Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
ALTEX ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39150754

RESUMEN

AcutoX is a human in vitro test method for the evaluation of acute oral toxicity, developed using a library of 67 curated test chemicals. These chemicals cover a wide variety of chemistries, industrial sectors, rodent toxicities, and all EPA and GHS hazard categories. The test uses two different cytotoxicity endpoints (Neutral Red uptake and MTT metabolism), performed both in the presence and absence of a pooled human liver extract (S9), to produce four EC50 values. The EC50 values are used in prediction models to assign a "highly toxic" and "low toxicity" category for both EPA and GHS classification, which can be further refined to assign a hazard category. The binary "highly toxic" / "low toxicity" prediction model has an accuracy of 73.8% and 63.1% for EPA and GHS, respectively, with the subsequent hazard categorization offering a protective prediction (correct or higher category) in 90.0% and 93.3% of cases, respectively. Moreover, the AcutoX test can identify chemicals activated or detoxified by liver metabolism.


AcutoX is a human-relevant laboratory test that can help to determine the toxicity of a chemical to human health if a chemical was to be ingested. The AcutoX test does not use animal models, or any components derived from animals, and contains a function that mimics human metabolism. Over 60 chemicals of varying degrees of known toxicity were run through the AcutoX test and the results were compared to widely available toxicity data that was obtained in animal models. The data comparisons revealed that the AcutoX test could correctly predict the safety of a significant number of chemicals.

2.
Crit Rev Toxicol ; 53(7): 385-411, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37646804

RESUMEN

Chemical regulatory authorities around the world require systemic toxicity data from acute exposures via the oral, dermal, and inhalation routes for human health risk assessment. To identify opportunities for regulatory uses of non-animal replacements for these tests, we reviewed acute systemic toxicity testing requirements for jurisdictions that participate in the International Cooperation on Alternative Test Methods (ICATM): Brazil, Canada, China, the European Union, Japan, South Korea, Taiwan, and the USA. The chemical sectors included in our review of each jurisdiction were cosmetics, consumer products, industrial chemicals, pharmaceuticals, medical devices, and pesticides. We found acute systemic toxicity data were most often required for hazard assessment, classification, and labeling, and to a lesser extent quantitative risk assessment. Where animal methods were required, animal reduction methods were typically recommended. For many jurisdictions and chemical sectors, non-animal alternatives are not accepted, but several jurisdictions provide guidance to support the use of test waivers to reduce animal use for specific applications. An understanding of international regulatory requirements for acute systemic toxicity testing will inform ICATM's strategy for the development, acceptance, and implementation of non-animal alternatives to assess the health hazards and risks associated with acute toxicity.

3.
Risk Anal ; 43(4): 686-699, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35599017

RESUMEN

The quality of chemical management depends more or less on practical procedures used to assess chemicals. This study quantitatively assessed the efficacy of a derivation procedure for calculating no-effect concentrations for screening assessment of environmental hazards under the Chemical Substance Control Law in Japan. We first evaluated the derivation procedure by applying a series of test ecotoxicity datasets to the procedure and calculating the resulting misclassification rates of the hazardous class of chemicals. In this study, a chemical was deemed to have been misclassified if its classification differed from its classification based on the full dataset (chronic toxicity data for three trophic levels), which was defined as the correct assignment. We also calculated the effects of additional uncertainty factors to decrease the variance (i.e., to improve the consistency) of the misclassification rates among cases with different data availability in the derivation procedure. The results showed that the derivation procedure resulted in very high rates of misclassification when only particular sets of ecotoxicity data were available (e.g., only chronic toxicity data of algae were available). Our analyses also showed that the use of additional uncertainty factors improved the consistency of the misclassification rates within the derivation procedure. Our study presents a broadly applicable calculation framework for quantifying error rates in assessment procedures and serves as a case study for future development and reforms of chemical assessment processes and policies, while additional analyses using more extensive ecotoxicity data with various modes of actions are needed in the future.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Japón , Medición de Riesgo/métodos
4.
Regul Toxicol Pharmacol ; 137: 105301, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436696

RESUMEN

The rodent cancer bioassay has been the standard approach to fulfill regulatory requirements for assessing human carcinogenic potential of agrochemicals, food additives, industrial chemicals, and pharmaceuticals. Decades of research have described the limitations of the rodent cancer bioassay leading to international initiatives to seek alternatives and establish approaches that modernize carcinogenicity assessment. Biologically relevant approaches can provide mechanistic information and increased efficiency for evaluating hazard and risk of chemical carcinogenicity to humans. The application of human-relevant mechanistic understanding to support new approaches to carcinogenicity assessment will be invaluable for regulatory decision-making. The present work outlines the challenges and opportunities that authorities should consider as they come together to build a roadmap that leads to global acceptance and incorporation of fit-for-purpose, scientifically defensible new approaches for human-relevant carcinogenicity assessment of agrochemicals.


Asunto(s)
Agroquímicos , Carcinógenos , Animales , Humanos , Pruebas de Carcinogenicidad , Agroquímicos/toxicidad , Carcinógenos/toxicidad , Bioensayo , Roedores , Medición de Riesgo
5.
Environ Sci Technol ; 56(24): 17880-17889, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36475377

RESUMEN

Persistent, mobile, and toxic (PMT) substances and very persistent and very mobile (vPvM) substances can transport over long distances from various sources, increasing the public health risk. A rapid and high-throughput screening of PMT/vPvM substances is thus warranted to the risk prevention and mitigation measures. Herein, we construct a machine learning-based screening system integrated with five models for high-throughput classification of PMT/vPvM substances. The models are constructed with 44 971 substances by conventional learning, deep learning, and ensemble learning algorithms, among which, LightGBM and XGBoost outperform other algorithms with metrics exceeding 0.900. Good model interpretability is achieved through the number of free halogen atoms (fr_halogen) and the logarithm of partition coefficient (MolLogP) as the two most critical molecular descriptors representing the persistence and mobility of substances, respectively. Our screening system exhibits a great generalization capability with area under the receiver operating characteristic curve (AUROC) above 0.951 and is successfully applied to the persistent organic pollutants (POPs), prioritized PMT/vPvM substances, and pesticides. The screening system constructed in this study can serve as an efficient and reliable tool for high-throughput risk assessment and the prioritization of managing emerging contaminants.


Asunto(s)
Algoritmos , Aprendizaje Automático
6.
Regul Toxicol Pharmacol ; 136: 105280, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36367523

RESUMEN

Chemical grouping and read-across are frequently used non-animal alternatives for filling toxicological data gaps. When grouping chemicals, it is critical to define the applicability domain because minor differences in chemical structure can lead to significant differences in toxicity. Here, we present a case study on isoeugenol and methyl eugenol, which are scheduled for review by IARC in June 2023, to illustrate that structural similarity alone may not be sufficient to group chemicals for hazard classification. Isoeugenol and methyl eugenol are plant-derived phenylpropenes that share similar physicochemical properties. The major metabolic pathway for isoeugenol includes conjugation of the phenolic hydroxyl group with sulfate and glucuronic acid as an efficient detoxification process, whereas the major metabolic pathway for methyl eugenol involves benzylic hydroxylation and formation of the 1'-sulfoxymethyleugenol which leads to carbocation formation. The carbocation can form DNA adducts and induce genotoxicity and carcinogenicity. Consistently, genotoxicity and carcinogenicity alerts are identified from in silico prediction tools for methyl eugenol but not isoeugenol. Moreover, the available toxicogenomic, genotoxicity, and carcinogenicity studies confirm that these chemicals have significantly different bioactivities. Data on other structurally similar chemicals further supports our conclusion that it is not appropriate to group these two chemicals for cancer hazard classification.


Asunto(s)
Eugenol , Neoplasias , Humanos , Eugenol/toxicidad , Aductos de ADN
7.
Heliyon ; 8(8): e10183, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36016518

RESUMEN

Soil erosion is the most persistent environmental problem in the Upper Blue Nile River (UBNR) basin of Ethiopia. Guder River is one of thetributaries of UBNR basin which critically required soil conservation practices. The main objective of this particular research article was to appraise soil erosion hazard priority classification with an easy and uncomplicated erosion modelling tool, the universal soil loss equation (USLE) using GIS software and RS data. Remote Sensing data such as annual mean precipitation, land-use land-cover, and soil map, digital elevation model map were used to determine the USLE factor values. The average annual rainfall data was derived from the widely used climate dataset CRU TS (Climatic Research Unit gridded Time Series) and converted to rainfall erosivity factor. Soil Erodibility Factor Soil (K) was calculated from FAO soil data "Digital Soil Map of the World - ESRI shapefile format". Topographic Factor (LS) was delineated from a 30m digital elevation model. Cover Factor (C) and Support Practice Factor (P) were estimated from a 20m Ethiopia Sentinel2 Land-use Land-cover year, 2016. The study classified the Guder watersheds into different kinds of severity classes for prioritization of soil and water management options and conservation strategy. The mean annual soil eroded for the whole sub-basin was estimated at 25.23 tha-1y-1. The study output outcomes demonstrated that about 0.1% (426ha) 6.9% (46764 ha), 8.9% (60055 ha), and 19.8 % (134320ha) have been under Catastrophic, very severe, severe, high erosion severity class respectively. About half of the Guder sub-basin has been underneath a very slight erosion. Nevertheless, the area covered by very severe erosion was 6.9%, and the annual percent of sum-total soil erosion accounted for was 46.86%. The second and third in magnitude soil lost annually from the sub-basin with regards to per cent of total soil loss were severe (26.53%), and high (21.53%) respectively. In only 7% of the area under investigation, soil erosion estimated was to go beyond 100 t/ha/yr. erosion rate. District wise erosion affected and hotspot areas were identified: Middle of Steep slopes Mountainous parts of Ginde Beret, Jeldu, Ifata, Ambo, parts Ababo and Horo Guduru located in the study area borderline, Toke Kutaye, along the boundary of Midakegn and Cheliya were found in severe to very severe erosion. Finally, the study proposed that the government, policymakers, and soil and water management agents plan and implement the conservation measures and give awareness to stakeholders for optimum use of limited precious resources.

8.
Front Public Health ; 10: 907318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968415

RESUMEN

Chronic inhalation of titanium dioxide or carbon black by rats at concentrations which overload lung particle clearance can result in lung cancer. Based on this rat lung response, IARC, NIOSH, and ECHA classified titanium dioxide, and IARC classified carbon black, as potential human carcinogens. These classifications have been questioned based on an extensive data base demonstrating: the rat lung cancer occurred only under conditions of extreme lung particle overload; the lung cancer response in rats has not been seen in other animal species; and studies in titanium dioxide and carbon black exposed human populations have not shown an increased incidence of cancer. In 2019 an international panel of science and regulatory experts was convened to document the state of the science on lung particle overload and rat lung cancer after exposure to poorly soluble low toxicity particles. Regarding hazard identification, the expert panel concluded, in the absence of supporting data from other species, lung particle overload-associated rat lung cancer does not imply a cancer hazard for humans. Regarding high to low dose extrapolation, the expert panel concluded rat lung tumors occurring only under conditions of lung particle overload are not relevant to humans exposed under non-overloading conditions. The conclusions of the Edinburgh Expert Panel directly conflict with IARC, ECHA and NIOSH's extrapolation of lung particle overload associated rat lung cancer to hazard for humans. The hazard classifications for titanium dioxide and carbon black inhalation should be assessed considering the state-of-the-science on lung particle overload and rat lung cancer.


Asunto(s)
Neoplasias Pulmonares , Hollín , Animales , Humanos , Pulmón/patología , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Ratas , Hollín/toxicidad , Titanio/toxicidad
9.
Regul Toxicol Pharmacol ; 131: 105160, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35311659

RESUMEN

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.


Asunto(s)
Neoplasias , Plaguicidas , Agroquímicos/toxicidad , Animales , Bioensayo , Pruebas de Carcinogenicidad , Plaguicidas/toxicidad , Medición de Riesgo , Roedores
10.
Regul Toxicol Pharmacol ; 122: 104920, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33757807

RESUMEN

The in vivo rabbit test is the benchmark against which new approach methodologies for skin irritation are usually compared. No alternative method offers a complete replacement of animal use for this endpoint for all regulatory applications. Variability in the animal reference data may be a limiting factor in identifying a replacement. We established a curated data set of 2624 test records, representing 990 substances, each tested at least twice, to characterize the reproducibility of the in vivo assay. Methodological deviations from guidelines were noted, and multiple data sets with differing tolerances for deviations were created. Conditional probabilities were used to evaluate the reproducibility of the in vivo method in identification of U.S. Environmental Protection Agency or Globally Harmonized System hazard categories. Chemicals classified as moderate irritants at least once were classified as mild or non-irritants at least 40% of the time when tested repeatedly. Variability was greatest between mild and moderate irritants, which both had less than a 50% likelihood of being replicated. Increased reproducibility was observed when a binary categorization between corrosives/moderate irritants and mild/non-irritants was used. This analysis indicates that variability present in the rabbit skin irritation test should be considered when evaluating nonanimal alternative methods as potential replacements.


Asunto(s)
Irritantes/efectos adversos , Pruebas de Irritación de la Piel/normas , Alternativas a las Pruebas en Animales/métodos , Alternativas a las Pruebas en Animales/normas , Animales , Conejos , Reproducibilidad de los Resultados , Estados Unidos , United States Environmental Protection Agency
11.
Regul Toxicol Pharmacol ; 121: 104887, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33556417

RESUMEN

Tumor data from rodent bioassays are used for cancer hazard classification with wide-ranging consequences. This paper presents a case study of the synthetic antioxidant butylated hydroxyanisole (BHA), which IARC classified as Group 2B ("possibly carcinogenic to humans") on the basis of forestomach tumors in rodents following chronic dietary exposure to high levels. IARC later determined that the mechanism by which BHA induces forestomach tumors is not relevant to humans; however, the classification has not been revoked. BHA was listed on California Proposition 65 as a direct consequence of the IARC classification, and there is widespread concern among consumers regarding the safety of BHA driven by the perception that it is a carcinogen. While many regulatory agencies have established safe exposure limits for BHA, the IARC classification and Proposition 65 listing resulted in the addition of BHA to lists of substances banned from children's products and products seeking credentials such as EPA's Safer Choice program, as well as mandatory product labeling. Classifications have consequences that many times pre-empt the ability to conduct an exposure-based risk-based assessment., It is imperative to consider human relevance of both the endpoint and exposure conditions as fundamental to hazard identification.


Asunto(s)
Antioxidantes/clasificación , Hidroxianisol Butilado/clasificación , Carcinógenos/clasificación , Aditivos Alimentarios/clasificación , Animales , Antioxidantes/toxicidad , Hidroxianisol Butilado/toxicidad , Carcinógenos/toxicidad , Aditivos Alimentarios/toxicidad , Abastecimiento de Alimentos , Humanos , Medición de Riesgo
12.
Crit Rev Toxicol ; 51(8): 653-694, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35239444

RESUMEN

The Toxicology Forum convened an international state-of-the-science workshop Assessing Chemical Carcinogenicity: Hazard Identification, Classification, and Risk Assessment in December 2020. Challenges related to assessing chemical carcinogenicity were organized under the topics of (1) problem formulation; (2) modes-of-action; (3) dose-response assessment; and (4) the use of new approach methodologies (NAMs). Key topics included the mechanisms of genotoxic and non-genotoxic carcinogenicity and how these in conjunction with consideration of exposure conditions might inform dose-response assessments and an overall risk assessment; approaches to evaluate the human relevance of modes-of-action observed in rodent studies; and the characterization of uncertainties. While the scientific limitations of the traditional rodent chronic bioassay were widely acknowledged, knowledge gaps that need to be overcome to facilitate the further development and uptake of NAMs were also identified. Since one single NAM is unlikely to replace the bioassay, activities to combine NAMs into integrated approaches for testing and assessment, or preferably into defined approaches for testing and assessment that include data interpretation procedures, were identified as urgent research needs. In addition, adverse outcome pathway networks can provide a framework for organizing the available evidence/data for assessing chemical carcinogenicity. Since a formally accepted decision tree to guide use of the best and most current science to advance carcinogenicity risk assessment is currently unavailable, a Decision Matrix for carcinogenicity assessment could be useful. The workshop organizers developed and presented a decision matrix to be considered within a carcinogenicity hazard and risk assessment that is offered in tabular form.


Asunto(s)
Carcinogénesis , Carcinógenos , Bioensayo , Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Humanos , Medición de Riesgo/métodos
13.
Ann Work Expo Health ; 64(6): 659-675, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320011

RESUMEN

Nickel (Ni) and cobalt (Co) release from chromium-alloy powders (different stainless steels and a nickel-based Inconel alloy) compared with Ni and Co metal powders was investigated at simulated human exposure scenarios (ingestion, skin contact, and inhalation) between 2 and 168 h. All investigated powders consisted of particles sized within the respirable range. The powder particles and their surface reactivity were studied by means of nitrogen adsorption and electrochemical, spectroscopic (X-ray photoelectron spectroscopy and atomic absorption spectroscopy), light scattering, and microscopic techniques. The release of both Ni and Co was highest in the acidic and complexing fluids simulating the gastric environment and an inhalation scenario of small powders (artificial lysosomal fluid). Relatively high corrosion resistance and lower levels of released Ni and Co were observed in all fluids for all alloy powders compared with the corresponding pure metals. The extent of released metals was low for powders with a passive surface oxide. This study strongly emphasizes the importance of considering alloying effects in toxicological classification and/or regulation of Ni and Co in alloys and metals.


Asunto(s)
Exposición Profesional , Aleaciones , Cobalto , Humanos , Níquel , Polvos , Propiedades de Superficie
14.
Artículo en Inglés | MEDLINE | ID: mdl-32033179

RESUMEN

The flower industry in East Africa has grown in recent years, especially in the production and export of roses. The aim of this study was to assess pesticide use on selected flower farms in Ethiopia. Serum cholinesterase levels in workers were used as a marker of pesticide exposure. This study was a cross-sectional study involving 588 workers from 15 different flower farms. It had a response rate of 95.5%. The participants included 277 males (mean age 26 years; 148 pesticide sprayers and 129 non-sprayers) and 311 females (mean age 25 years; 156 working in greenhouses and 155 working outside the greenhouses). The researchers undertook structured interviews, blood sampling, and walkthrough surveys. Descriptive statistics and Poisson regression were used in the statistical analyses. A total of 154 different trade names of pesticides were found. Of them, 31 (27%) were classified as moderately hazardous by the WHO, and 9% were organophosphates. Serum levels of cholinesterase deviating from 50-140 Michel units were considered abnormal. Abnormal serum cholinesterase levels (above 140 Michel units) were found in 97 participants (16.5%, 95% confidence interval 13.7-19.7%). There were no differences between the four job groups regarding cholinesterase levels. The high prevalence of abnormal serum cholinesterase levels might indicate the presence of pesticide intoxication. Thus, there is a need for routine monitoring of all workers exposed to pesticides, not only sprayers.


Asunto(s)
Acetilcolinesterasa/sangre , Enfermedades de los Trabajadores Agrícolas/sangre , Exposición Profesional/análisis , Plaguicidas , Adolescente , Adulto , Enfermedades de los Trabajadores Agrícolas/epidemiología , Monitoreo Biológico , Estudios Transversales , Etiopía/epidemiología , Agricultores , Granjas , Femenino , Flores , Humanos , Masculino , Organofosfatos , Plaguicidas/envenenamiento , Adulto Joven
15.
Regul Toxicol Pharmacol ; 109: 104477, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31586681

RESUMEN

Four years on since the last cross sector workshop, experience of the practical application and interpretation of several non-animal assays that contribute to the predictive identification of skin sensitisers has begun to accumulate. Non-animal methods used for hazard assessments increasingly are contributing to the potency sub-categorisation for regulatory purposes. However, workshop participants generally supported the view that there remained a pressing need to build confidence in how information from multiple methods can be combined for classification, sub-categorisation and potency assessment. Furthermore, the practical experience gained over the last few years, highlighted the overall high potential value of using the newly validated methods and testing strategies, but also that limitations for certain substance/product classes may become evident with further use as had been the case with other new regulatory methods. As the available information increases, review of the data and collated experience could further determine strengths and limitations leading to more confidence in their use. Finally, the need for a substantial and universally accepted dataset of non-sensitisers and substances of different sensitising potencies, based on combined human and in vivo animal data for validation of methods and test strategies was re-emphasised.


Asunto(s)
Alternativas a las Pruebas en Animales , Congresos como Asunto , Proyectos de Investigación/normas , Piel/efectos de los fármacos , Pruebas de Toxicidad/normas , Conjuntos de Datos como Asunto , Europa (Continente) , Piel/inmunología , Pruebas Cutáneas/métodos , Pruebas Cutáneas/normas
16.
Regul Toxicol Pharmacol ; 105: 69-76, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30978367

RESUMEN

The use of lower cut-off values/concentration limits for the calculation of mixture classification in UN GHS/EU CLP versus the previous regulatory scheme (EU Dangerous Preparations Directive, DPD), has resulted in an increased number of classifications in the highest eye hazard category. Herein, a semi-quantitative categorisation of severity of eye effects, following accidental human exposures to detergents, was compared to the classification category of the products. Three schemes were evaluated: EU DPD; EU CLP (based on all available data and information, including weight of evidence); and EU CLP (based entirely on the calculation method). As reported by four EU Poison Centres, the vast majority of exposures had caused minor or no symptoms. Classification was a poor predictor of effects in man subjected to accidental exposure. Note however that this is also because effects are not only driven by the intrinsic hazard (as reflected in the classification), but also by the exposure conditions and mitigation (i.e. rinsing). EU CLP classification using all available data and information was more predictive of medically relevant symptoms than the EU CLP calculation method. The latter led to a poorer differentiation between irritating products versus products potentially causing serious eye damage.


Asunto(s)
Detergentes/toxicidad , Lesiones Oculares/clasificación , Irritantes/toxicidad , Animales , Lesiones Oculares/etiología , Humanos , Centros de Control de Intoxicaciones , Índices de Gravedad del Trauma
17.
Integr Environ Assess Manag ; 14(4): 498-508, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29464838

RESUMEN

The transformation/dissolution protocol (T/DP) for metals and sparingly soluble metal compounds was applied to determine the transformation/dissolution (T/D) characteristics of yellow tungsten trioxide, WO3 ; blue tungsten oxide, WOx, x taken as 2.9; tungsten disulphide, WS2 ; tungsten metal, W; 3 samples of tungsten carbide, WC; sodium tungstate, Na2 WO4 · 2H2 O; ammonium paratungstate (APT), (NH4 )10 (H2 W12 O42 ) · 4H2 O; and ammonium metatungstate (AMT) (NH4 )6 (H2 W12 O40 ) · 3H2 O. The T/D data were used to derive aquatic hazard classification outcomes under the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS) and European Union Classification, Labelling and Packaging of Substances and Mixtures (EU CLP) schemes by comparing the data with selected acute and chronic ecotoxicity reference values (ERVs) of 31 and 3.37 mg W/L, respectively. In addition to the concentration of total dissolved tungsten (W), the T/D solutions were analyzed for the concentration of the tungstate anion, because speciation can be an important factor in establishing the ecotoxicity of dissolved metals. Results show that the tungstate anion was the predominant W-bearing species in solution for all substances examined at pH 6 and 8.5. It was found that the 100 mg/L loadings of both the yellow WO3 and the blue WOx exceeded the 31 mg/L acute ERV, so they would classify as Acute 3-Chronic 3 under the UN GHS scheme but they would not classify under the EU CLP. An effect of pH on the reactivity of the W metal was observed with 3% and 16% W dissolution at pH 6 and 8.5, respectively. Tungsten metal would not classify under either the UN GHS or EU CLP schemes nor would the WS2 . The WCs were the least reactive in terms of the 1% or less dissolution of the contained W at pH 6. A critical surface area for WC was calculated. The sodium tungstate, APT and the AMT all yielded, at pH 8.5, total dissolved W concentrations that would result in UN GHS Acute 3-Chronic 3 classifications. Integr Environ Assess Manag 2018;14:498-508. © 2018 Her Majesty the Queen in Right of Canada. Integrated Environmental Assessment and Management © 2018 SETAC.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Ecotoxicología , Compuestos de Tungsteno/química , Compuestos de Tungsteno/toxicidad , Tungsteno/química , Tungsteno/toxicidad , Solubilidad
18.
Regul Toxicol Pharmacol ; 90: 185-196, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28866267

RESUMEN

IARC has begun using ToxCast/Tox21 data in efforts to represent key characteristics of carcinogens to organize and weigh mechanistic evidence in cancer hazard determinations and this implicit inference approach also is being considered by USEPA. To determine how well ToxCast/Tox21 data can explicitly predict cancer hazard, this approach was evaluated with statistical analyses and machine learning prediction algorithms. Substances USEPA previously classified as having cancer hazard potential were designated as positives and substances not posing a carcinogenic hazard were designated as negatives. Then ToxCast/Tox21 data were analyzed both with and without adjusting for the cytotoxicity burst effect commonly observed in such assays. Using the same assignments as IARC of ToxCast/Tox21 assays to the seven key characteristics of carcinogens, the ability to predict cancer hazard for each key characteristic, alone or in combination, was found to be no better than chance. Hence, we have little scientific confidence in IARC's inference models derived from current ToxCast/Tox21 assays for key characteristics to predict cancer. This finding supports the need for a more rigorous mode-of-action pathway-based framework to organize, evaluate, and integrate mechanistic evidence with animal toxicity, epidemiological investigations, and knowledge of exposure and dosimetry to evaluate potential carcinogenic hazards and risks to humans.


Asunto(s)
Carcinógenos/toxicidad , Interpretación Estadística de Datos , Ensayos Analíticos de Alto Rendimiento , Modelos Estadísticos , Neoplasias/clasificación , Algoritmos , Animales , Pruebas de Carcinogenicidad , Humanos , Aprendizaje Automático , Neoplasias/inducido químicamente , Medición de Riesgo/métodos , Estados Unidos , United States Environmental Protection Agency
19.
Med Lav ; 108(1): 33-41, 2017 02 15.
Artículo en Italiano | MEDLINE | ID: mdl-28240731

RESUMEN

BACKGROUND: Hazard classification of chemicals can be defined as a logic-mathematical operation aimed at identifying the type and severity of the inherent hazards of a substance or a mixture. OBJECTIVES: The purpose of this study was to evaluate, in 134 safety data sheets (SDSs): i) the hazard classification and ii) its coherence with sections 9 (physical-chemical properties), 11 (toxicological properties) and 12 (ecological properties) of the SDSs. METHODS: Hazard classification and the information provided in sections 9, 11 and 12 of the SDSs have been evaluated against the criteria provided in annexes VI of the Dangerous Substance Directive, II and III of the Dangerous Preparations Directive, I and VI of the Regulation (EC) n. 1272/2008. RESULTS: Most of the analyzed SDSs of substances (62%) was associated to non-classified chemicals (61.4%), although 19.6% of them should have been classified. By contrast, 59.4% of classified substances (representing 38.6% of analyzed ones) were wrongly classified. Fifty-four %, 54% and 67% of suggested substances hazard classification were in line with sections 9 (physical-chemical properties), 11 (toxicological properties) and 12 (ecological properties). CONCLUSIONS: The proportion of hazard classification mistakes in SDS was significant, suggesting the need of more qualified experts to derive classification. The introduction of an ad hoc evaluation team, managed by a single, qualified specialist, could represent a solution to ensure the needed improvement of SDSs quality.


Asunto(s)
Sustancias Peligrosas/clasificación , Ficha de Datos de Seguridad de Materiales , Salud Laboral , Humanos
20.
ALTEX ; 33(4): 453-458, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27254273

RESUMEN

Collaboration between industry and regulators resulted in the development of a decision tree approach using in vitro or ex vivo assays to replace animal tests when determining the eye irritation potential of antimicrobial cleaning products (AMCPs) under the United States Environmental Protection Agency (EPA) Office of Pesticide Programs' hazard classification and labeling system. A policy document issued by the EPA in 2013 and updated in 2015 describes the alternate testing framework that industry could apply to new registrations of AMCPs and, on a case-by-case basis, to conventional pesticide products. Despite the collaborative effort, the availability of relevant non-animal methods, and the EPA's change in policy, only a limited number of AMCPs have been registered using the framework. Companies continue to conduct animal tests when registering AMCPs due to various challenges surrounding adoption of the new testing framework; however, recent discussions between industry, regulators, and other interested parties have identified ways these challenges may be overcome. In this article we explore how use of the alternate framework could be expanded through efforts such as increasing international harmonization, more proactively publicizing the framework, and enhancing the training of regulatory reviewers. Not only can these strategies help to increase use of the EPA alternate eye irritation framework, they can also be applied to facilitate the uptake of other alternative approaches to animal testing in the future.


Asunto(s)
Alternativas a las Pruebas en Animales/legislación & jurisprudencia , Alternativas a las Pruebas en Animales/normas , Legislación de Medicamentos , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Animales , Seguridad de Productos para el Consumidor/legislación & jurisprudencia , Ojo/efectos de los fármacos , Sustancias Peligrosas , Irritantes/toxicidad , Residuos de Plaguicidas , Plaguicidas , Estados Unidos , United States Environmental Protection Agency
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA