Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
3.
Blood Lymphat Cancer ; 14: 31-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854627

RESUMEN

Background: Multiple myeloma (MM), an incurable plasma cell malignancy. The significance of the relationship between natural killer (NK) cell-related genes and clinical factors in MM remains unclear. Methods: Initially, we extracted NK cell-related genes from peripheral blood mononuclear cells (PBMC) of healthy donors and MM samples by employing single-cell transcriptome data analysis in TISCH2. Subsequently, we screened NK cell-related genes with prognostic significance through univariate Cox regression analysis and protein-protein interaction (PPI) network analysis. Following the initial analyses, we developed potential subtypes and prognostic models for MM using consensus clustering and lasso regression analysis. Additionally, we conducted a correlation analysis to explore the relationship between clinical features and risk scores. Finally, we constructed a weighted gene co-expression network analysis (WGCNA) and identified differentially expressed genes (DEGs) within the MM cohort. Results: We discovered that 153 NK cell-related genes were significantly associated with the prognosisof MM patients (P <0.05). Patients in NK cluster A exhibited poorer survival outcomes compared to those in cluster B. Furthermore, our NK cell-related genes risk model revealed that patients with a high risk score had significantly worse prognoses (P <0.05). Patients with a high risk score were more likely to exhibit adverse clinical markers. Additionally, the nomogram based on NK cell-related genes demonstrated strong prognostic performance. The enrichment analysis indicated that immune-related pathways were significantly correlated with both the NK subtypes and the NK cell-related genes risk model. Ultimately, through the combined use of WGCNA and DEGs analysis, and by employing Venn diagrams, we determined that ITM2C is an independent prognostic marker for MM patients. Conclusion: In this study, we developed a novel model based on NK cell-related genes to stratify the prognosis of MM patients. Notably, higher expression levels of ITM2C were associated with more favorable survival outcomes in these patients.

4.
Pathol Int ; 74(8): 464-474, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940569

RESUMEN

Exosomes from cancer cells function as carriers to spread or transport specific microRNAs (miRNAs) to distant sites to exert their effects, but the mechanism of exosomal miRNA action in esophageal squamous cell carcinoma (ESCC) has not been fully explained. Therefore, in this study, we were interested in the impact of exosomal miR-196a-5p in ESCC progression. We found that miR-196a-5p was expressed enriched in clinical tissues, ESCC cells, and exosomes. Functionally, depletion of miR-196a-5p impeded ESCC cell growth, migration, and invasion, whereas overexpression of miR-196a-5p produced the opposite results. Moreover, enhancement of exosomal miR-196a-5p in recipient ESCC cells triggered more intense proliferation and migration. Mechanistically, we identified integral membrane protein 2B (ITM2B) as a direct target of miR-196a-5p. Silencing of ITM2B partially counteracted the inhibitory effect of miR-196a-5p inhibitors on the malignant phenotype of ESCC. Furthermore, in vivo, lower miR-196a-5p levels triggered by the introduction of antagomiR-196a-5p resulted in the generation of smaller volume and weight xenograft tumors. Thus, our results demonstrated novel mechanisms of exosomal and intracellular miR-196a-5p-mediated ESCC growth and migration and identify the interaction of miR-196a-5p with ITM2B. These works might provide new targets and basis for the development of clinical treatment options for ESCC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Exosomas , Regulación Neoplásica de la Expresión Génica , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Exosomas/metabolismo , Exosomas/genética , Movimiento Celular/genética , Animales , Línea Celular Tumoral , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Masculino , Ratones Desnudos , Femenino
5.
Am J Cancer Res ; 14(5): 2202-2215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859860

RESUMEN

Bladder cancer stands as one of the prevalent malignancies in urological clinics, highlighting the pressing need to uncover prognostic or therapeutic avenues. ITM2A, a transmembrane protein, has been identified as a suppressor in tumor progression recently. Our study underscored a significant correlation between low ITM2A expression in bladder cancer tissues and high tumor grade, AJCC stage, and poor overall survival time. Additionally, our findings demonstrated that reinstating ITM2A expression impeded cell proliferation, migration, and invasion, while conversely, its suppression enhanced these malignant behaviors. Furthermore, we elucidated that ITM2A could suppress malignant phenotypes of bladder cancer cells via inhibiting activation of the STAT3 induced by IL-6. In conclusion, our research unveiled the mechanistic role of ITM2A in inhibiting tumor progression, shedding light on its potential as a prognostic predictor and therapeutic target in bladder cancer management.

