Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.985
Filtrar
1.
Best Pract Res Clin Haematol ; 37(2): 101562, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39098800

RESUMEN

The importance of the HLA gene system in haematopoietic cell transplant outcomes was established early on and advances in both fields have led to ever increasing success of this clinical therapy. In large part, improvements in the understanding of HLA have been driven by the advancement in typing technologies. Each iteration of typing technology has improved the resolution of HLA typing, and often enabled the identification of polymorphism within the HLA loci. The discovery of the enormous amount of variation in the HLA genes, and the need to be able to characterise this for clinical HLA typing, has often resulted in a move away from one typing method to another more suited to typing of this complexity. Today, the gold standard for HLA typing are methods that can produce definitive HLA typing results.


Asunto(s)
Antígenos HLA , Trasplante de Células Madre Hematopoyéticas , Prueba de Histocompatibilidad , Humanos , Prueba de Histocompatibilidad/métodos , Antígenos HLA/genética , Antígenos HLA/inmunología , Polimorfismo Genético
2.
Best Pract Res Clin Haematol ; 37(2): 101555, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39098803

RESUMEN

Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Efecto Injerto vs Leucemia , Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Menor , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/inmunología , Antígenos de Histocompatibilidad Menor/inmunología , Antígenos de Histocompatibilidad Menor/genética , Efecto Injerto vs Leucemia/inmunología , Trasplante Homólogo , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/inmunología , Linfocitos T/inmunología , Aloinjertos
3.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189161, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096977

RESUMEN

Immune checkpoint blockade (ICB) therapy has achieved broad applicability and durable clinical responses across cancer types. However, the overall response rate remains suboptimal because some patients do not respond or develop drug resistance. The low infiltration of CD8+ cytotoxic T cells (CTLs) in the tumor microenvironment due to insufficient antigen presentation is closely related to the innate resistance to ICB. The duration and spatial distribution of major histocompatibility complex class I (MHC-I) expression on the cell surface is critical for the efficient presentation of endogenous tumor antigens and subsequent recognition and clearance by CTLs. Tumor cells reduce the surface expression of MHC-I via multiple mechanisms to impair antigen presentation pathways and evade immunity and/or develop resistance to ICB therapy. As an increasing number of studies have focused on membrane MHC-I trafficking and degradation in tumor cells, which may impact the effectiveness of tumor immunotherapy. It is necessary to summarize the mechanism regulating membrane MHC-I translocation into the cytoplasm and degradation via the lysosome. We reviewed recent advances in the understanding of endosomal-lysosomal MHC-I transport and highlighted the means exploited by tumor cells to evade detection and clearance by CTLs. We also summarized new therapeutic strategies targeting these pathways to enhance classical ICB treatment and provide new avenues for optimizing cancer immunotherapy.

4.
Biomaterials ; 312: 122741, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39121727

RESUMEN

Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.

5.
J Biol Chem ; : 107651, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122001

RESUMEN

Chimeric antigen receptor (CAR) is a synthetic receptor that induces T cell-mediated lysis of abnormal cells. As cancer driver proteins are present at low levels on the cell surface, they can cause weak CAR reactivity, resulting in antigen sensitivity defects and consequently limited therapeutic efficacy. Although affinity maturation enhances the efficacy of CAR-T cell therapy, it causes off-target cross-reactions resulting in adverse effects. Preferentially expressed antigen in melanoma (PRAME) is an intracellular oncoprotein that is overexpressed in various tumors and restricted in normal tissues, except the testis. Therefore, PRAME could be an ideal target for cancer immunotherapy. In this study, we developed an experimental CAR system comprising six single-chain variable fragments that specifically recognizes the PRAMEp301/HLA-A*24:02 complex. Cell-mediated cytotoxicity was demonstrated using a panel of CARs with a wide range of affinities (KD = 10-10-10-7 M) and affinity modulation. CAR-T cells with fast on-rates enhance antigen sensitivity by accelerating the killing rates of these cells. Alanine scanning data demonstrated the potential of genetically engineered CARs to reduce the risk of cross-reactivity, even among CARs with high affinities. Given the correlation between on-rates and dwell time that occurs in rebinding and cell-mediated cytotoxicity, it is proposed that CAR-binding characteristics, including on-rate, play a pivotal role in the lytic capacity of peptide-major histocompatibility complex-targeting CAR-T cells, thus facilitating the development of strategies whereby genetically engineered CARs target intracellular antigens in cancer cells to lyse the cells.

6.
J Biol Chem ; : 107702, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173948

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease involving T cell-mediated destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans. CD8+ T cells, responding to beta cell peptides presented by class I major histocompatibility complex (MHC) molecules, are important effectors leading to beta cell elimination. Human leukocyte antigen (HLA) B*39:06, B*39:01, and B*38:01 are closely related class I MHC allotypes that nonetheless show differential association with T1D. HLA-B*39:06 is the most predisposing of all HLA class I molecules and is associated with early age at disease onset. B*39:01 is also associated with susceptibility to T1D, but to a lesser extent, though differing from B*39:06 by only two amino acids. HLA-B*38:01, in contrast, is associated with protection from the disease. Upon identifying a peptide that binds to both HLA-B*39:06 and B*39:01, we determined the respective X-ray structures of the two allotypes presenting this peptide to 1.7 Å resolution. The peptide residues available for T cell receptor contact and those serving as anchors were identified. Analysis of the F pocket of HLA-B*39:06 and B*39:01 provided an explanation for the distinct peptide C-terminus preferences of the two allotypes. Structure-based modeling of the protective HLA-B*38:01 suggested a potential reason for its peptide preferences and its reduced propensity to present 8-mer peptides compared to B*39:06. Notably, the three allotypes showed differential binding to peptides derived from beta cell autoantigens. Taken together, our findings should facilitate identification of disease-relevant candidate T cell epitopes and structure-guided therapeutics to interfere with peptide binding.

7.
Immunol Res ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136810

RESUMEN

Major Histocompatibility Complex Class II Deficiency is a rare primary immunodeficiency disease with autosomal recessive inheritance. It is characterized by the absence of Major Histocompatibility Complex Class II molecules on the surface of immune cells. In this article, we will present a four-month-old baby girl who presented with recurrent fever and progressive exacerbation of respiratory symptoms since a month ago. Relevant examinations suggested pancytopenia, a decrease in CD4 and CD3 ratio, and CD4/CD8 inversion, hypogammaglobulinemia, and diagnosis of hemophagocytic syndrome during treatment which all led to the consideration of the presence of immunodeficiency diseases, and the diagnosis of Major Histocompatibility Complex Class II Deficiency was made by peripheral blood whole-exon sequencing (WES). This case is remarkable in that it reveals features of hemophagocytic syndrome in a Major Histocompatibility Complex Class II Deficiency infant, most probably caused by cytomegalovirus, which rarely reported before, and the Major Histocompatibility Complex Class II Deficiency caused by a novel mutation site in the RFXANK gene which never reported, and it also describes the diagnostic and therapeutic course in detail. In addition, we have summarized the information related to Major Histocompatibility Complex Class II Deficiency triggered by mutations in the RFXANK gene to assist clinicians in early recognition and diagnosis.

8.
Hum Vaccin Immunother ; 20(1): 2379864, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39165083

RESUMEN

This Phase I/IIa open-label, single-arm clinical trial addressing advanced, refractory, metastatic breast cancer was conducted at six medical centers in the United States. We repeated inoculations with irradiated SV-BR-1-GM, a breast cancer cell line with antigen-presenting activity engineered to release granulocyte-macrophage colony-stimulating factor (GM-CSF), with pre-dose low-dose cyclophosphamide and post-dose local interferon alpha. Twenty-six patients were enrolled; 23 (88.5%) were inoculated, receiving a total of 79 inoculations. There were six Grade 4 and one Grade 5 adverse events noted (judged unrelated to SV-BR-1-GM). Disease control (stable disease [SD]) occurred in 8 of 16 evaluable patients; 4 showed objective regression of metastases, including 1 patient with near-complete regressions in 20 of 20 pulmonary lesions. All patients with regressions had human leukocyte antigen (HLA) matches with SV-BR-1-GM; non-responders were equally divided between matching and nonmatching (p = .01, Chi-squared), and having ≥2 HLA matches with SV-BR-1-GM (n = 6) correlated with clinical benefit. Delayed-type hypersensitivity (DTH) testing to candida antigen and SV-BR-1-GM generated positive responses (≥5 mm) in 11 (42.3%) and 13 (50%) patients, respectively. Quantifying peripheral circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) showed that a drop in CAMLs was significantly correlated with an improvement in progression-free survival (PFS; 4.1 months vs. 1.8 months, p = .0058). Eight of 10 patients significantly upregulated programmed cell death ligand 1 (PD-L1) on CTCs/CAMLs with treatment (p = .0012). These observations support the safety of the Bria-IMT regimen, demonstrate clinical regressions, imply a role for HLA matching, and identify a possible value for monitoring CAMLs in peripheral blood.


Asunto(s)
Neoplasias de la Mama , Ciclofosfamida , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interferón-alfa , Humanos , Femenino , Persona de Mediana Edad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ciclofosfamida/administración & dosificación , Ciclofosfamida/uso terapéutico , Adulto , Anciano , Interferón-alfa/administración & dosificación , Interferón-alfa/uso terapéutico , Metástasis de la Neoplasia , Línea Celular Tumoral , Resultado del Tratamiento , Estados Unidos
9.
Fish Shellfish Immunol ; : 109857, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182707

RESUMEN

The major histocompatibility complex class II (MHCII) molecules are crucial elements of the adaptive immune system, essential for orchestrating immune responses against foreign pathogens. However, excessive expression of MHCII can disrupt normal physiological functions. Therefore, the host employs various mechanisms to regulate MHCII expression and maintain immune homeostasis. Despite this importance, limited studies have explored the negative regulation of MHCII transcription in bony fish. In this study, we found that interferon h (IFNh), a subtype of type I IFN in sea perch Lateolabrax japonicus, could inhibit the activation of IFNγ induced-MHCII expression by modulating the transcription of the class II major histocompatibility complex transactivator (CIITA). Transcriptome analysis revealed 57 up-regulated and 69 down-regulated genes in cells treated with both IFNγ and IFNh compared to those treated with IFNγ alone. To maintain cellular homeostasis, interferon regulatory factor 9 (IRF9) was up-regulated following IFNγ stimulation, thereby preventing MHCII overexpression. Mechanistically, IRF9 bound to the CIITA promoter and suppressed its expression activated by IRF1. Furthermore, IRF9 inhibited the promoter activity of both MHCII-α and MHCII-ß induced by CIITA. Our findings highlight the roles of IFNh and IRF9 as suppressors regulating MHCII expression at different hierarchical levels. This study provides insights into the intricate regulation of antigen presentation and the foundation for further exploration of the interaction mechanisms between aquatic virus and fish.

10.
Front Immunol ; 15: 1363156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953028

RESUMEN

Introduction: Human Herpesvirus 6B (HHV-6B) impedes host immune responses by downregulating class I MHC molecules (MHC-I), hindering antigen presentation to CD8+ T cells. Downregulation of MHC-I disengages inhibitory receptors on natural killer (NK) cells, resulting in activation and killing of the target cell if NK cell activating receptors such as NKG2D have engaged stress ligands upregulated on the target cells. Previous work has shown that HHV-6B downregulates three MHC-like stress ligands MICB, ULBP1, and ULBP3, which are recognized by NKG2D. The U20 glycoprotein of the related virus HHV-6A has been implicated in the downregulation of ULBP1, but the precise mechanism remains undetermined. Methods: We set out to investigate the role of HHV-6B U20 in modulating NK cell activity. We used HHV-6B U20 expressed as a recombinant protein or transduced into target cells, as well as HHV-6B infection, to investigate binding interactions with NK cell ligands and receptors and to assess effects on NK cell activation. Small-angle X-ray scattering was used to align molecular models derived from machine-learning approaches. Results: We demonstrate that U20 binds directly to ULBP1 with sub-micromolar affinity. Transduction of U20 decreases NKG2D binding to ULBP1 at the cell surface but does not decrease ULBP1 protein levels, either at the cell surface or in toto. HHV-6B infection and soluble U20 have the same effect. Transduction of U20 blocks NK cell activation in response to cell-surface ULBP1. Structural modeling of the U20 - ULBP1 complex indicates some similarities to the m152-RAE1γ complex.


Asunto(s)
Proteínas Ligadas a GPI , Herpesvirus Humano 6 , Células Asesinas Naturales , Activación de Linfocitos , Subfamilia K de Receptores Similares a Lectina de Células NK , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Herpesvirus Humano 6/inmunología , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Activación de Linfocitos/inmunología , Unión Proteica , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular
11.
Front Vet Sci ; 11: 1391872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957800

RESUMEN

The effectiveness and safety of allogeneic mesenchymal stem/stromal cells (MSCs) can be affected by patient's immune recognition. Thus, MSC immunogenicity and their immunomodulatory properties are crucial aspects for therapy. Immune responses after allogeneic MSC administration have been reported in different species, including equine. Interactions of allogenic MSCs with the recipient's immune system can be influenced by factors like matching or mismatching for the major histocompatibility complex (MHC) between donor-recipient, and by the levels of MHC expression in MSCs. The latter can vary upon MSC inflammatory exposure or differentiation, such as chondrogenic induction, making both priming and differentiation interesting therapeutic strategies. This study investigated the systemic in vivo immune cellular response against allogeneic equine MSCs in these situations. Either MSCs in basal conditions (MSC-naïve), pro-inflammatory primed (MSC-primed) or chondrogenically differentiated (MSC-chondro) were repeatedly administered subcutaneously into autologous, MHC-matched or MHC-mismatched allogeneic equine recipients. At different time-points after each administration, lymphocytes were obtained from recipient horses and exposed in vitro to the same type of MSCs to assess the proliferative response of different T cell subsets (cytotoxic, helper, regulatory), B cells, and interferon gamma (IFNγ) secretion. Higher proliferative response of helper and cytotoxic T lymphocytes and IFNγ secretion was observed in response to all types of MHC-mismatched MSCs over MHC-matched ones. MSC-primed produced the highest immune response, followed by MSC-naïve, and MSC-chondro. However, MSC-primed activated Treg and had a mild effect on B cells, and the response after their second administration was similar to the first one. On the other hand, both MSC-chondro and MSC-naïve barely induced Treg response but promoted B lymphocyte activation, and proportionally induced a higher cell response after the second administration. In conclusion, both the type of MSC conditioning and the MHC compatibility influenced systemic immune recognition of equine MSCs after single and repeated administrations, but the response was different. Selecting MHC-matched donors would be particularly recommended for MSC-primed and repeated MSC-naïve administrations. While MHC-mismatching in MSC-chondro would be less critical, B cell response should not be ignored. Comprehensively investigating the in vivo immune response against equine allogeneic MSCs is crucial for advancing veterinary cell therapies.

12.
Animal Model Exp Med ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962826

RESUMEN

BACKGROUND: Pig organ xenotransplantation is a potential solution for the severe organ shortage in clinic, while immunogenic genes need to be eliminated to improve the immune compatibility between humans and pigs. Current knockout strategies are mainly aimed at the genes causing hyperacute immune rejection (HAR) that occurs in the first few hours while adaptive immune reactions orchestrated by CD4 T cell thereafter also cause graft failure, in which process the MHC II molecule plays critical roles. METHODS: Thus, we generate a 4-gene (GGTA1, CMAH, ß4GalNT2, and CIITA) knockout pig by CRISPR/Cas9 and somatic cell nuclear transfer to compromise HAR and CD4 T cell reactions simultaneously. RESULTS: We successfully obtained 4KO piglets with deficiency in all alleles of genes, and at cellular and tissue levels. Additionally, the safety of our animals after gene editing was verified by using whole-genome sequencing and karyotyping. Piglets have survived for more than one year in the barrier, and also survived for more than 3 months in the conventional environment, suggesting that the piglets without MHC II can be raised in the barrier and then gradually mated in the conventional environment. CONCLUSIONS: 4KO piglets have lower immunogenicity, are safe in genomic level, and are easier to breed than the model with both MHC I and II deletion.

13.
Adv Biol (Weinh) ; : e2400114, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971967

RESUMEN

Identification of neoantigens, derived from somatic DNA alterations, emerges as a promising strategy for cancer immunotherapies. However, not all somatic mutations result in immunogenicity, hence, efficient tools to predict the immunogenicity of neoepitopes are needed. A pipeline is presented that provides a comprehensive solution for the identification of neoepitopes based on genomic sequencing data. The pipeline consists of a data pre-processing step and three machine learning predictive steps. The pre-processing step analyzes genomic data for different types of alterations, produces a list of all possible antigens, and determines the human leukocyte antigen (HLA) type and T-cell receptor (TCR) repertoire. The first predictive step performs a classification into antigens and neoantigens, selecting neoantigens for further consideration. The next step predicts the strength of binding between neoantigens and available major histocompatibility complexes of class I (MHC-I). The third step is engaged to predict the likelihood of inducing an immune response. Neoepitopes satisfying all three predictive stages are assumed to be potent candidates to ensure immunogenicity. The predictive pipeline is used in two regimes: selecting neoantigens from patients' sequencing data and generating novel neoantigen candidates. Two different techniques - Monte Carlo and Reinforcement Learning - are implemented to facilitate the generative regime.

14.
Ann Lab Med ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992960

RESUMEN

Background: Pronase pretreatment can reduce rituximab (RTX) interference by degrading CD20 in B-cell flow cytometry crossmatch (FCXM) testing. However, it may also reduce the assay sensitivity by degrading HLA molecules. We investigated the effects of various pronase concentrations on RTX interference and the analytical sensitivity of B-cell FCXM testing. Methods: Using 59 patient serum samples and 38 donor lymphocyte samples, we designed 97 recipient-donor pairs and divided them into three groups according to RTX use and the presence of weak-to-moderate donor HLA-specific antibody (DSA) reactions: RTX+/DSA-, RTX+/DSA+, and RTX-/DSA+. FCXM was performed after pretreating lymphocytes with six different pronase concentrations (0, 0.5, 1, 2, 3, and 4 mg/mL). Results: With B-FCXM testing, false-positive results due to RTX in the RTX+/DSA- group markedly decreased with increasing pronase concentrations. The median channel shift values in the RTX+/DSA+ and RTX-/DSA+ groups did not significantly decrease when the pronase concentration was increased from 1 mg/mL to 2 or 3 mg/mL. All eight RTX+/DSA+ cases that were positive at 1 mg/mL pronase but negative at 2 or 3 mg/mL had mean fluorescence intensity (MFI) DSA values of less than 3,000 except for DQ5 (MFI: 5,226). With T-cell FCXM, false-positive results were observed in 2.9% of 315 FCXM tests with pronase pretreatment. Conclusions: Higher concentrations (2 or 3 mg/mL) of pronase effectively eliminated RTX interference but still carried a risk for false negativity for weak DSA reactions in B-cell FCXM. Higher pronase concentrations can be used as an auxiliary method to detect moderate-to-strong DSA reactions in RTX-treated patients.

15.
Mol Ecol ; 33(15): e17453, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38953291

RESUMEN

The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.


Asunto(s)
Aves , Evolución Molecular , Conversión Génica , Complejo Mayor de Histocompatibilidad , Filogenia , Selección Genética , Animales , Aves/genética , Complejo Mayor de Histocompatibilidad/genética , Selección Genética/genética , Dosificación de Gen , Haplotipos/genética , Variación Genética
16.
Ecol Evol ; 14(7): e11634, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39026957

RESUMEN

The major histocompatibility complex (MHC) is a genetic region in jawed vertebrates that contains key genes involved in the immune response. Associations between the MHC and avian malaria infections in wild birds have been observed and mainly explored in the Northern Hemisphere, while a general lack of information remains in the Southern Hemisphere. Here, we investigated the associations between the MHC genes and infections with Plasmodium and Haemoproteus blood parasites along a latitudinal gradient in South America. We sampled 93 rufous-collared sparrows (Zonotrichia capensis) individuals from four countries, Colombia, Ecuador, Peru, and Chile, and estimated MHC-I and MHC-II allele diversity. We detected between 1-4 (MHC-I) and 1-6 (MHC-II) amino acidic alleles per individual, with signs of positive selection. We obtained generalized additive mixed models to explore the associations between MHC-I and MHC-II diversity and latitude. We also explored the relationship between infection status and latitude/biome. We found a non-linear association between the MHC-II amino acidic allele diversity and latitude. Individuals from north Chile presented a lower MHC genetic diversity than those from other locations. We also found an association between deserts and xeric shrublands and a lower prevalence of Haemoproteus parasites. Our results support a lower MHC genetic in arid or semi-arid habitats in the region with the lower prevalence of Haemoproteus parasites.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39018174

RESUMEN

OBJECTIVE: The study aimed to estimate the prevalence of HLA-B51 and HLA-B52 in Lebanese patients with spondyloarthritis (SpA) compared to healthy controls (HC). We further aimed to evaluate the impact of HLA-B51 on phenotype and identify the distribution of the alleles in the HLA-B locus. METHODS: A case-control study enrolled consecutive SpA patients from three rheumatology clinics in Lebanon, including axial (axSpA), peripheral SpA (pSpA), and psoriatic arthritis (PsA) and HC from blood donors. Demographic and disease data were collected through interviews and file reviews, with testing of the entire HLA-B locus using molecular techniques. The prevalence of HLA-B51 and B52 was estimated in SpA patients versus controls. Prevalence comparisons were made, and logistic regression identified factors associated with HLA-B51 in patients. RESULTS: Data from 120 HC and 86 SpA patients (65 axSpA, 15 pSpA, 6 PsA), mean age 25.6 and 46.4 years, respectively, showed a higher HLA-B51 prevalence in SpA (25.6%), especially axSpA (29.2%) versus HC (12.5%), p = 0.016, and a numerically higher HLA-B52 prevalence (8.1% versus 4.2%, p = 0.230). HLA-B51 correlated with recurrent oral ulcerations (OR 7.99(95%CI 2.14-29.84) and radiographic juxta-articular erosions (OR 7.65(95%CI 1.14-38.03)). HLA-B35 was the most dominant allele in both groups (18.7%), followed by HLA-B27 (15.7%) and HLA-B51 (13.4%) in SpA. CONCLUSION: HLA-B51 was identified more frequently in patients with SpA compared to HC and was associated with recurrent oral ulcerations and juxta-articular radiographic erosions. Longitudinal studies are needed to determine whether this association indicates a disease overlap or might correlate with a specific SpA phenotype.

18.
Arthritis Res Ther ; 26(1): 144, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080801

RESUMEN

BACKGROUND: To develop an inflammation-related immunohistochemistry marker-based algorithm that confers higher diagnostic ability for idiopathic inflammatory myopathies (IIMs) than IIM-related histopathologic features. METHODS: Muscle biopsy tissues from 129 IIM patients who met the 2017 EULAR/ACR criteria and 73 control tissues from patients with non-inflammatory myopathies or healthy muscle specimens were evaluated for histological features and immunostaining results of CD3, CD4, CD8, CD20, CD68, CD163, MX1, MHC class I, MHC class II, and HLA-DR. Diagnostic algorithms for IIM were developed based on the results of the classification and regression tree (CART) analysis, which used immunostaining results as predictor variables for classifying patients with IIMs. RESULTS: In the analysis set (IIM, n = 129; control, n = 73), IIM-related histopathologic features had a diagnostic accuracy of 87.6% (sensitivity 80.6%; specificity 100.0%) for IIMs. Notably, muscular expression of CD163 (99.2% vs. 20.8%, p < 0.001) and MHC class I (87.6% vs. 23.1%, p < 0.001) was significantly higher in the IIM group than in controls. Based on the CART analysis results, we developed an algorithm combining CD163 and MHC class I expression that conferred a diagnostic accuracy of 95.5% (sensitivity 96.1%; specificity 94.5%). In addition, our algorithm was able to correctly diagnose IIM in 94.1% (16/17) of patients who did not meet the 2017 EUALR/ACR criteria but were diagnosed as having IIMs by an expert physician. CONCLUSIONS: Combination of CD163 and MHC class I muscular expression may be useful in diagnosing IIMs.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Biomarcadores , Antígenos de Histocompatibilidad Clase I , Miositis , Receptores de Superficie Celular , Humanos , Antígenos de Diferenciación Mielomonocítica/metabolismo , Femenino , Masculino , Miositis/diagnóstico , Miositis/metabolismo , Persona de Mediana Edad , Antígenos CD/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Adulto , Antígenos de Histocompatibilidad Clase I/análisis , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/metabolismo , Anciano , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Inmunohistoquímica , Algoritmos
19.
Vet World ; 17(6): 1413-1422, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39077442

RESUMEN

Background and Aim: Staphylococcus aureus, with its diverse virulence factors and immune response evasion mechanisms, presents a formidable challenge as an opportunistic pathogen. Developing an effective vaccine against S. aureus has proven elusive despite extensive efforts. Autologous Staphylococcus lysate (ASL) treatment has proven effective in triggering an immune response against bovine mastitis. Peptides that stimulate the immune response can be the subject of further research. The study aimed to use immunoinformatics tools to identify epitopes on S. aureus surface and secretory proteins that can bind to major histocompatibility complex class I (MHC I) and CD8+ T-cells. This method aids in discovering prospective vaccine candidates and elucidating the rationale behind ASL therapy's efficacy. Materials and Methods: Proteins were identified using both literature search and the National Center for Biotechnology Information search engine Entrez. Self and non-self peptides, allergenicity predictions, epitope locations, and physicochemical characteristics were determined using sequence alignment, AllerTOP, SVMTriP, and Protein-Sol tools. Hex was employed for simulating the docking interactions between S. aureus proteins and the MHC I + CD8+ T-cells complex. The binding sites of S. aureus proteins were assessed using Computer Atlas of Surface Topography of Proteins (CASTp) while docked with MHC I and CD8+ T-cells. Results: Nine potential S. aureus peptides and their corresponding epitopes were identified in this study, stimulating cytotoxic T-cell mediated immunity. The peptides were analyzed for similarity with self-antigens and allergenicity. 1d20, 2noj, 1n67, 1nu7, 1amx, and 2b71, non-self and stable, are potential elicitors of the cytotoxic T-cell response. The energy values from docking simulations of peptide-MHC I complexes with the CD8+ and T-cell receptor (TCR) indicate the stability and strength of the formed complexes. These peptides - 2noj, 1d20, 1n67, 2b71, 1nu7, 1yn3, 1amx, 2gi9, and 1edk - demonstrated robust MHC I binding, as evidenced by their low binding energies. Peptide 2gi9 exhibited the lowest energy value, followed by 2noj, 1nu7, 1n67, and 1d20, when docked with MHC I and CD8 + TCR, suggesting a highly stable complex. CASTp analysis indicated substantial binding pockets in the docked complexes, with peptide 1d20 showing the highest values for area and volume, suggesting its potential as an effective elicitor of immunological responses. These peptides - 2noj, 2gi9, 1d20, and 1n67 - stand out for vaccine development and T-cell activation against S. aureus. Conclusion: This study sheds light on the design and development of S. aureus vaccines, highlighting the significance of employing computational methods in conjunction with experimental verification. The significance of T-cell responses in combating S. aureus infections is emphasized by this study. More experiments are needed to confirm the effectiveness of these vaccine candidates and discover their possible medical uses.

20.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39031605

RESUMEN

The major histocompatibility complex (MHC) plays a vital role in the vertebrate immune system due to its role in infection, disease and autoimmunity, or recognition of "self". The marsupial MHC class II genes show divergence from eutherian MHC class II genes and are a unique taxon of therian mammals that give birth to altricial and immunologically naive young providing an opportune study system for investigating evolution of the immune system. Additionally, the MHC in marsupials has been implicated in disease associations, including susceptibility to Chlamydia pecorum infection in koalas. Due to the complexity of the gene family, automated annotation is not possible so here we manually annotate 384 class II MHC genes in 29 marsupial species. We find losses of key components of the marsupial MHC repertoire in the Dasyuromorphia order and the Pseudochiridae family. We perform PGLS analysis to show the gene losses we find are true gene losses and not artifacts of unresolved genome assembly. We investigate the associations between the number of loci and life history traits, including lifespan and reproductive output in lineages of marsupials and hypothesize that gene loss may be linked to the energetic cost and tradeoffs associated with pregnancy and reproduction. We found support for litter size being a significant predictor of the number of DBA and DBB loci, indicating a tradeoff between the energetic requirements of immunity and reproduction. Additionally, we highlight the increased susceptibility of Dasyuridae species to neoplasia and a potential link to MHC gene loss. Finally, these annotations provide a valuable resource to the immunogenetics research community to move forward and further investigate diversity in MHC genes in marsupials.


Asunto(s)
Genoma , Marsupiales , Animales , Marsupiales/genética , Evolución Molecular , Genes MHC Clase II , Filogenia , Antígenos de Histocompatibilidad Clase II/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA