESUMEN
Alzheimer's disease is associated with the misfolding and aggregation of two distinct proteins, beta-amyloid and tau. Previously, it has been shown that activation of the cytoprotective heat shock response (HSR) pathway reduces beta-amyloid toxicity. Here, we show that activation of the HSR is also protective against tau toxicity in a cell-autonomous manner. Overexpression of HSF-1, the master regulator of the HSR, ameliorates the motility defect and increases the lifespan of transgenic C. elegans expressing human tau. By contrast, RNA interference of HSF-1 exacerbates the motility defect and shortens lifespan. Targeting regulators of the HSR also affects tau toxicity. Additionally, two small-molecule activators of the HSR, Geranylgeranylacetone (GGA) and Arimoclomol (AC), have substantial beneficial effects. Taken together, this research expands the therapeutic potential of HSR manipulation to tauopathies and reveals that the HSR can impact both beta-amyloid and tau proteotoxicity in Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Caenorhabditis elegans , Respuesta al Choque Térmico , Animales , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Diterpenos/farmacología , Respuesta al Choque Térmico/efectos de los fármacos , Longevidad/efectos de los fármacos , Proteínas tau/metabolismo , Factores de TranscripciónRESUMEN
The Heat Shock Factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here we discuss "the heat shock factor code" - our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications (PTMs), and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
RESUMEN
Nuclear transport is the basis for the biological reaction of eukaryotic cells, as it is essential to coordinate nuclear and cytoplasmic events separated by nuclear envelope. Although we currently understand the basic molecular mechanisms of nuclear transport in detail, many unexplored areas remain. For example, it is believed that the regulations and biological functions of the nuclear transport receptors (NTRs) highlights the significance of the transport pathways in physiological contexts. However, physiological significance of multiple parallel transport pathways consisting of more than 20 NTRs is still poorly understood, because our knowledge of each pathway, regarding their substrate information or how they are differently regulated, is still limited. In this report, we describe studies showing how nuclear transport systems in general are affected by temperature rises, namely, thermal stress or heat stress. We will then focus on Importin α family members and unique transport factor Hikeshi, because these two NTRs are affected in heat stress. Our present review will provide an additional view to point out the importance of diversity of the nuclear transport pathways in eukaryotic cells.
Asunto(s)
Transporte Activo de Núcleo Celular , Respuesta al Choque Térmico , Humanos , Respuesta al Choque Térmico/fisiología , Animales , Núcleo Celular/metabolismo , alfa Carioferinas/metabolismo , alfa Carioferinas/genéticaRESUMEN
BACKGROUND: Heat shock transcription factors (HSFs) play crucial roles in the development of malignancies. However, the specific roles of HSFs in hepatocellular carcinoma (HCC) have yet to be fully elucidated. AIMS: To explore the involvement of the HSF family, particularly HSF1, in the progression and prognosis of HCC. MATERIALS & METHODS: We conducted a thorough analysis of HSF expression and copy number variations across various cancer datasets. Specifically focusing on HSF1, we examined its expression levels and prognostic implications in HCC. In vitro and in vivo experiments were carried out to evaluate the impact of HSF1 on liver cancer cell proliferation. Additionally, we utilized CUT&Tag, H3K27 acetylation enrichment, and RNA sequencing (RNA-seq) to investigate the super-enhancer (SE) regulatory landscapes of HSF1 in liver cancer cell lines. RESULTS: HSF1 expression is elevated in HCC and is linked to poor prognosis in several datasets. HSF1 stimulates liver cancer cell proliferation both in vitro and in vivo, partly through modulation of H3K27ac levels, influencing enhancer distribution. Mechanistically, our findings demonstrate that HSF1 transcriptionally activates MYCN expression by binding to its promoter and SE elements, thereby promoting liver cancer cell proliferation. Moreover, increased MYCN expression was detected in HCC tumors and correlated with unfavorable patient outcomes. DISCUSSION: Our study sheds light on previously unexplored aspects of HSF1 biology, identifying it as a transcription factor capable of shaping the epigenetic landscape in the context of HCC. Given HSF1's potential as an epigenetic regulator, targeting the HSF1-MYCN axis could open up new therapeutic possibilities for HCC treatment. CONCLUSION: The HSF1-MYCN axis constitutes a transcription-dependent regulatory mechanism that may function as both a prognostic indicator and a promising therapeutic target in liver cancer. Further exploration of this axis could yield valuable insights into novel treatment strategies for HCC.
Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Progresión de la Enfermedad , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción del Choque Térmico , Neoplasias Hepáticas , Proteína Proto-Oncogénica N-Myc , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Animales , Línea Celular Tumoral , Pronóstico , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Ratones Desnudos , Regiones Promotoras GenéticasRESUMEN
BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a lethal primary liver tumor characterized by clinical aggressiveness, poor prognosis, and scarce therapeutic possibilities. Therefore, new treatments are urgently needed to render this disease curable. Since cumulating evidence supports the oncogenic properties of the Heat Shock Factor 1 (HSF1) transcription factor in various cancer types, we investigated its pathogenetic and therapeutic relevance in iCCA. METHODS: Levels of HSF1 were evaluated in a vast collection of iCCA specimens. The effects of HSF1 inactivation on iCCA development in vivo were investigated using three established oncogene-driven iCCA mouse models. In addition, the impact of HSF1 suppression on tumor cells and tumor stroma was assessed in iCCA cell lines, human iCCA cancer-associated fibroblasts (hCAFs), and patient-derived organoids. RESULTS: Human preinvasive, invasive, and metastatic iCCAs displayed widespread HSF1 upregulation, which was associated with a dismal prognosis of the patients. In addition, hydrodynamic injection of a dominant-negative form of HSF1 (HSF1dn), which suppresses HSF1 activity, significantly delayed cholangiocarcinogenesis in AKT/NICD, AKT/YAP, and AKT/TAZ mice. In iCCA cell lines, iCCA hCAFs, and patient-derived organoids, administration of the HSF1 inhibitor KRIBB-11 significantly reduced proliferation and induced apoptosis. Cell death was profoundly augmented by concomitant administration of the Bcl-xL/Bcl2/Bcl-w inhibitor ABT-263. Furthermore, KRIBB-11 reduced mitochondrial bioenergetics and glycolysis of iCCA cells. CONCLUSIONS: The present data underscore the critical pathogenetic, prognostic, and therapeutic role of HSF1 in cholangiocarcinogenesis.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Factores de Transcripción del Choque Térmico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/tratamiento farmacológico , Humanos , Animales , Ratones , Pronóstico , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proliferación CelularRESUMEN
Ferroptosis, an iron-dependent form of cell death, plays a crucial role in the progression of liver injury in Wilson's disease (WD). Gandouling (GDL) has emerged as a potential therapeutic agent for preventing and treating liver injury in WD. However, the precise mechanisms by which GDL mitigates ferroptosis in WD liver injury remain unclear. In this study, we discovered that treating Toxic Milk (TX) mice with GDL effectively decreased liver copper content, corrected iron homeostasis imbalances, and lowered lipid peroxidation levels, thereby preventing ferroptosis and improving liver injury. Bioinformatics analysis and machine learning algorithms identified Hspb1 as a pivotal regulator of ferroptosis. GDL treatment significantly upregulated the expression of HSPB1 and its upstream regulatory factor HSF1, thereby activating the HSF1/HSPB1 pathway. Importantly, inhibition of this pathway by NXP800 reversed the protective effects of GDL on ferroptosis in the liver of TX mice. In conclusion, GDL shows promise in alleviating liver injury in WD by inhibiting ferroptosis through modulation of the HSF1/HSPB1 pathway, suggesting its potential as a novel therapeutic agent for treating liver ferroptosis in WD.
Asunto(s)
Ferroptosis , Factores de Transcripción del Choque Térmico , Degeneración Hepatolenticular , Hígado , Chaperonas Moleculares , Transducción de Señal , Ferroptosis/efectos de los fármacos , Animales , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Ratones , Degeneración Hepatolenticular/tratamiento farmacológico , Degeneración Hepatolenticular/metabolismo , Degeneración Hepatolenticular/patología , Chaperonas Moleculares/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Transducción de Señal/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Modelos Animales de Enfermedad , Masculino , Hierro/metabolismo , Cobre/metabolismo , Ratones Endogámicos C57BL , HumanosRESUMEN
Pseudorabies virus is a swine alpha-herpesvirus. We demonstrated that alpha-herpesvirus infection downregulates HSF1, a master transcription factor in the heat shock response. The serine/threonine protein kinase activity of late viral protein UL13 is indispensable for HSF1 depletion and phosphorylation, and UL13 does not degrade HSF1 posttranslationally but inhibits the HSF1 mRNA level. Importantly, UL13 increased HSF1 activity even though it reduced HSF1 mRNA. Furthermore, viral replication markedly decreased in the HSF1 knockout cell line or in the presence of an HSF1-specific inhibitor. Interestingly, HSF1 knockout accelerated the activation of NF-κB and p38MAPK. The K96 loci of UL13 are important to induce high levels of IL-6, TNF-α, and IL-ß cytokines while playing a crucial role in promoting mild interstitial pneumonia, liver necrosis, and severe inflammatory cell infiltration in the footpad. Thus, UL13 steers the heat shock response to promote viral replication and the inflammatory response. IMPORTANCE: PRV is a ubiquitous pathogen that infects a variety of mammals, such as pigs, ruminants, carnivores, and rodents as well as human beings, causing enormous economic losses in the swine industry. Here, we employed PRV as a model to determine the relationship between α-herpesvirus and the inflammatory response. Overall, our findings indicated that PRV infection inhibits the level of HSF1 mRNA via the serine/threonine protein kinase activity of UL13. Additionally, we discovered that HSF1 was involved in NF-κB activation upon PRV infection. PRV UL13 orchestrates the level of HSF1 mRNA, HSF1 protein phosphorylation, and priming of the inflammatory response. Our study reveals a novel mechanism employed by UL13 serine/threonine protein kinase activity to promote the inflammatory response, providing novel clues for therapy against alpha-herpesvirus infection.
RESUMEN
Heat shock factor 2 (HSF2) is a versatile transcription factor that regulates gene expression under stress conditions, during development, and in disease. Despite recent advances in characterizing HSF2-dependent target genes, little is known about the protein networks associated with this transcription factor. In this study, we performed co-immunoprecipitation coupled with mass spectrometry analysis to identify the HSF2 interactome in mouse testes, where HSF2 is required for normal sperm development. Endogenous HSF2 was discovered to form a complex with several adhesion-associated proteins, a finding substantiated by mass spectrometry analysis conducted in human prostate carcinoma PC-3 cells. Notably, this group of proteins included the focal adhesion adapter protein talin-1 (TLN1). Through co-immunoprecipitation and proximity ligation assays, we demonstrate the conservation of the HSF2-TLN1 interaction from mouse to human. Additionally, employing sequence alignment analyses, we uncovered a TLN1-binding motif in the HSF2 C terminus that binds directly to multiple regions of TLN1 in vitro. We provide evidence that the 25 C-terminal amino acids of HSF2, fused to EGFP, are sufficient to establish a protein complex with TLN1 and modify cell-cell adhesion in human cells. Importantly, this TLN1-binding motif is absent in the C-terminus of a closely related HSF family member, HSF1, which does not form a complex with TLN1. These results highlight the unique molecular characteristics of HSF2 in comparison to HSF1. Taken together, our data unveil the protein partners associated with HSF2 in a physiologically relevant context and identifies TLN1 as the first adhesion-related HSF2-interacting partner.
Asunto(s)
Factores de Transcripción del Choque Térmico , Unión Proteica , Proteómica , Talina , Talina/metabolismo , Talina/genética , Humanos , Animales , Ratones , Masculino , Proteómica/métodos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Adhesiones Focales/metabolismo , Adhesiones Focales/genética , Células PC-3 , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Choque TérmicoRESUMEN
Fish retinal ganglion cells (RGCs) can regenerate after optic nerve lesions (ONLs). We previously reported that heat shock factor 1 (HSF1) and Yamanaka factors increased in the zebrafish retina 0.5-24 h after ONLs, and they led to cell survival and the transformation of neuro-stem cells. We also showed that retinoic acid (RA) signaling and transglutaminase 2 (TG2) were activated in the fish retina, performing neurite outgrowth 5-30 days after ONLs. In this study, we found that RA signaling and TG2 increased within 0.5 h in the zebrafish retina after ONLs. We examined their interaction with the TG2-specific morpholino and inhibitor due to the significantly close initiation time of TG2 and HSF1. The inhibition of TG2 led to the complete suppression of HSF1 expression. Furthermore, the results of a ChIP assay with an anti-TG2 antibody evidenced significant anti-TG2 immunoprecipitation of HSF1 genome DNA after ONLs. The inhibition of TG2 also suppressed Yamanaka factors' gene expression. This rapid increase in TG2 expression occurred 30 min after the ONLs, and RA signaling occurred 15 min before this change. The present study demonstrates that TG2 regulates Yamanaka factors via HSF1 signals in the acute phase of fish optic nerve regeneration.
Asunto(s)
Factores de Transcripción del Choque Térmico , Regeneración Nerviosa , Nervio Óptico , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Pez Cebra , Animales , Pez Cebra/genética , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo , Regeneración Nerviosa/genética , Nervio Óptico/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Tretinoina/farmacología , Tretinoina/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Células Ganglionares de la Retina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/genética , Transducción de SeñalRESUMEN
According to the World Health Organization in 2022, 2.3 million women were diagnosed with breast cancer. Investigating the interaction networks between Bcl-2-associated athanogene (Bag)-1 and other chaperone proteins may further the current understanding of the regulation of protein homeostasis in breast cancer cells and contribute to the development of treatment options. The present study aimed to determine the interactions between Bag-1 and heat shock proteins (HSPs); namely, HSP90, HSP70 and HSP27, to elucidate their role in promoting heat shock factor-1 (HSF1)-dependent survival of breast cancer cells. HER2-negative (MCF-7) and HER2-positive (BT-474) cell lines were used to examine the impact of Bag-1 expression on HSF1 and HSPs. We demonstrated that Bag-1 overexpression promoted HER2 expression in breast cancer cells, thereby resulting in the concurrent constitutive activation of the HSF1-HSP axis. The activation of HSP results in the stabilization of several tumor-promoting HSP clients such as AKT, mTOR and HSF1 itself, which substantially accelerates tumor development. Our results suggest that Bag-1 can modulate the chaperone activity of HSPs, such as HSP27, by directly or indirectly regulating the phosphorylation of HSF1. This modulation of chaperone activity can influence the activation of genes involved in cellular homeostasis, thereby protecting cells against stress.
Asunto(s)
Neoplasias de la Mama , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico , Humanos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Fosforilación , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Células MCF-7 , Proteínas de Unión al ADN , Factores de TranscripciónRESUMEN
Heat Shock Factor 1 (HSF1) is best known as the master transcriptional regulator of the heat-shock response (HSR), a conserved adaptive mechanism critical for protein homeostasis (proteostasis). Combining a genome-wide RNAi library with an HSR reporter, we identified Jumonji domain-containing protein 6 (JMJD6) as an essential mediator of HSF1 activity. In follow-up studies, we found that JMJD6 is itself a noncanonical transcriptional target of HSF1 which acts as a critical regulator of proteostasis. In a positive feedback circuit, HSF1 binds and promotes JMJD6 expression, which in turn reduces heat shock protein 70 (HSP70) R469 monomethylation to disrupt HSP70-HSF1 repressive complexes resulting in enhanced HSF1 activation. Thus, JMJD6 is intricately wired into the proteostasis network where it plays a critical role in cellular adaptation to proteotoxic stress.
Asunto(s)
Proteínas HSP70 de Choque Térmico , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico , Histona Demetilasas con Dominio de Jumonji , Proteostasis , Humanos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteostasis/fisiología , Retroalimentación Fisiológica , Adaptación Fisiológica , Células HEK293 , Estrés ProteotóxicoRESUMEN
Heat shock factor 1 (HSF1), an essential transcription factor for stress response, is exploited by various tumors to facilitate their initiation, progression, invasion, and migration. Amplification of HSF1 is widely regarded as an indicator in predicting cancer severity, the likelihood of treatment failure and reduced patient survival. Notably, HSF1 is markedly amplified in 40% of pancreatic cancer (PC), which typically have limited treatment options. HSF1 has been proven to be a promising therapeutic target for multiple cancers. However, a direct small molecule HSF1 inhibitor with sufficient bioactivity and reliable safety has not been developed clinically. In this study, we successfully established a high-throughput screening system utilizing luciferase reporter assay specifically designed for HSF1, which leads to the discovery of a potent small molecule inhibitor targeting HSF1. Homoharringtonine (HHT) selectively inhibited PC cell viability with high HSF1 expression and induced a markedly stronger tumor regression effect in the subcutaneous xenograft model than the comparator drug KRIBB11, known for its direct action on HSF1. Moreover, HHT shows promise in countering the resistance encountered with HSP90 inhibitors, which have been observed to increase heat shock response intensity in clinical trials. Mechanistically, HHT directly bound to HSF1, suppressing its expression and thereby inhibiting transcription of HSF1 target genes. In conclusion, our work presents a preclinical discovery and validation for HHT as a HSF1 inhibitor for PC treatment.
RESUMEN
The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.
Asunto(s)
Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Condensados Biomoleculares/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , FosforilaciónRESUMEN
Heat shock factor binding protein 1 (HSBP1) is known to regulate the activity of heat shock factor 1 (HSF1) and the early development of organisms. To understand the involvement of HSBP1 in the heat shock response and embryonic and larval development of Pacific abalone (Haliotis discus hannai), the Hdh-HSBP1 gene was sequenced from the digestive gland (DG) tissue. The full-length sequence of Hdh-HSBP1 encompassed 738 nucleotides, encoding an 8.42 kDa protein consisting of 75 deduced amino acids. The protein contains an HSBP1 domain and a coiled-coil domain, which are conserved features in the HSBP1 protein family. Protein-protein molecular docking revealed that the coiled-coil region of Hdh-HSBP1 binds to the coiled-coil region of Hdh-HSF1. Tissue expression analysis demonstrated that the highest Hdh-HSBP1 expression occurred in the DG, whereas seasonal expression analysis revealed that this gene was most highly expressed in summer. In heat-stressed abalone, the highest expression of Hdh-HSBP1 occurred at 30 °C. Moreover, time-series analysis revealed that the expression of this gene began to increase significantly at 6 h post-heat stress, with higher expression observed at 12 h and 24 h post-heat stress. Furthermore, Hdh-HSBP1 mRNA expression showed a link to ROS production. Additionally, the expression of Hdh-HSBP1 showed significantly higher expression in the early stages of embryonic development in Pacific abalone. These results suggest that Hdh-HSBP1 plays a crucial role in the stress physiology of Pacific abalone by interacting with Hdh-HSF1, as well as its embryonic development.
Asunto(s)
Secuencia de Aminoácidos , Gastrópodos , Respuesta al Choque Térmico , Filogenia , Animales , Gastrópodos/genética , Alineación de Secuencia/veterinaria , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica , Secuencia de Bases , Simulación del Acoplamiento MolecularRESUMEN
The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in Caenorhabditis elegans We previously uncovered a pathway that links the integrity of developing embryos to somatic health in reproductive adults. Here, we show that the nuclear receptor NHR-49, an ortholog of mammalian peroxisome proliferator-activated receptor α (PPARα), regulates stress resilience and proteostasis downstream from embryo integrity and other pathways that influence lipid homeostasis and upstream of HSF-1. Disruption of the vitelline layer of the embryo envelope, which activates a proteostasis-enhancing intertissue pathway in somatic cells, triggers changes in lipid catabolism gene expression that are accompanied by an increase in fat stores. NHR-49, together with its coactivator, MDT-15, contributes to this remodeling of lipid metabolism and is also important for the elevated stress resilience mediated by inhibition of the embryonic vitelline layer. Our findings indicate that NHR-49 also contributes to stress resilience in other pathways known to change lipid homeostasis, including reduced insulin-like signaling and fasting, and that increased NHR-49 activity is sufficient to improve proteostasis and stress resilience in an HSF-1-dependent manner. Together, our results establish NHR-49 as a key regulator that links lipid homeostasis and cellular resilience to proteotoxic stress.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Metabolismo de los Lípidos , Proteostasis , Receptores Citoplasmáticos y Nucleares , Reproducción , Transducción de Señal , Estrés Fisiológico , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Metabolismo de los Lípidos/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Reproducción/genética , Reproducción/fisiología , Complejo Mediador/genética , Complejo Mediador/metabolismoRESUMEN
OBJECTIVE: Circular RNAs (circRNAs) are involved in the development of human cancers, including cervical cancer (CC). However, the role and mechanism of circ_0006789 (circSLC25A43) in CC are unclear. The purpose of this study was to investigate the functional role of circ_0006789 in CC. METHODS: The expression of circ_0006789 in CC tissues and cell lines was examined by RT-qPCR. The characterization of circ_0006789 in CC cells was verified by subcellular localisation, actinomycin D assay, and RNase R assay. After circ_0006789 was knocked down in CC cell lines, the proliferation, apoptosis, migration and invasion of CC cells were assessed by CCK-8 method, flow cytometry, and Transwell assay. RIP assay, FISH assay, dual luciferase reporter gene assay and Western blot were used to investigate the regulatory mechanism between circ_0006789, miR-615-5p and heat shock factor 1 (HSF1). RESULTS: circ_0006789 was upregulated in CC tissues and cell lines. CC cells were inhibited in their proliferation, migration, and invasion, as well as promoted to apoptosis when circ_0006789 was knocked down. It was found that circ_0006789 targeted miR-615-5p, and miR-615-5p expression was inversely correlated with circ_0006789 expression. Furthermore, HSF1 was a target gene of miR-615-5p. Furthermore, the suppressive effects on HeLa cells mediated by circ_0006789 knockdown were counter-balanced when miR-615-5p was knocked down and HSF1 was overexpressed. Mechanistically, circ_0006789 was found to promote CC development by reducing miR-615-5p and increasing HSF1 expressions. CONCLUSION: circ_0006789 accelerates CC development via the miR-615-5p/HSF1 axis.
RESUMEN
Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.
Asunto(s)
Amiloidosis , Factores de Transcripción del Choque Térmico , Riñón , Ratones Noqueados , Respuesta de Proteína Desplegada , Animales , Amiloidosis/metabolismo , Amiloidosis/genética , Amiloidosis/patología , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Ratones , Riñón/patología , Riñón/metabolismo , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Modelos Animales de Enfermedad , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/genética , Enfermedades Renales/etiología , Ratones Endogámicos C57BLRESUMEN
Heat shock can be a lethal stressor. Previously, we described a CUL-6/cullin-ring ubiquitin ligase complex in the nematode Caenorhabditis elegans that is induced by intracellular intestinal infection and proteotoxic stress and that promotes improved survival upon heat shock (thermotolerance). Here, we show that CUL-6 promotes thermotolerance by targeting the heat shock protein HSP-90 for degradation. We show that CUL-6-mediated lowering of HSP-90 protein levels, specifically in the intestine, improves thermotolerance. Furthermore, we show that lysosomal function is required for CUL-6-mediated promotion of thermotolerance and that CUL-6 directs HSP-90 to lysosome-related organelles upon heat shock. Altogether, these results indicate that a CUL-6 ubiquitin ligase promotes organismal survival upon heat shock by promoting HSP-90 degradation in intestinal lysosomes. Thus, HSP-90, a protein commonly associated with protection against heat shock and promoting degradation of other proteins, is itself degraded to protect against heat shock.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas HSP90 de Choque Térmico , Lisosomas , Termotolerancia , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cullin/metabolismo , Respuesta al Choque Térmico , Proteínas HSP90 de Choque Térmico/metabolismo , Intestinos , Lisosomas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.