6.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473856

RESUMEN

Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked. These observations were supported by the co-expression of MBP with Bri2, its mature form, and disease-associated mutants, which showed that in mammalian cells, MBP indeed modulates the post-translational processing of Bri2 by restriction of the furin-catalyzed release of its C-terminal peptide. Moreover, we showed that the co-expression of MBP and Bri2 also leads to an altered cellular localization of Bri2, restricting its membrane trafficking independently of the MBP-mediated suppression of the Bri2 C-terminal peptide release. Further investigations should elucidate if these observations have physiological meaning in terms of Bri2 as a MBP chaperone activated by the MBP-dependent postponement of Bri2 membrane trafficking.


Asunto(s)
Furina , Glicoproteínas de Membrana , Animales , Furina/metabolismo , Proteína Básica de Mielina , Proteínas de la Membrana/metabolismo , Péptidos , Mamíferos/metabolismo
8.
EMBO Rep ; 25(3): 1326-1360, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38347225

RESUMEN

ITM2B/BRI2 mutations cause Alzheimer's Disease (AD)-related dementias. We observe heightened ITM2B/BRI2 expression in microglia, a pivotal cell type in AD due to risk-increasing variants in the microglial gene TREM2. Single-cell RNA-sequencing demonstrates a Trem2/Bri2-dependent microglia cluster, underscoring their functional interaction. α-secretase cleaves TREM2 into TREM2-CTF and sTREM2. As BRI2 hinders α-secretase cleavage of the AD-related Aß-Precursor-Protein, we probed whether BRI2 influences TREM2 processing. Our findings indicate a BRI2-TREM2 interaction that inhibits TREM2 processing in heterologous cells. Recombinant BRI2 and TREM2 proteins demonstrate a direct, cell-free BRI2-TREM2 ectodomain interaction. Constitutive and microglial-specific Itm2b-Knock-out mice, and Itm2b-Knock-out primary microglia provide evidence that Bri2 reduces Trem2 processing, boosts Trem2 mRNA expression, and influences Trem2 protein levels through α-secretase-independent pathways, revealing a multifaceted BRI2-TREM2 functional interaction. Moreover, a mutant Itm2b dementia mouse model exhibits elevated Trem2-CTF and sTrem2, mirroring sTREM2 increases in AD patients. Lastly, Bri2 deletion reduces phagocytosis similarly to a pathogenic TREM2 variant that enhances processing. Given BRI2's role in regulating Aß-Precursor-Protein and TREM2 functions, it holds promise as a therapeutic target for AD and related dementias.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Demencia/genética , Modelos Animales de Enfermedad , Glicoproteínas de Membrana , Ratones Noqueados , Microglía/metabolismo , Receptores Inmunológicos
9.
Pathol Int ; 74(3): 129-138, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38289121

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy affecting the digestive tract, with an increasing incidence rate worldwide. Recently, numerous studies revealed that microRNAs were associated with gene expression regulation, particularly their involvement in the regulation of tumor cells, garnering widespread attention. Here, we discovered that miR-196a-5p was significantly upregulated in both ESCC tissues and cells, which was correlated with an unfavorable prognosis. Series functional in vitro investigations have confirmed that silencing miR-196a-5p obviously restrained the ESCC cells malignant phenotypes and promoted apoptosis. Bioinformatics analysis and rescue experiments revealed that miR-196a-5p directly targeted ITM2B, exerting influence on the development of ESCC cells through negative regulation of ITM2B expression. Xenograft mouse models were established for conducting in vivo experiments, providing further confirmation of the regulatory mechanism and biological significance of the miR-196a-5p/ITM2B axis in ESCC. Our research demonstrated miR-196a-5p promoted ESCC malignant progression by interacting with ITM2B, thereby providing novel clues and potential targets for the new diagnosis and thereby of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo
10.
Environ Toxicol ; 39(2): 803-814, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37792719

RESUMEN

BACKGROUND: The immune milieu of colorectal cancer is a complex phenomenon. It is imperative to investigate the crucial immune factors that promote the progression of colorectal cancer. Immune suppressor cells are granulocytic myeloid-derived suppressor cells (G-MDSCs). However, they also increased cancer growth in other ways that need to be investigated further. METHODS: Using flow cytometry, we isolated G-MDSCs from colorectal cancer tissues. Ultracentrifugation was used to separate exosomes from the supernatant of G-MDSCs, and western blotting, transmission electron microscopy (TEM), and flow cytometry were used to confirm their presence. RNA sequencing was used to identify unique miRNAs and transcripts, which were subsequently confirmed by RT-qPCR (real-time quantitative real-time PCR). The CCK-8 test was used to determine the rate of proliferation. Lentiviral vectors were employed to manipulate the expression of miRNAs and genes in order to investigate their role in the development of colorectal cancer. RESULTS: Colorectal cancer tissues have been found to contain granulocyte-myeloid-derived suppressor cells (G-MDSCs) that secrete exosomes. These exosomes have been shown to accelerate cancer progression by promoting cell proliferation. Further research has identified microRNA-166-5p as a target from G-MDSC-derived exosomes. This downregulation leads to the inhibition of integral membrane protein 2B (ITM3E) transcription, which in turn activates the PI3K/Akt signaling pathway. This pathway promotes cell proliferation and can be inhibited using deguelin. The accelerated development of colorectal cancer has been further confirmed in mice models. CONCLUSION: The primary results of this work show that exosomes produced from G-MDSCs and the miR-166-5p/ITM3E axis have therapeutic and diagnostic promise in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Células Supresoras de Origen Mieloide , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Granulocitos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proliferación Celular/genética
11.
Australas J Dermatol ; 65(2): 143-152, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38156714

RESUMEN

The propensity to metastasize is the most important prognostic indicator for solid cancers. New insights into the mechanisms of early carcinogenesis have revealed micrometastases are generated far earlier than previously thought. Evidence supports a synergistic relationship between vascular and lymphatic seeding which can occur before there is clinical evidence of a primary tumour. Early vascular seeding prepares distal sites for colonisation while regional lymphatics are co-opted to promote facilitative cancer cell mutations. In response, the host mounts a global inflammatory and immunomodulatory response towards these cells supporting the concept that cancer is a systemic disease. Cancer staging systems should be refined to better reflect cancer cell loads in various tissue compartments while clinical perspectives should be broadened to encompass this view when approaching high-risk cancers. Measured adjunctive therapies implemented earlier for low-volume, in-transit cancer offers the prospect of preventing advanced disease and the need for heroic therapeutic interventions. This review seeks to re-appraise how we view the metastatic process for solid cancers. It will explore in-transit metastasis in the context of high-risk skin cancer and how it dictates disease progression. It will also discuss how these implications will influence our current staging systems and its consequences on management.


Asunto(s)
Micrometástasis de Neoplasia , Neoplasias Cutáneas , Humanos , Metástasis Linfática , Micrometástasis de Neoplasia/patología , Neoplasias Cutáneas/patología , Pronóstico , Piel/patología , Biopsia del Ganglio Linfático Centinela , Estadificación de Neoplasias
13.
J Alzheimers Dis ; 93(2): 403-409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038821

RESUMEN

Mutations in ITM2B have been reported to be associated with several familial dementias, such as Familial British dementia and familial Danish dementia. These are autosomal dominant disorders characterized by progressive dementia with an onset at around the fifth decade of life. We describe a family with cognitive impairment caused by a novel ITM2B p.*267Serext*11 mutation. The probands presented with cognitive impairment and cerebral infarction. MRI revealed diffuse white matter hyperintensity and microbleeds. Amyloid deposition was not observed on amyloid positron emission tomography. Our case suggests that the BRI2 mutation impacts cognition regardless of amyloid-ß accumulation.


Asunto(s)
Enfermedad de Alzheimer , Ataxia Cerebelosa , Demencia , Humanos , Demencia/diagnóstico por imagen , Demencia/genética , Péptidos beta-Amiloides/genética , Mutación/genética , Ataxia Cerebelosa/genética , República de Corea , Enfermedad de Alzheimer/genética , Proteínas Adaptadoras Transductoras de Señales/genética
14.
Immun Inflamm Dis ; 11(3): e800, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36988246

RESUMEN

BACKGROUND: Autoimmune thyroid disease (AITD) manifests with a female predominance, and much attention has been directed towards the integral membrane protein 2 A (ITM2A) gene located on the X chromosome. METHODS: In a study of 166 pediatric patients with autoimmune thyroid disease (AITD), the ITM2A rs1751094 single-nucleotide polymorphism (SNP) was genotyped. The sample comprised 143 females and 23 males, with 67 patients diagnosed with Hashimoto chronic thyroiditis (HD) and 99 with Graves' disease (GD). In the 99 GD patients, 49 (49.5%) exhibited thyroid-associated ophthalmopathy (TAO). Among the 85 GD patients, 70.6% (60/85) were considered intractable GD. The results were compared to those from 198 healthy Korean individuals, including 97 females and 101 males. RESULTS: The frequency of the rs1751094 C allele and CC/AC genotype were higher in AITD, GD and HD patients compared to controls, while the frequency of the A allele and AA genotype were lower. The results were more pronounced in female AITD and GD patients compared to male patients. The association was also found in intractable GD and TAO patients. Target SNP fits Hardy-Weinberg equilibrium. CONCLUSIONS: These findings indicate that the ITM2A gene polymorphism on the X chromosome may contribute to the immunological basis of female-predominant AITD in Korean children.


Asunto(s)
Enfermedad de Graves , Enfermedad de Hashimoto , Humanos , Masculino , Niño , Femenino , Predisposición Genética a la Enfermedad , Frecuencia de los Genes , Enfermedad de Hashimoto/genética , Enfermedad de Hashimoto/diagnóstico , Enfermedad de Graves/genética , Enfermedad de Graves/diagnóstico , Polimorfismo de Nucleótido Simple , Cromosoma X , República de Corea , Proteínas de la Membrana/genética
15.
Hyg Environ Health Adv ; 6: 100048, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36874389

RESUMEN

The whole world has been affected by the COVID-19 pandemic and oxygen demand is greater than ever, but the supply is expectedly short. People in need of this oxygen are not able to receive it, especially those who cannot afford it. In addition to these issues, the oxygen from production plants is not getting delivered to hospitals on a timely basis due to insufficient availability of tankers and cylinders. It is therefore crucial to enable access of oxygen beds and cylinders to the public by developing economical methods for medical oxygen generation. Conventional methods like oxygen concentrators, the Pressure Swing Adsorption (PSA) Technique and Air Separation Units (ASUs) are either too expensive, energy intensive or feasible only on a small scale. This indicates the need to exploit methods that have not been utilized fully yet, such as Integrated Energy Systems (IES). However, reducing the cost of a process is not enough. It needs to be scaled up to have a real impact on the situation at hand. Ion Transport Membranes (ITM) are promising in this aspect as they can produce large volumes of extremely high-purity oxygen at low costs. All these methods along with their economic aspects have been discussed and then compared to identify the most feasible one.

16.
Materials (Basel) ; 16(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36837348

RESUMEN

In this study, we designed a novel hybrid underwater sound-absorbing material of the metastructure that contains a viscoelastic substrate with a microperforated panel. Two types of sound-absorbing metastructures were combined to achieve satisfactory sound absorption performance in the low-frequency range. A homogenized equivalent layer and the integrated transfer matrix method were used to theoretically evaluate the sound absorption performance of the designed nonhomogeneous hybrid metastructure. The theoretical results were then compared with the results obtained using the finite-element method. The designed hybrid sound-absorbing metastructure exhibited two absorption peaks because of its different sound-absorbing mechanisms. The acoustic performance of the developed metastructure is considerably better than that of a traditional sound absorber, and the sound absorption coefficient of the developed metastructure is 0.8 in the frequency range of 3-10 kHz. In addition, an adjustment method for the practical underwater application of the designed metastructure is described in this research. Further studies show that the sound absorption coefficient of the adjusted metastructure still has 0.75 in the frequency range of 3-10 kHz, which indicates that this metastructure has the potential to be used as an underwater sound-absorbing structure. The results of this study can be used as a reference in the design of other novel hybrid underwater sound-absorbing structures.

17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 8-16, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36765470

RESUMEN

OBJECTIVE: To explore the expression pattern and clinical significance of Integral membrane protein 2A(ITM2A) in drug resistant patients with chronic myeloid leukemia (CML). METHODS: The expression of ITM2A in CML was evaluated by qRT-PCR, Western blot and immunocytochemistry. In order to understand the possible biological effects of ITM2A, apoptosis, cell cycle and myeloid differentiation antigen expression of CML cells were detected by flow cytometry after over-expression of ITM2A. The nuderlying molecular mechanism of its biological effect was explored. RESULTS: The expression of ITM2A in bone marrow of CML resistant patients was significantly lower than that of sensitive patients and healthy donors(P<0.05). The CML resistant strain cell K562R was successfully constructed in vitro. The expression of ITM2A in the resistant strain was significantly lower than that in the sensitive strain(P<0.05). Overexpression of ITM2A in K562R cells increased the sensitivity of K562R cells to imatinib and blocked the cell cycle in G2 phase(P<0.05), but did not affect myeloid differentiation. Mechanistically, up-regulation of ITM2A reduced phosphorylation in ERK signaling (P<0.05). CONCLUSION: The expression of ITM2A was low in patients with drug resistance of CML, and the low expression of ITM2A may be the key factor of imatinib resistance in CML.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Antineoplásicos/farmacología , Apoptosis , Resistencia a Antineoplásicos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Transducción de Señal
18.
Dokl Biochem Biophys ; 508(1): 31-36, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36653584

RESUMEN

The interactome of paraoxonase-2 encoded by the PON2 gene was investigated. A cDNA library was screened using a yeast two-hybrid system to search for new proteins interacting with human PON2. Analysis of the identified candidates, along with previously published data on interactors obtained by other methods, indicates the presence of a significant number of indirect interactions between PON2 and EGFR and, consequently, possible regulation of tumor growth with mutant EGFR involving PON2.


Asunto(s)
Arildialquilfosfatasa , Neoplasias , Humanos , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Receptores ErbB
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA