Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.062
Filtrar
1.
J Environ Sci (China) ; 147: 153-164, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003036

RESUMEN

Heavy metal(loid) (HM) pollution in agricultural soils has become an environmental concern in antimony (Sb) mining areas. However, priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist. Herein, an integrated approach was conducted to distinguish pollution sources and assess human health risk (HHR) and ecological risk (ER) in a typical Sb mining watershed in Southern China. This approach combines absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models with ER and HHR assessments. Four pollution sources were distinguished for both models, and APCS-MLR model was more accurate and plausible. Predominant HM concentration source was natural source (39.1%), followed by industrial and agricultural activities (23.0%), unknown sources (21.5%) and Sb mining and smelting activities (16.4%). Although natural source contributed the most to HM concentrations, it did not pose a significant ER. Industrial and agricultural activities predominantly contributed to ER, and attention should be paid to Cd and Sb. Sb mining and smelting activities were primary anthropogenic sources of HHR, particularly Sb and As contaminations. Considering ER and HHR assessments, Sb mining and smelting, and industrial and agricultural activities are critical sources, causing serious ecological and health threats. This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments. HM pollution management, such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils, is strongly recommended for protecting ecosystems and humans.


Asunto(s)
Agricultura , Antimonio , Monitoreo del Ambiente , Metales Pesados , Minería , Contaminantes del Suelo , Antimonio/análisis , Medición de Riesgo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , China , Suelo/química
2.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003055

RESUMEN

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes del Suelo/metabolismo , Oxidación-Reducción , Pseudomonas/metabolismo , Manganeso , Hierro/química , Hierro/metabolismo , Suelo/química , Biodegradación Ambiental , Microbiología del Suelo
3.
J Environ Sci (China) ; 148: 298-305, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095166

RESUMEN

Ultrasonic humidifiers are commonly used in households to maintain indoor humidity and generate a large number of droplets or spray aerosols. However, there have been various health concerns associated with humidifier use, largely due to aerosols generated during operation. Here, we investigated the size distribution, chemical composition, and charged fraction of aerosol particles emitted from commercial ultrasonic humidifiers. Heavy metals in water used for humidifiers were found to be highly enriched in the ultrasonic humidifier aerosols (UHA), with the enrichment factors ranging from 102 to 107. This enrichment may pose health concerns for the building occupants, as UHA concentrations of up to 106 particles/cm3 or 3 mg/m3 were observed. Furthermore, approximately 90% of UHA were observed to be electrically charged, for the first time according to our knowledge. Based on this discovery, we proposed and tested a new method to remove UHA by using a simple electrical field. The designed electrical field in this work can efficiently remove 81.4% of UHA. Therefore, applying this electrical field could be an effective method to significantly reduce the health risks by UHA.


Asunto(s)
Aerosoles , Humidificadores , Metales Pesados , Aerosoles/análisis , Metales Pesados/análisis , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis , Ultrasonido , Monitoreo del Ambiente/métodos
4.
Environ Monit Assess ; 196(9): 794, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112821

RESUMEN

Rice intake represents a significant pathway through which humans accumulate heavy metals. This study presents a comprehensive analysis of heavy metal and pesticide contamination in rice cultivars irrigated with industrial wastewater near Dhaka, Bangladesh, a region heavily influenced by industrial activities. This study employed a unique methodology that not only quantified the concentrations of heavy metals and pesticide residues in rice grains but also extended to evaluating the physicochemical properties of rice stems, husks, soil, and irrigation water. The findings revealed alarmingly high levels of heavy metals such as lead, cadmium, chromium, nickel, and mercury in the soil and irrigation water, with concentrations in some cases exceeding the World Health Organization safety thresholds by 2 to 15 times. Notably, the rice grains also exhibited significant contamination, including substantial amounts of diazinon and fenitrothion pesticides, exceeding the established safety limits. The study employed hazard quotients (HQs) and cancer risk (CR) assessments to evaluate the potential health risks associated with the consumption of contaminated rice. The results indicated HQ values were greater than 1 for rice grains across the sampled fields, suggesting a considerable non-carcinogenic health risk, particularly from lead exposure, which was found at levels twice the standard limit in all the sampling fields. Moreover, the CR values for As, Pb, Cd, Co, and Mn highlighted a significant carcinogenic risk in several instances.


Asunto(s)
Riego Agrícola , Monitoreo del Ambiente , Metales Pesados , Oryza , Plaguicidas , Contaminantes del Suelo , Metales Pesados/análisis , Oryza/química , Bangladesh , Medición de Riesgo , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Contaminación de Alimentos/análisis , Humanos , Contaminantes Químicos del Agua/análisis
5.
Tree Physiol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113606

RESUMEN

Manganese (Mn) is indispensable for plant growth, but its excessive uptake in acidic soils leads to toxicity, hampering food safety. Phosphorous (P) application is known to mitigate Mn toxicity, yet the underlying molecular mechanism remains elusive. Here, we conducted physiological and transcriptomic analyses of peach roots response to P supply under Mn toxicity. Mn treatment disrupted root architecture and caused ultrastructural damage due to oxidative injury. Notably, P application ameliorated the detrimental effects and improved the damaged roots by preventing the shrinkage of cortical cells, epidermis, and endodermis, as well as reducing the accumulation of reactive oxygen species (ROS). Transcriptomic analysis revealed the differentially expressed genes enriched in phenylpropanoid biosynthesis, cysteine, methionine, and glutathione metabolism under Mn and P treatments. P application upregulated the transcripts and activities of core enzymes crucial for lignin biosynthesis, enhancing cell wall integrity. Furthermore, P treatment activated ascorbate-glutathione cycle, augmenting ROS detoxification. Additionally, under Mn toxicity, P application downregulated Mn uptake transporter while enhancing vacuolar sequestration transporter transcripts, reducing Mn uptake and facilitating vacuolar storage. Collectively, P application prevents Mn accumulation in roots by modulating Mn transporters, bolstering lignin biosynthesis, and attenuating oxidative stress, thereby improving root growth under Mn toxicity. Our findings provide novel insights into the mechanism of P-mediated alleviation of Mn stress, and strategies for managing metal toxicity in peach orchards.

6.
Heliyon ; 10(14): e34108, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100461

RESUMEN

Dal Lake, the world-famous tourist attraction has been polluted by allochthonous and autochthonous sources, as a result the heavy metal (HMs) concentrations within the water body has reached the toxic levels which is endangering the lives of the people. A study was carried out during the year 2021 (i) to determine the concentration of HMs (molybdenum: Mo, arsenic: Ar, cadmium: Cd, lead: Pb) at the four designated sites of Dal Lake, and (ii) a public survey (400 persons) involving economic valuation of water body in terms of recreational use and other benefits. The highest values of biological oxygen demand (BOD) and chemical oxygen demand (COD) within the Dal Lake were recorded at site A, which were 31 ± 1.10 mg/l and 76 ± 0.64, respectively. Similarly, maximum nitrate nitrogen was found at site A (865 ± 0.86 µg/l). The highest value of Pb was reported (6.828 ± 0.003 ppb) from site A whereas, the lowest from site B (2.492 ± 0.002 ppb). The mean values of Mo concentrations (in ppb) were found to be 2.538 ± 0.002, 1.703 ± 0.003, 3.627 ± 0.004 and 4.787 ± 0.002 at the four sites respectively. The observed values of HMs (in ppb) were much higher than the permissible values (WHO, 2006) and those reported earlier. A huge amount of money (Rs 16,18,66,000/) is being generated from the floating gardens of Dal Lake, calculated by TCM and CVM methods. During the survey, 68 % of people showed a willingness to pay (WTP) for the restoration of the Dal Lake and improved services (mean value: Rs 62,852.20/). Thus, the monitoring and assessment were done to find out how the Dal Lake contributes to the economy of the state by way of its different services and the major attraction for tourists besides the possible reasons for the deterioration of water quality, in order to find a long-lasting solution for the sustainable conservation of Dal Lake.

7.
Front Nutr ; 11: 1422617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101010

RESUMEN

Introduction: This investigation leverages advanced machine learning (ML) techniques to dissect the complex relationship between heavy metal exposure and its impacts on osteoarthritis (OA) and rheumatoid arthritis (RA). Utilizing a comprehensive dataset from the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2020, this study aims to elucidate the roles specific heavy metals play in the incidence and differentiation of OA and RA. Methods: Employing a phased ML strategy that encompasses a range of methodologies, including LASSO regression and SHapley Additive exPlanations (SHAP), our analytical framework integrates demographic, laboratory, and questionnaire data. Thirteen distinct ML models were applied across seven methodologies to enhance the predictability and interpretability of clinical outcomes. Each phase of model development was meticulously designed to progressively refine the algorithm's performance. Results: The results reveal significant associations between certain heavy metals and an increased risk of arthritis. The phased ML approach enabled the precise identification of key predictors and their contributions to disease outcomes. Discussion: These findings offer new insights into potential pathways for early detection, prevention, and management strategies for arthritis associated with environmental exposures. By improving the interpretability of ML models, this research provides a potent tool for clinicians and researchers, facilitating a deeper understanding of the environmental determinants of arthritis.

8.
Antonie Van Leeuwenhoek ; 117(1): 111, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103503

RESUMEN

The strain designated NCCP-602T was isolated from tannery effluent, and displayed aerobic, gram-positive, rod-shaped cells that were characterized by oxidase negative, catalase positive, and non-motile features. The most favourable growth conditions were observed at a temperature of 30°C, pH 7.0, and NaCl concentration of 1% (w/v). It tolerated heavy metals at high concentrations of chromium (3600 ppm), copper (3300 ppm), cadmium (3000 ppm), arsenic (1200 ppm) and lead (1500 ppm). The results of phylogenetic analysis, derived from sequences of the 16S rRNA gene, indicated the position of strain NCCP-602T within genus Brevibacterium and showed that it was closely related to Brevibacterium ammoniilyticum JCM 17537T. Strain NCCP-602 T formed a robust branch that was clearly separate from closely related taxa. A comparison of 16S rRNA gene sequence similarity and dDDH values between the closely related type strains and strain NCCP-602T provided additional evidence supporting the classification of strain NCCP-602T as a distinct novel genospecies. The polar lipid profile included diphosphatidylglycerol, glycolipid, phospholipids and amino lipids. MK-7 and MK-8 were found as the respiratory quinones, while anteiso-C15:0, iso-C15:0, iso-C16:0, iso-C17:0, and anteiso-C17:0 were identified as the predominant cellular fatty acids (> 10%). Considering the convergence of phylogenetic, phenotypic, chemotaxonomic, and genotypic traits, it is suggested that strain NCCP-602 T be classified as a distinct species Brevibacterium metallidurans sp. nov. within genus Brevibacterium with type strain NCCP-602T (JCM 18882T = CGMCC1.62055T).


Asunto(s)
Brevibacterium , Ácidos Grasos , Metales Pesados , Filogenia , ARN Ribosómico 16S , Brevibacterium/genética , Brevibacterium/clasificación , Brevibacterium/aislamiento & purificación , Brevibacterium/metabolismo , Brevibacterium/fisiología , ARN Ribosómico 16S/genética , Metales Pesados/metabolismo , Pakistán , Ácidos Grasos/análisis , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis de Secuencia de ADN , Fosfolípidos/análisis , Curtiembre , Genómica
9.
Environ Monit Assess ; 196(9): 789, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105824

RESUMEN

Heavy metals are extremely hazardous for human health due to their toxic effects. They are non-biodegradable in nature, thus remain in the environment and enter and accumulate in the human body through biomagnification; hence, there is a serious need of their remediation. Phytoremediation has emerged as a green, sustainable, and effective solution for heavy metal removal and many plant species could be employed for this purpose. Plants are able to sequester substantial quantity of heavy metals, in some cases thousands of ppm, due to their robust physiology enabling high metal tolerance and anatomy supporting metal ion accumulation. Identification and modification of potential target genes involved in heavy metal accumulation have led to improved phytoremediation capacity of plants at the molecular level. The introduction of foreign genes through genetic engineering approaches has further enhanced phytoremediation capacity manifolds. This review gives an insight towards improving the phytoremediation efficiency through a better understanding of molecular mechanisms involved, expression of different proteins, genetic engineering approaches for transgenic production, and genetic modifications. It also comprehends novel omics tools such as genomics, metabolomics, proteomics, transcriptomics, and genome editing technologies for improvement of phytoremediation ability of plants.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Plantas , Contaminantes del Suelo , Metales Pesados/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Biotecnología/métodos , Ingeniería Genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-39106011

RESUMEN

The philopatric and sedentary nature of female S. canicula, its high abundance as a bycatch and resilience to regular exploitation by bottom trawl fisheries and its widespread distribution, makes it a potentially good candidate as a biomonitor species. To evaluate this potential, microwave-assisted extraction (MAE) and Graphite Furnace Atomic Absorption Spectrometry (GF-AAS) were used to analyse Pb, Cd, and Cu in muscle tissue of individuals captured in the Western Mediterranean (Alicante, Spain). A monthly assessment of the concentration of these three analytes was conducted from November 2019 to November 2020 with 300 individuals. Results showed the existence of slightly higher mean concentrations during warmer seasons for Pb and Cd with mean concentrations for Pb and Cu peaking in Autumn 2019 and during Spring 2020 in the case of Cd. Significant differences in analyte concentrations found between non-consecutive months suggested gradual variability in time. Although space-wise, time-persistent concentration hotspots were observed throughout the sample area, the magnitude of these appeared to be variable in time and should be evaluated in future studies.

11.
BMC Plant Biol ; 24(1): 748, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103795

RESUMEN

Lead affects photosynthesis and growth and has serious toxic effects on plants. Here, the differential expressed proteins (DEPs) in D. huoshanense were investigated under different applications of lead acetate solutions. Using label-free quantitative proteomics methods, more than 12,000 peptides and 2,449 proteins were identified. GO and KEGG functional annotations show that these differential proteins mainly participate in carbohydrate metabolism, energy metabolism, amino acid metabolism, translation, protein folding, sorting, and degradation, as well as oxidation and reduction processes. A total of 636 DEPs were identified, and lead could induce the expression of most proteins. KEGG enrichment analysis suggested that proteins involved in processes such as homologous recombination, vitamin B6 metabolism, flavonoid biosynthesis, cellular component organisation or biogenesis, and biological regulation were significantly enriched. Nearly 40 proteins are involved in DNA replication and repair, RNA synthesis, transport, and splicing. The effect of lead stress on D. huoshanense may be achieved through photosynthesis, oxidative phosphorylation, and the production of excess antioxidant substances. The expression of 9 photosynthesis-related proteins and 12 oxidative phosphorylation-related proteins was up-regulated after lead stress. Furthermore, a total of 3 SOD, 12 POD, 3 CAT, and 7 ascorbate-related metabolic enzymes were identified. Under lead stress, almost all key enzymes involved in the synthesis of antioxidant substances are up-regulated, which may facilitate the scavenging of oxygen-free radical scavenging. The expression levels of some key enzymes involved in sugar and glycoside synthesis, the phenylpropanoid synthesis pathway, and the terpene synthesis pathway also increased. More than 30 proteins involved in heavy metal transport were also identified. Expression profiling revealed a significant rise in the expression of the ABC-type multidrug resistance transporter, copper chaperone, and P-type ATPase with exposure to lead stress. Our findings lay the basis for research on the response and resistance of D. huoshanense to heavy metal stress.


Asunto(s)
Dendrobium , Plomo , Proteínas de Plantas , Proteómica , Estrés Fisiológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plomo/toxicidad , Dendrobium/efectos de los fármacos , Dendrobium/metabolismo , Dendrobium/genética , Estrés Fisiológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
12.
Environ Monit Assess ; 196(9): 790, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110262

RESUMEN

Heavy metal pollution, especially in freshwater, is a serious problem for aquatic organisms and human health. In this study, the scales of Capoeta capoeta living in the Karasu River (Turkey), which is estimated to be contaminated with pollutants, especially heavy metals, were examined for structural anomalies. Two stations on the river were selected for this purpose. Fish and surface water samples were taken at the stations. The heavy metal analyses were carried out in the water and the fish tissue. Heavy metal pollution was detected in the surface water. It was also observed that some heavy metals (As, Cu, Cd, Cr, Mn, Pb, Ni, Zn) accumulate in the fish tissue. Significant structural differences were observed on the dorsal surface of the scales, such as interrupted primary radii, damaged circuli, damaged focus, damaged anterior scale margin, broken focus, deformed scale structure, scattered chromatophores, dilatation of primary radii, loss of focus, damaged annuli, symmetry shift in the lateral line canal, eroded circuli, damaged posterior scale margin, double focus, branching in the primary radii, asymmetric circuli, incomplete annuli and interrupted secondary radii in each of the fish collected from the contaminated site. Heavy metals are suspected to be responsible for the structural anomalies in the scales. Based on these observations, it can be said that fish scales can be used as an effective indicator of water quality.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Ríos , Contaminantes Químicos del Agua , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Ríos/química , Animales , Turquía , Escamas de Animales/química
13.
BMC Plant Biol ; 24(1): 744, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098900

RESUMEN

BACKGROUND: Soil contamination by heavy metals is a critical environmental challenge, with Pb being of particular concern due to its propensity to be readily absorbed and accumulated by plants, despite its lack of essential biological functions or beneficial roles in cellular metabolism. Within the scope of phytoremediation, the use of plants for the decontamination of various environmental matrices, the present study investigated the potential of activated charcoal (AC) to enhance the tolerance and mitigation capacity of S. sesban seedlings when exposed to Pb. The experiment was conducted as a factorial arrangement in a completely randomized design in hydroponic conditions. The S. sesban seedlings were subjected to a gradient of Pb concentrations (0, 0.02, 0.2, 2, and 10 mg/L) within the nutrient solution, alongside two distinct AC treatments (0 and 1% inclusion in the culture media). The study reached its conclusion after 60 days. RESULTS: The seedlings exposed to Pb without AC supplementation indicated an escalation in peroxidase (POX) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, signaling an increase in oxidative stress. Conversely, the incorporation of AC into the treatment regime markedly bolstered the antioxidative defense system, as evidenced by the significant elevation in antioxidant capacity and a concomitant reduction in the biomarkers of oxidative stress (POX, ROS, and MDA). CONCLUSIONS: With AC application, a notable improvement was observed in the chlorophyll a, total chlorophyll, and plant fresh and dry biomass. These findings illuminate the role of activated charcoal as a viable adjunct in phytoremediation strategies aimed at ameliorating heavy metal stress in plants.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Hidroponía , Plomo , Sesbania , Contaminantes del Suelo , Carbón Orgánico/farmacología , Plomo/toxicidad , Plomo/metabolismo , Sesbania/metabolismo , Sesbania/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Malondialdehído/metabolismo
14.
Front Public Health ; 12: 1367644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104887

RESUMEN

Introduction: Persistent infections caused by certain viruses and parasites have been associated with multiple diseases and substantial mortality. Heavy metals are ubiquitous environmental pollutants with immunosuppressive properties. This study aimed to determine whether heavy metals exposure suppress the immune system, thereby increasing the susceptibility to persistent infections. Methods: Using data from NHANES 1999-2016, we explored the associations between heavy metals exposure and persistent infections: Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Hepatitis C Virus (HCV), Herpes Simplex Virus Type-1 (HSV-1), Toxoplasma gondii (T. gondii), and Toxocara canis and Toxocara cati (Toxocara spp.) by performing logistic regression, weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models. Mediation analysis was used to determine the mediating role of host immune function in these associations. Results: Logistic regression analysis revealed positive associations between multiple heavy metals and the increased risk of persistent infections. In WQS models, the heavy metals mixture was associated with increased risks of several persistent infections: CMV (OR: 1.58; 95% CI: 1.17, 2.14), HCV (OR: 2.94; 95% CI: 1.68, 5.16), HSV-1 (OR: 1.25; 95% CI: 1.11, 1.42), T. gondii (OR: 1.97; 95% CI: 1.41, 2.76), and Toxocara spp. (OR: 1.76; 95% CI: 1.16, 2.66). BKMR models further confirmed the combined effects of heavy metals mixture and also identified the individual effect of arsenic, cadmium, and lead. On mediation analysis, the systemic immune inflammation index, which reflects the host's immune status, mediated 12.14% of the association of mixed heavy metals exposure with HSV-1 infection. Discussion: The findings of this study revealed that heavy metals exposure may increase susceptibility to persistent infections, with the host's immune status potentially mediating this relationship. Reducing exposure to heavy metals may have preventive implications for persistent infections, and further prospective studies are needed to confirm these findings.


Asunto(s)
Exposición a Riesgos Ambientales , Metales Pesados , Humanos , Femenino , Masculino , Exposición a Riesgos Ambientales/efectos adversos , Adulto , Persona de Mediana Edad , Modelos Logísticos , Contaminantes Ambientales/toxicidad , Teorema de Bayes , Virosis/inmunología , Animales
15.
Environ Pollut ; 360: 124685, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111531

RESUMEN

Microplastics (MPs) have aroused growing environmental concerns due to their biotoxicity and vital roles in accelerating the spread of toxic elements. Illuminating the interactions between MPs and heavy metals (HMs) is crucial for understanding the transport and fate of HM-loaded MPs in specific environmentally relevant scenarios. Herein, the adsorption of copper (Cu2+) and zinc (Zn2+) ions over polyethylene (PE) and polyethylene terephthalate (PET) particulates before and after heat persulfate oxidation (HPO) treatment was comprehensively evaluated in simulated and real swine wastewaters. The effects of intrinsic properties (i.e., degree of weathering, size, type) of MPs and environmental factors (i.e., pH, ionic strength, and co-occurring species) on adsorption were investigated thoroughly. It was observed that HPO treatment expedites the fragmentation of pristine MPs, and renders MPs with a variety of oxygen-rich functional groups, which are likely to act as new active sites for binding both HMs. The adsorption of both HMs is pH- and ionic strength-dependent at a pH of 4-6. Co-occurring species such as humic acid (HA) and tetracycline (TC) appear to enhance the affinity of both aged MPs for Cu2+ and Zn2+ ions via bridging complexation. However, co-occurring nutrient species (e.g., phosphate and ammonia) demonstrate different impacts on the adsorption, improving uptake of Cu2+ by precipitation while lowering affinity for Zn2+ owing to the formation of soluble zinc-ammonia complex. Spectroscopic analysis indicates that the dominant adsorption mechanism mainly involves electrostatic interactions and surface complexation. These findings provided fundamental insights into the interactions between aged MPs and HMs in swine wastewaters and might be extended to other nutrient-rich wastewaters.

16.
Front Microbiol ; 15: 1415329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113844

RESUMEN

Some plant-associated microorganisms could improve host plants biotic and abiotic stress tolerance. Imperata cylindrica is a dominant pioneer plant in some abandoned mine lands with higher concentrations of heavy metal (HM). To discover the specific microbiome of I. cylindrica in this extreme environment and evaluate its role, the microbiome of I. cylindrica's seeds and rhizosphere soils from HM heavily contaminated (H) and lightly contaminated (L) sites were studied. It was found that HM-contamination significantly reduced the richness of endophytic bacteria in seeds, but increased the abundance of resistant species, such as Massilia sp. and Duganella sp. Spearman's rank correlation coefficient analysis showed that both Massilia sp. and Duganella sp. showed a significant positive correlation with Zn concentration, indicating that it may have a strong tolerance to Zn. A comparison of the microbiome of rhizosphere soils (RS) and adjacent bare soils (BS) of site H showed that I. cylindrica colonization significantly increased the diversity of fungi in rhizosphere soil and the abundance of Ascomycota associated with soil nutrient cycling. Spearman's rank correlation coefficient analysis showed that Ascomycota was positively correlated with the total nitrogen. Combined with the fact that the total nitrogen content of RS was significantly higher than that of BS, we suppose that Ascomycota may enhance the nitrogen fixation of I. cylindrica, thereby promoting its growth in such an extreme environment. In conclusion, the concentration of HM and nutrient contents in the soil significantly affected the microbial community of rhizosphere soils and seeds of I. cylindrica, in turn, the different microbiomes further affected soil HM concentration and nutrient contents. The survival of I. cylindrica in HM severely contaminated environment may mainly be through recruiting more microorganisms that can enhance its nutrition supply.

17.
Heliyon ; 10(14): e34369, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114027

RESUMEN

The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.

18.
Water Res ; 263: 122195, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39116713

RESUMEN

Iron minerals in nature are pivotal hosts for heavy metals, significantly influencing their geochemical cycling and eventual fate. It is generally accepted that, vivianite, a prevalent iron phosphate mineral in aquatic and terrestrial environments, exhibits a limited capacity for adsorbing cationic heavy metals. However, our study unveils a remarkable phenomenon that the synergistic interaction between sulfide (S2-) and vivianite triggers an unexpected sulfidation-reoxidation process, enhancing the immobilization of heavy metals such as cadmium (Cd), copper (Cu), and zinc (Zn). For instance, the combination of vivianite and S2- boosted the removal of Cd2+ from the aqueous phase under anaerobic conditions, and ensured the retention of Cd stabilized in the solid phase when shifted to aerobic conditions. It is intriguing to note that no discrete FeS formation was detected in the sulfidation phase, and the primary crystal structure of vivianite largely retained its integrity throughout the whole process. Detailed molecular-level investigations indicate that sulfidation predominantly targets the Fe(II) sites at the corners of the PO4 tetrahedron in vivianite. With the transition to aerobic conditions, the exothermic oxidation of CdS and the S sites in vivianite initiates, rendering it thermodynamically favorable for Cd to form multidentate coordination structures, predominantly through the Cd-O-P and Cd-O-Fe bonds. This mechanism elucidates how Cd is incorporated into the vivianite structure, highlighting a novel pathway for heavy metal immobilization via the sulfidation-reoxidation dynamics in iron phosphate minerals.

19.
J Hazard Mater ; 478: 135441, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116742

RESUMEN

To address severe soil Pb and Cd contamination from anthropogenic activities, governments have implemented various environmental management measures. However, the extent to which these measures have constrained Pb and Cd accumulation in industrial and mining city soils remains unclear. Here, we investigated Pb and Cd accumulation patterns in soils of Panzhihua City, Southwest China, and determined their dominant anthropogenic drivers using Pb and Cd isotopes. Pb accumulation initially slowed and then increased, while Cd showed a continuous acceleration. Traffic and coal-burning power generation were the dominant anthropogenic forcings for Pb and Cd accumulation in the soils, respectively. Environmental protection measures, particularly the ban on leaded gasoline, significantly reduced Pb accumulation by decreasing traffic-related Pb contributions to soils from 1980 to 2008. However, environmental management measures could not practically mitigate Cd accumulation in the soils owing to the high Cd content in consumed coal, poor efficiency of air pollutant control measures, and steep rise in coal-burning power generation. This study thus indicates the criticality of controlling Cd emissions from thermal power generation. Additionally, the challenges faced by small industrial and mining cities during economic transformation and environmental policy implementation warrant more attention.

20.
J Hazard Mater ; 478: 135438, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39116750

RESUMEN

Microorganisms are pivotal in sustaining soil functions, yet the specific contributions of bacterial and fungal succession on the functions during vegetation restoration in metallic tailing reservoirs remains elusive. Here, we explored bacterial and fungal succession and their impacts on soil multifunctionality along a ∼50-year vegetation restoration chronosequence in China's largest vanadium titano-magnetite tailing reservoir. We found a significant increase in soil multifunctionality, an index comprising factors pertinent to soil fertility and microbially mediated nutrient cycling, along the chronosequence. Despite increasing heavy metal levels, both bacterial and fungal communities exhibited significant increase in richness and network complexity over time. However, fungi demonstrated a slower succession rate and more consistent composition than bacteria, indicating their relatively higher resilience to environmental changes. Soil multifunctionality was intimately linked to bacterial and fungal richness or complexity. Nevertheless, when scrutinizing both richness and complexity concurrently, the correlations disappeared for bacteria but remained robust for fungi. This persistence reveals the critical role of the fungal community resilience in sustaining soil multifunctionality, particularly through their stable interactions with powerful core taxa. Our findings highlight the importance of fungal succession in enhancing soil multifunctionality during vegetation restoration in metallic tailing reservoirs, and manipulating fungal community may expedite ecological recovery of areas polluted with heavy metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA