Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39009804

RESUMEN

INTRODUCTION: Lebrikizumab, a high-affinity IgG4 monoclonal antibody that selectively inhibits interleukin-13 with high binding affinity and slow dissociation rate, prevents the formation of the interleukin-4Rα/interleukin-13Rα1 heterodimer receptor signaling complex. Here we report the impact of lebrikizumab on responses to two non-live vaccines in adult patients with moderate-to-severe atopic dermatitis (AD). METHODS: ADopt-VA (NCT04626297) was a double-blind, placebo-controlled, parallel-group, 16-week, phase 3 randomized study to assess the impact of lebrikizumab treatment on non-live vaccine immune responses, and efficacy and safety of lebrikizumab compared with placebo. Eligible patients included adults from 18 to 55 years of age with moderate-to-severe chronic AD who were randomly assigned 1:1 to lebrikizumab 250 mg every 2 weeks or placebo and stratified according to disease severity. The primary endpoints were the development of a booster response to tetanus toxoid and a positive antibody response to meningococcal conjugate vaccine (MCV), 4 weeks after administration of the corresponding vaccine. RESULTS: At week 16, 73.6% of patients in the lebrikizumab group (n = 78/106) achieved Tdap booster response compared with 73.4% of patients in the placebo group (n = 58/79). MCV vaccine response was observed in 86.9% of patients in the lebrikizumab group (n = 86/99) and 75.0% of patients in the placebo group (n = 60/80). At week 16, IGA 0,1 with ≥ 2-point improvement from baseline was achieved by 40.6% (n = 51/125) of patients treated with lebrikizumab and 18.9% (n = 23/122) of patients who received placebo (p < 0.001). There was a higher proportion of patients achieving EASI 75 at week 16 in the lebrikizumab-treated patients (58.0%, n = 72/125) compared with placebo (32.7%, n = 40/122, p < 0.001). CONCLUSIONS: Treatment with lebrikizumab did not impact response to non-live vaccines Tdap and MCV in this study. Lebrikizumab treatment had a significant degree of efficacy compared to placebo across multiple endpoints. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04626297.

2.
Cells ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38994929

RESUMEN

Standard-of-care treatment for Glioblastoma Multiforme (GBM) is comprised of surgery and adjuvant chemoradiation. Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated disease-modifying activity in GBM and holds great promise. Radiation, a standard-of-care treatment for GBM, has well-known immunomodulatory properties and may overcome the immunosuppressive tumor microenvironment (TME); however, radiation dose optimization and integration with CAR T cell therapy is not well defined. Murine immunocompetent models of GBM were treated with titrated doses of stereotactic radiosurgery (SRS) of 5, 10, and 20 Gray (Gy), and the TME was analyzed using Nanostring. A conditioning dose of 10 Gy was determined based on tumor growth kinetics and gene expression changes in the TME. We demonstrate that a conditioning dose of 10 Gy activates innate and adaptive immune cells in the TME. Mice treated with 10 Gy in combination with mCAR T cells demonstrated enhanced antitumor activity and superior memory responses to rechallenge with IL13Rα2-positive tumors. Furthermore, 10 Gy plus mCAR T cells also protected against IL13Rα2-negative tumors through a mechanism that was, in part, c-GAS-STING pathway-dependent. Together, these findings support combination conditioning with low-dose 10 Gy radiation in combination with mCAR T cells as a therapeutic strategy for GBM.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/radioterapia , Glioblastoma/patología , Animales , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Ratones , Microambiente Tumoral/inmunología , Humanos , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Linfocitos T/inmunología , Ratones Endogámicos C57BL , Inmunomodulación , Femenino
3.
Artículo en Inglés | MEDLINE | ID: mdl-39016179

RESUMEN

BACKGROUND: Intensive care unit-acquired weakness (ICU-AW) is a syndrome characterized by a long-term muscle weakness often observed in sepsis-surviving patients during the chronic phase. Although ICU-AW is independently associated with increased mortality, effective therapies have yet to be established. Programmed death-1 (PD-1) inhibitors have attracted attention as potential treatments for reversing immune exhaustion in sepsis; however, its impact on ICU-AW remains to be elucidated. Here, we study how PD-1 deficiency affects sepsis-induced skeletal muscle dysfunction in a preclinical sepsis model. METHODS: Chronic sepsis model was developed by treating wild-type (WT) and PD-1 knockout (KO) mice with caecal slurry, followed by resuscitation with antibiotics and saline. Mice were euthanized on days 15-17. Body weights, muscle weights, and limb muscle strengths were measured. Interleukin 13 (IL-13) and PD-1 expressions were examined by flow cytometry. Messenger RNA (mRNA) expressions of slow-twitch muscles were measured by reverse transcription and quantitative polymerase chain reaction (RT-qPCR). In an in vitro study, C2C12 myotubes were treated with lipopolysaccharide (LPS) and recombinant IL-13 followed by gene expression measurements. RESULTS: WT septic mice exhibited decreased muscle weight (quadriceps, P < 0.01; gastrocnemius, P < 0.05; and tibialis anterior, P < 0.01) and long-term muscle weakness (P < 0.0001), whereas PD-1 KO septic mice did not exhibit any reduction in muscle weights and strengths. Slow-twitch specific mRNAs, including myoglobin (Mb), troponin I type 1 (Tnni1), and myosin heavy chain 7 (Myh7) were decreased in WT skeletal muscle (Mb, P < 0.0001; Tnni1, P < 0.05; and Myh7, P < 0.05) after sepsis induction, but mRNA expressions of Tnni1 and Myh7 were increased in PD-1 KO septic mice (Mb, not significant; Tnni1, P < 0.0001; and Myh7, P < 0.05). Treatment of C2C12 myotube cells with LPS decreased the expression of slow-twitch mRNAs, which was restored by IL-13 (Mb, P < 0.0001; Tnni1, P < 0.001; and Myh7, P < 0.05). IL-13 production was significantly higher in ILC2s compared to T cells in skeletal muscle (P < 0.05). IL-13-producing ILC2s in skeletal muscle were examined and found to increase in PD-1 KO septic mice, compared with WT septic mice (P < 0.05). ILC2-derived IL-13 was increased by PD-1 KO septic mice and thought to protect the muscles from experimental ICU-AW. CONCLUSIONS: Long-term muscle weakness in experimental ICU-AW was ameliorated in PD-1 KO mice. ILC2-derived IL-13 production in skeletal muscles was increased in PD-1 KO mice, thereby suggesting that IL-13 alleviates muscle weakness during sepsis. This study demonstrates the effects of PD-1 blockade in preserving muscle strength during sepsis through an increase in ILC2-derived IL-13 and may be an attractive therapeutic target for sepsis-induced ICU-AW.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38958596

RESUMEN

KEY POINTS: A persistent type 2 endotype signature exists in recalcitrant chronic rhinosinusitis with nasal polyps mucosa on dupilumab. Revision sinus surgery immediately prior to dupilumab reduces long-term interleukin (IL)-4/IL-13 tissue mRNA. Pre-dupilumab revision surgery is associated with reduced tissue eosinophils and GATA-3+ cells.

5.
bioRxiv ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39005257

RESUMEN

Treatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signaling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents. We investigated the role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo. IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2-expressing ciliated cells rather than by neutralization in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signaling and were abolished in mice deficient in the phospholipase A2 enzyme PLA2G2D. We conclude that IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signaling may be protective against progression to severe respiratory virus-induced lung disease.

6.
Res Sq ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38854033

RESUMEN

A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.

7.
Allergy ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853666

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease resulting in decreased quality of life. Histamine and specifically the H4 receptor play a key role in the inflammatory process in AD and serve as targets for novel therapeutic approaches. OBJECTIVE: In the present study we aimed to elucidate the immunopathological mechanisms with which the H4 receptor impacts TH2 cells and contributes to AD pathophysiology. METHODS: Total CD4+ T cells obtained from healthy or AD individuals and in vitro differentiated TH2 cells were cultured under different conditions and the mRNA expression or protein production of target molecules were determined using quantitative real-time PCR and ELISA. RESULTS: H4 receptor mRNA expression was upregulated concentration dependent upon IL-4 stimulation in in vitro differentiated TH2 cells progressively during the differentiation. Transcriptomic analysis of in vitro differentiated TH2 versus TH1 cells revealed that the H4 receptor among other genes represents one of the highly upregulated genes in TH2 cells. Most importantly, increased amounts of IL-5 and IL-13 mRNA expression were detected in in vitro differentiated TH2 cells as well as protein secretion in the presence of histamine or of the H4 receptor-selective-agonist when compared to the untreated control. CONCLUSION: We show for the first time an H4 receptor dependent upregulation of the pro-inflammatory cytokines IL-5 and IL-13 in human TH2 cells by histamine. This suggests that the blockade of the H4 receptor may lead to downregulation of these cytokines and amelioration of AD symptoms as reported in first clinical studies.

8.
J Leukoc Biol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941350

RESUMEN

Chronic obstructive pulmonary disease (COPD) is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction and poorly reversible airflow obstruction. A sub-group of COPD patients have higher blood eosinophil counts (BECs), associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 (T2) inflammation. Emerging evidence shows that COPD patients with increased pulmonary eosinophil counts have an altered airway microbiome. Higher BECs are also associated with increased lung function decline, implicating T2 inflammation in progressive pathophysiology in COPD. We provide a narrative review of the role of eosinophils and T2 inflammation in the pathophysiology of COPD, encompassing the lung microbiome, pharmacological targeting of T2 pathways in COPD, and the clinical use of BEC as a COPD biomarker.

9.
Sci Rep ; 14(1): 14892, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937503

RESUMEN

Accurate screening of COVID-19 infection status for symptomatic patients is a critical public health task. Although molecular and antigen tests now exist for COVID-19, in resource-limited settings, screening tests are often not available. Furthermore, during the early stages of the pandemic tests were not available in any capacity. We utilized an automated machine learning (ML) approach to train and evaluate thousands of models on a clinical dataset consisting of commonly available clinical and laboratory data, along with cytokine profiles for patients (n = 150). These models were then further tested for generalizability on an out-of-sample secondary dataset (n = 120). We were able to develop a ML model for rapid and reliable screening of patients as COVID-19 positive or negative using three approaches: commonly available clinical and laboratory data, a cytokine profile, and a combination of the common data and cytokine profile. Of the tens of thousands of models automatically tested for the three approaches, all three approaches demonstrated > 92% sensitivity and > 88 specificity while our highest performing model achieved 95.6% sensitivity and 98.1% specificity. These models represent a potential effective deployable solution for COVID-19 status classification for symptomatic patients in resource-limited settings and provide proof-of-concept for rapid development of screening tools for novel emerging infectious diseases.


Asunto(s)
COVID-19 , Citocinas , Aprendizaje Automático , Humanos , COVID-19/diagnóstico , Citocinas/sangre , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Tamizaje Masivo/métodos , Masculino , Femenino , Sensibilidad y Especificidad , Persona de Mediana Edad , Adulto , Anciano
10.
Biomolecules ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927021

RESUMEN

Through machine learning, identifying correlations between amino acid sequences of antibodies and their observed characteristics, we developed an internal viscosity prediction model to empower the rapid engineering of therapeutic antibody candidates. For a highly viscous anti-IL-13 monoclonal antibody, we used a structure-based rational design strategy to generate a list of variants that were hypothesized to mitigate viscosity. Our viscosity prediction tool was then used as a screen to cull virtually engineered variants with a probability of high viscosity while advancing those with a probability of low viscosity to production and testing. By combining the rational design engineering strategy with the in silico viscosity prediction screening step, we were able to efficiently improve the highly viscous anti-IL-13 candidate, successfully decreasing the viscosity at 150 mg/mL from 34 cP to 13 cP in a panel of 16 variants.


Asunto(s)
Anticuerpos Monoclonales , Ingeniería de Proteínas , Viscosidad , Ingeniería de Proteínas/métodos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Aprendizaje Automático , Secuencia de Aminoácidos , Humanos
12.
Clin Exp Immunol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916413

RESUMEN

The gut-skin axis has recently been widely recognized, and both the gut and skin have been found to affect each other through a bidirectional connection; however, the precise mechanisms remain to be elucidated. Therefore, we aimed to investigate the effects of chronic skin damage on mouse intestines. Following the chronic skin damage (CSD) model, 4 % sodium dodecyl sulfate (SDS) was applied to the back-shaved murine skin six times for 2 weeks after tape stripping. The small and large intestines were analyzed histologically and immunologically, respectively. Intestinal permeability was measured using fluorescein isothiocyanate-conjugated (FITC)-dextran. The role of IL-13 in the ileum was investigated using an anti-IL-13 antibody. Apoptotic intestinal cells were analyzed using TUNEL staining. Villus atrophy was observed in the small intestine in the CSD model, along with increased permeability. Mast cells, but not T cells, eosinophils, nor ILC-2, were increased in the intestinal mucosa. However, no significant changes were observed in the large intestine. mRNA expression of IL-13 was increased only in the ileum of the CSD model. Apoptotic intestinal epithelial cells were significantly increased in the ileum of the CSD model. Administration of an anti-IL-13 antibody ameliorated the intestinal damage caused by CSD, along with decreased apoptotic cells and mast cell infiltration. Skin damage causes morphological changes in the small intestine, accompanied by increased intestinal permeability, possibly through the IL-13-induced apoptosis of mast cells in the epithelium. Surfactant-mediated mechanical skin damage can cause a leaky gut.

13.
Exp Dermatol ; 33(6): e15115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38855893

RESUMEN

Itchy skin or pruritus is a common cutaneous symptom that causes an urge to scratch, and the role of interleukins (IL) in itchy skin has been widely studied. IL-4 and IL-13 are known to induce chronic itch. Similarly, the direct role of IL-31 in inducing itch has been demonstrated in clinical situations such as atopic dermatitis and prurigo nodularis. Moreover, IL-4 receptor α antibodies (dupilumab) and IL-31 receptor A antibodies (nemolizumab) inhibit pruritus. However, the interplay between these ILs in pruritus remains unclear. Therefore, we investigated the reciprocal effects of these cytokines on pruritus in mice. The intradermal administration of IL-31 induced itch-associated scratching behaviour in a dose-dependent manner. Interestingly, the amount of IL-31 and IL-4/IL-13, co-administration or 30 min pre-administration of IL-4/IL-13 and intradermal or intravenous pre-administration of IL-4 did not affect IL-31-induced itch-associated scratching behaviour when it was observed for 30 min, 2 h, 24 h or 48 h. Pre-administration of neutralising antibodies against IL-4 and IL-13 also did not affect IL-31-induced itch-associated scratching behaviour. These results suggest that IL-31 can induce itching independently of IL-4 and IL-13 in vivo.


Asunto(s)
Interleucina-13 , Interleucina-4 , Interleucinas , Prurito , Animales , Prurito/etiología , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Ratones , Interleucinas/metabolismo , Conducta Animal , Masculino , Anticuerpos Monoclonales Humanizados/farmacología
14.
Anaerobe ; 88: 102860, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701912

RESUMEN

OBJECTIVES: Clostridioides difficile infection (CDI) is the leading hospital-acquired infection in North America. We have previously discovered that antibiotic disruption of the gut microbiota decreases intestinal IL-33 and IL-25 and increases susceptibility to CDI. We further found that IL-33 promotes protection through type 2 Innate Lymphoid Cells (ILC2s), which produce IL-13. However, the contribution of IL-13 to disease has never been explored. METHODS: We used a validated model of CDI in mice, in which we neutralized via blocking antibodies, or administered recombinant protein, IL-13 to assess the role of this cytokine during infection using weight and clinical scores. Fluorescent activated cell sorting (FACS) was used to characterize myeloid cell population changes in response to IL-13 manipulation. RESULTS: We found that administration of IL-13 protected, and anti-IL-13 exacerbated CDI. Additionally, we observed alterations to the monocyte/macrophage cells following neutralization of IL-13 as early as day three post infection. We also observed elevated accumulation of myeloid cells by day four post-infection following IL-13 neutralization. Neutralization of the decoy receptor, IL-13Rα2, resulted in protection from disease, likely through increased available endogenous IL-13. CONCLUSIONS: Our data highlight the protective role of IL-13 in protecting from more severe CDI and the association of poor responses with a dysregulated monocyte-macrophage compartment. These results increase our understanding of type 2 immunity in CDI and may have implications for treating disease in patients.

15.
Biomolecules ; 14(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38785953

RESUMEN

Bronchial asthma is characterized by airway inflammation, airway hyperresponsiveness, and reversible airway obstruction. Eosinophils contribute to the pathogenesis of airway disease mainly by releasing eosinophil-specific granules, lipid mediators, superoxide anions, and their DNA. Type-2 cytokines such as interleukin (IL)-4 and IL-13 also play roles in the development of bronchial asthma. Among these cytokines, IL-4 is involved in T-cell differentiation, B-cell activation, B-cell differentiation into plasma cells, and the production of immunoglobulin E. Although IL-13 has similar effects to IL-4, IL-13 mainly affects structural cells, such as epithelial cells, smooth muscle cells, and fibroblasts. IL-13 induces the differentiation of goblet cells that produce mucus and induces the airway remodeling, including smooth muscle hypertrophy. IL-4 and IL-13 do not directly activate the effector functions of eosinophils; however, they can induce eosinophilic airway inflammation by upregulating the expression of vascular cell adhesion molecule-1 (for adhesion) and CC chemokine receptor 3 ligands (for migration). Dupilumab, a human anti-IL-4 receptor α monoclonal antibody that inhibits IL-4 and IL-13 signaling, decreases asthma exacerbations and mucus plugs and increases lung function in moderate to severe asthma. In addition, dupilumab is effective for chronic rhinosinusitis with nasal polyps and for atopic dermatitis, and IL-4/IL-13 blocking is expected to suppress allergen sensitization, including transcutaneous sensitization and atopic march.


Asunto(s)
Asma , Eosinófilos , Interleucina-13 , Interleucina-4 , Humanos , Asma/metabolismo , Asma/patología , Eosinófilos/metabolismo , Eosinófilos/inmunología , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Animales
16.
Front Physiol ; 15: 1392443, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711951

RESUMEN

Introduction: Interleukin 13 (IL-13) is an important effector molecule in allergic asthma. IL-13-mediated mucin hypersecretion requires conversion of secretoglobin-positive club cells into goblet cells through suppression of forkhead box A2 (FOXA2) and induction of SAM pointed domain containing ETS transcription factor (SPDEF). IL-13-mediated mucin hypersecretion may also include modulation of purinergic and muscarinic receptors that control basal and stimulated mucin secretion. We recently found that the transcription factor cAMP response element-binding protein (Creb1) inhibits FOXA2 and modulates mucus secretion in mice. Methods: We tested the hypothesis that loss of club cell Creb1 mitigates the pro-mucin effects of IL-13. We challenged male and female mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-13 or vehicle. We also studied human "club cell-like" NCI-H322 cells. Results: Loss of club cell Creb1 augmented IL-13-mediated increases in mRNA for the gel-forming mucins Muc5ac and Muc5b and prevented IL-13-mediated decreases in muscarinic 3 receptor (M3R) mRNA in male airways. In female airways, loss of club cell Creb1 reduced M3R mRNA and significantly blunted IL-13-mediated increases in purinergic receptor P2Y2 (P2ry2) mRNA but did not impact Muc5ac and Muc5b mRNA. Despite changes in mucins and secretion machinery, goblet cell density following cholinergic stimulation was not impacted by loss of club cell Creb1 in either sex. IL-13 treatment decreased basal airway resistance across sexes in mice with loss of club cell Creb1, whereas loss of club cell Creb1 augmented IL-13-mediated increases in airway elastance in response to methacholine. NCI-H322 cells displayed IL-13 signaling components, including IL-13Rα1 and IL-4Rα. Pharmacologic inhibition of CREB reduced IL-13Rα1 mRNA, whereas recombinant CREB decreased IL-4Rα mRNA. Application of IL-13 to NCI-H322 cells increased concentrations of cAMP in a delayed manner, thus linking IL-13 signaling to CREB signaling. Conclusion: These data highlight sex-specific regulation of club cell Creb1 on IL-13-mediated mucin hypersecretion and airway mechanics.

17.
Nutrients ; 16(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732497

RESUMEN

Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been reported to have antioxidant, anti-inflammatory, and anticancer effects. And parthenolide, known as a sesquiterpene lactone-based compound, inhibits the activation of lipopolysaccharide-binding protein (LBP), which is a major trigger for leaky gut syndrome. However, the effectiveness of LNL in improving the state of increased intestinal permeability has not yet been reported. Therefore, we demonstrated the efficacy of LNL, which is known to be rich in parthenolide, in improving intestinal permeability induced by IL-13. We investigated the improvement in permeability and analyzed major tight junction proteins (TJs), permeability-related mechanisms, weight and disease activity indices, and corresponding cytokine mechanisms. LNL maintained TJs homeostasis and clinical improvement by reducing increased claudin-2 through the inhibition of IL-13/STAT6 activation in TJ-damaged conditions. These results are expected to be effective in preventing leaky gut syndrome through the TJ balance and to further improve intestinal-related diseases, such as inflammatory bowel disease.


Asunto(s)
Laurus , Proteínas de Uniones Estrechas , Animales , Proteínas de Uniones Estrechas/metabolismo , Laurus/química , Permeabilidad , Extractos Vegetales/farmacología , Masculino , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Humanos , Citocinas/metabolismo
18.
Expert Opin Biol Ther ; 24(4): 251-261, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619468

RESUMEN

INTRODUCTION: Asthma encompasses a spectrum of phenotypes often categorized into two groups- type 2 high (T2 high) and type 2 low (T2 low). T2 high includes atopic and eosinophilic presentations whereas T2 low is non-atopic, non-eosinophilic, and oft associated with neutrophilic inflammation. Eosinophilic asthma is often driven by IgE, IL-4, IL-5, and IL-13 and TSLP. This can lead to eosinophilic inflammatory response in the airways which in turn can be used as target for treatment. AREAS COVERED: The article will focus on biologic therapy that is currently being used in eosinophilic asthma management in mainly the adult population including clinical trials and co-morbidities that can be treated using the same biologics. A review on asthma biologics for pediatric population has been reviewed elsewhere. EXPERT OPINION: Biological therapy for asthma targeting the IgE, IL-4, IL-5, IL-13, and TSLP pathways are shown to have benefit for the treatment of eosinophilic asthma, as exemplified in real-world studies. When choosing the right biological agent factors such as phenotype, comorbidities, and cost-effectiveness of the biologic agent must be taken into consideration.


Asunto(s)
Asma , Terapia Biológica , Humanos , Asma/tratamiento farmacológico , Asma/inmunología , Eosinofilia/inmunología , Eosinofilia/tratamiento farmacológico , Antiasmáticos/uso terapéutico , Inmunoglobulina E/inmunología , Productos Biológicos/uso terapéutico , Eosinófilos/inmunología , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Citocinas/inmunología , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo
19.
Rev Med Liege ; 79(4): 255-259, 2024 Apr.
Artículo en Francés | MEDLINE | ID: mdl-38602214

RESUMEN

Severe asthma often features a T2 high profile regulated by cytokines such as interleukins IL-4, IL-5 and IL-13. Dupilumab (Dupixent®) is humanized monoclonal antibody directed against the α subunit of the receptor for IL-4 and IL-13. Here we summarise the immunogical background of severe asthma which supports the use of dupilumab and the pivotal randomised controlled trials which have established the efficacy of dupilumab in treating people with severe asthma. Dupilumab reduces the exacerbation rate, has corticosteroids sparing effect, provides sustained improvement in expiratory flow rates and improved asthma control and quality of life with a reassuring safety profile. Dupilumab reduces the levels of FeNO values and of serum IgE but not those of circulating eosinophils. We also report on a few real life data with dupilumab supporting its clinical effectiveness.


L'asthme sévère est souvent caractérisé par un profil immunologique dit «T2 high¼ régulé par des cytokines telles que les interleukines IL-4, IL-5 et IL-13. Le dupilumab (Dupixent®) est un anticorps monoclonal humanisé dirigé contre la sous-unité α du récepteur à l'IL-4 et à l'IL-13. Nous présentons ici les bases immunologiques qui annoncent son efficacité dans le traitement de l'asthme sévère et les grandes études contrôlées qui ont validé son efficacité. Le dupilumab réduit la fréquence des exacerbations, permet une épargne en corticoïdes systémiques, améliore les débits expiratoires, le contrôle de la maladie et la qualité de vie des personnes asthmatiques, sans donner lieu à des effets secondaires notables. Il réduit le taux de FeNO et des IgE sériques, mais pas celui des éosinophiles circulants. Nous donnons également un aperçu de quelques données obtenues en vie réelle pour souligner son utilité en clinique.


Asunto(s)
Antiasmáticos , Anticuerpos Monoclonales Humanizados , Asma , Humanos , Interleucina-4/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Interleucina-13/uso terapéutico , Calidad de Vida , Asma/tratamiento farmacológico , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA