Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Genomics ; 25(1): 475, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745120

RESUMEN

BACKGROUND: Single nucleotide polymorphism (SNP) markers play significant roles in accelerating breeding and basic crop research. Several soybean SNP panels have been developed. However, there is still a lack of SNP panels for differentiating between wild and cultivated populations, as well as for detecting polymorphisms within both wild and cultivated populations. RESULTS: This study utilized publicly available resequencing data from over 3,000 soybean accessions to identify differentiating and highly conserved SNP and insertion/deletion (InDel) markers between wild and cultivated soybean populations. Additionally, a naturally occurring mutant gene library was constructed by analyzing large-effect SNPs and InDels in the population. CONCLUSION: The markers obtained in this study are associated with numerous genes governing agronomic traits, thus facilitating the evaluation of soybean germplasms and the efficient differentiation between wild and cultivated soybeans. The natural mutant gene library permits the quick identification of individuals with natural mutations in functional genes, providing convenience for accelerating soybean breeding using reverse genetics.


Asunto(s)
Glycine max , Mutación INDEL , Polimorfismo de Nucleótido Simple , Glycine max/genética , Genoma de Planta , Biblioteca de Genes , Fitomejoramiento
2.
Plants (Basel) ; 12(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37447128

RESUMEN

As a "living fossil", ginkgo (Ginkgo biloba L.) has significant ornamental, medicinal, and timber value. However, the breeding improvement of ginkgo was limited by the lack of enough excellent germplasms and suitable molecular markers. Here, we characterized numerous polymorphic insertion/deletion (InDel) markers using RAD-seq in 12 different ginkgo cultivars. The total of 279,534 InDels identified were unequally distributed across 12 chromosomes in the ginkgo genome. Of these, 52.56% (146,919) and 47.44% (132,615) were attributed to insertions and deletions, respectively. After random selection and validation, 26 pairs of polymorphic primers were used for molecular diversity analysis in 87 ginkgo cultivars and clones. The average values of observed heterozygosity and polymorphism information were 0.625 and 0.517, respectively. The results of population structure analyses were similar to those of neighbor-joining and principal component analyses, which divided all germplasms into two distinct groups. Moreover, 11 ginkgo core collections accounted for approximately 12.64% of the total ginkgo germplasms obtained, representing well the allelic diversity of all original germplasms. Therefore, these InDels can be used for germplasm management and genetic diversity analyses in ginkgo and the core collections will be used effectively for ginkgo genetic improvement.

3.
Genes (Basel) ; 13(9)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36140735

RESUMEN

The wax gourd is commonly grown in many countries because of its high nutritional and economic value. While the genes for the fruit shape and peel colour of wax gourd have been reported, the InDel markers linked to these genes remain undeveloped. In this study, the InDel markers linked to fruit-shape (Bch02G016830) and peel-colour (Bch05G003950) genes were developed from resequenced data. We used 120 inbred lines, 536 isolated populations, and 4 commercial hybrids to evaluate the validity and application value of the InDel markers. The accuracy rates of nine pairs of fruit-shape InDel markers (GX1-GX9) were 84.16-91.66% in 120 inbred lines. The accuracy rates of 27 pairs of peel-colour InDel markers (PS1-PS27) within approximately 3.0 Mb upstream and 3.0 Mb downstream of the peel-colour gene were 100% and those of 6 pairs of peel-colour InDel markers (PS28-PS33) within 3.0-20 Mb upstream and downstream of the peel-colour gene were 55.83-90% in 120 inbred lines. The purity of four commercial hybrids determined using GX1, GX2, PS13, and PS14 was highly consistent with the field results for purity determination. Our results provide important information for genetic linkage map construction, molecular-marker-assisted selective breeding, and purity determination of wax gourd hybrids.


Asunto(s)
Frutas , Mutación INDEL , Color , Frutas/genética
4.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35887005

RESUMEN

High ploids of the sugarcane nuclear genome limit its genomic studies, whereas its chloroplast genome is small and conserved, which is suitable for phylogenetic studies and molecular marker development. Here, we applied whole genome sequencing technology to sequence and assemble chloroplast genomes of eight species of the 'Saccharum Complex', and elucidated their sequence variations. In total, 19 accessions were sequenced, and 23 chloroplast genomes were assembled, including 6 species of Saccharum (among them, S. robustum, S. sinense, and S. barberi firstly reported in this study) and 2 sugarcane relative species, Tripidium arundinaceum and Narenga porphyrocoma. The plastid phylogenetic signal demonstrated that S. officinarum and S. robustum shared a common ancestor, and that the cytoplasmic origins of S. sinense and S. barberi were much more ancient than the S. offcinarum/S. robustum linage. Overall, 14 markers were developed, including 9 InDel markers for distinguishing Saccharum from its relative species, 4 dCAPS markers for distinguishing S. officinarum from S. robustum, and 1 dCAPS marker for distinguishing S. sinense and S. barberi from other species. The results obtained from our studies will contribute to the understanding of the classification and plastome evolution of Saccharinae, and the molecular markers developed have demonstrated their highly discriminatory power in Saccharum and relative species.


Asunto(s)
Genoma del Cloroplasto , Saccharum , Genómica/métodos , Filogenia , Poaceae/genética , Saccharum/genética
5.
Front Plant Sci ; 13: 841693, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693186

RESUMEN

Sugarcane (Saccharum spp.) is an efficient crop mainly used for sugar and bioethanol production. High yield and high sucrose of sugarcane are always the fundamental demands in sugarcane growth worldwide. Leaf angle and size of sugarcane can be attributed to planting density, which was associated with yield. In this study, we performed genome-wide association studies (GWAS) with a panel of 216 sugarcane core parents and their derived lines (natural population) to determine the genetic basis of leaf angle and key candidate genes with +2, +3, and +4 leaf at the seedling, elongation, and mature stages. A total of 288 significantly associated loci of sugarcane leaf angle at different developmental stages (eight phenotypes) were identified by GWAS with 4,027,298 high-quality SNP markers. Among them, one key locus and 11 loci were identified in all three stages and two stages, respectively. An InDel marker (SNP Ss6A_102766953) linked to narrow leaf angle was obtained. Overall, 4,089 genes were located in the confidence interval of significant loci, among which 3,892 genes were functionally annotated. Finally, 13 core parents and their derivatives tagged with SNPs were selected for marker-assisted selection (MAS). These candidate genes are mainly related to MYB transcription factors, auxin response factors, serine/threonine protein kinases, etc. They are directly or indirectly associated with leaf angle in sugarcane. This research provided a large number of novel genetic resources for the improvement of leaf angles and simultaneously to high yield and high bioethanol production.

6.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35163793

RESUMEN

The Tiller Angle Control 1 (TAC1) gene belongs to the IGT family, which mainly controls plant branch angle, thereby affecting plant form. Two members of MdTAC1 are identified in apple; the regulation of apple branch angle by MdTAC1 is still unclear. In this study, a subcellular localization analysis detected MdTAC1a in the nucleus and cell membrane, but MdTAC1b was detected in the cell membrane. Transgenic tobacco by overexpression of MdTAC1a or MdTAC1b showed enlarged leaf angles, the upregulation of several genes, such as GA 2-oxidase (GA2ox), and a sensitive response to light and gravity. According to a qRT-PCR analysis, MdTAC1a and MdTAC1b were strongly expressed in shoot tips and vegetative buds of weeping cultivars but were weakly expressed in columnar cultivars. In the MdTAC1a promoter, there were losses of 2 bp in spur cultivars and 6 bp in weeping cultivar compared with standard and columnar cultivars. An InDel marker specific to the MdTAC1a promoter was developed to distinguish apple cultivars and F1 progeny. We identified a protein, MdSRC2, that interacts with MdTAC1a, whose encoding gene which was highly expressed in trees with large branch angles. Our results indicate that differences in the MdTAC1a promoter are major contributors to branch-angle variation in apple, and the MdTAC1a interacts with MdSRC2 to affect this trait.


Asunto(s)
Malus/crecimiento & desarrollo , Nicotiana/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clonación Molecular , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Nicotiana/genética , Transformación Genética
7.
Mol Breed ; 42(9): 51, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37313420

RESUMEN

Many citrus fruits have polyembryonic traits, and their seeds contain many nucellar embryos along with a single zygotic embryo, affecting the crossbreeding process. Generally, nucellar embryos are considered to have more vigorous growth than zygotic embryos. Therefore, the in vitro method using an embryo rescue culture is often chosen to obtain zygotic embryo-derived individuals. Nevertheless, hybrids can be obtained with a certain probability from the seeds sown in the soil. The in-soil method, which sows seeds in the soil, has distinct advantages over the in vitro method, including lower cost and simpler technology. However, the efficiency of obtaining hybrids from these methods has not been compared in detail. The current study evaluates the effectiveness of these methods for obtaining hybrids using polyembryonic Satsuma mandarin as the female parent. The number of mature embryos per seed using the in-soil method was less than one-third of that produced using the in vitro method. Although the in vitro method produced more hybrids than the in-soil method, the ratio of the hybrids to the resulting population was significantly higher in the in-soil method. Thus, the in-soil method was more efficient and practical than the in vitro method for selecting hybrids from polyembryonic Satsuma mandarin seeds. The observations of the individuals obtained using the in-soil method suggest that zygotic embryos were not poorer in growth than nucellar embryos when using our selected parental combinations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01324-6.

8.
Breed Sci ; 71(2): 208-216, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377069

RESUMEN

Epicotyl length (ECL) of adzuki bean (Vigna angularis) affects the efficiency of mechanized weeding and harvest. The present study investigated the genetic factors controlling ECL. An F2 population derived from a cross between the breeding line 'Tokei1121' (T1121, long epicotyls) and the cultivar 'Erimo167' (common epicotyls) was phenotyped for ECL and genotyped using simple sequence repeats (SSRs) and single-nucleotide polymorphism (SNP) markers. A molecular linkage map was generated and fifty-two segregating markers, including 27 SSRs and 25 SNPs, were located on seven linkage groups (LGs) at a LOD threshold value of 3.0. Four quantitative trait loci (QTLs) for ECL, with LOD scores of 4.0, 3.4, 4.8 and 6.4, were identified on LGs 2, 4, 7 and 10, respectively; together, these four QTLs accounted for 49.3% of the phenotypic variance. The segregation patterns observed in F5 residual heterozygous lines at qECL10 revealed that a single recessive gene derived from T1121 contributed to the longer ECL phenotype. Using five insertion and deletion markers, this gene was fine mapped to a ~255 kb region near the end of LG10. These findings will facilitate marker-assisted selection for breeding in the adzuki bean and contribute to an understanding of the mechanisms associated with epicotyl elongation.

9.
Front Plant Sci ; 12: 559511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386020

RESUMEN

Trichosanthes is a genus in Cucurbitaceae comprising 90-100 species. Trichosanthes species are valuable as herbaceous medicinal ingredients. The fruits, seeds, and roots of species such as T. kirilowii and T. rosthornii are used in Korean traditional herbal medicines. T. rosthornii is only found in China, whereas in South Korea two varieties, T. kirilowii var. kirilowii and T. kirilowii var. japonica, are distributed. T. kirilowii var. kirilowii and T. kirilowii var. japonica have different fruit and leaf shapes but are recognized as belonging to the same species. Furthermore, although its members have herbal medicine applications, genomic information of the genus is still limited. The broad goals of this study were (i) to evaluate the taxonomy of Trichosanthes using plastid phylogenomic data and (ii) provide molecular markers specific for T. kirilowii var. kirilowii and T. kirilowii var. japonica, as these have differences in their pharmacological effectiveness and thus should not be confused and adulterated. Comparison of five Trichosanthes plastid genomes revealed locally divergent regions, mainly within intergenic spacer regions (trnT-UGU-trnL-UAA: marker name Tri, rrn4.5-rrn5: TRr, trnE-UUC-trnT-GGU: TRtt). Using these three markers as DNA-barcodes for important herbal medicine species in Trichosanthes, the identity of Trichosanthes material in commercial medicinal products in South Korea could be successfully determined. Phylogenetic analysis of the five Trichosanthes species revealed that the species are clustered within tribe Sicyoeae. T. kirilowii var. kirilowii and T. rosthornii formed a clade with T. kirilowii var. japonica as their sister group. As T. kirilowii in its current circumscription is paraphyletic and as the two varieties can be readily distinguished morphologically (e.g., in leaf shape), T. kirilowii var. japonica should be treated (again) as an independent species, T. japonica.

10.
Breed Sci ; 71(5): 601-608, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35087324

RESUMEN

We previously developed insertion-deletion (InDel) markers that distinguish three genotypes (two homozygous and one heterozygous) of diverse citrus cultivars. These InDel markers were codominant and could be clearly detected by using simple agarose gel electrophoresis. We sought to establish a method for cultivar identification using these 28 InDel markers to genotype 31 citrus cultivars. The results revealed that a minimum of 6 markers were required to identify individuals using the three-genotype classification method. Furthermore, we found that a simple method for distinguishing between two genotypes (homozygous and heterozygous) could be used to identify individuals using a minimum of 7 markers. Our findings provide a basis for the development of simple and rapid citrus cultivar identification methods.

11.
Mol Breed ; 41(10): 66, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37309317

RESUMEN

The stem color of young mung bean is a very useful tool in germplasm identification. Flowering time and plant height (PH) are known to be strongly correlated with crop adaption and yield. However, few studies have focused on elucidating the genetic mechanisms that regulate these five particular traits: young stem color (YSC), days to first flowering (DFF), days to maturity (DM), PH, and nodes on the main stem (NMS). In this study, a genetic linkage map for the F2 population was constructed using 129 InDel markers that were developed based on the sequence variations between parents. A total of 14 QTLs related to YSC, DFF, DM, PH, and NMS were detected. These QTLs were distributed on six chromosomes (1, 3, 4, 6, 7, and 10), which individually accounted for 1.32 to 90.07% of the total phenotypic variation. Using a short and high-density linkage map for the F3 population, six of the seven QTLs which clustered at two intervals on chromosomes 3 and 10 were detected again. Further analysis found that four QTLs between InDel markers R3-15 and R3-19 controlled DFF, DM, PH, and NMS, and each QTL accounted for a large percent of the total phenotypic variation. Analysis of two separated F2:3 lines also found that the phenotype was highly corresponded to its genotype which was between R3-15 and R3-19. Phenotype and genotype analysis for 30 mung bean accessions showed that the major effect QTL qDFF3 was a key regulator for DFF. Using a map-based cloning method, the major effect QTL qYSC4 for YSC was mapped in a 347 Kb interval on chromosome 4. Candidate gene analysis showed that sequence variations and expression level differences existed in the predicted candidate gene between the parents. These results provide a theoretical basis for cloning these QTLs and marker-assisted selection. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01233-0.

12.
Plant Methods ; 16: 101, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742299

RESUMEN

BACKGROUND: Maize is one of the most important cereal crop all over the world with a complex genome of about 2.3 gigabase, and exhibits tremendous phenotypic and molecular diversity among different germplasms. Along with the phenotype identification, molecular markers have been accepted extensively as an alternative tool to discriminate different genotypes. RESULTS: By using previous re-sequencing data of 205 lines, bi-allelic insertions and deletions (InDels) all over maize genome were screened, and a barcode system was constructed consisting of 37 bi-allelic insertion-deletion markers with high polymorphism information content (PIC) values, large discriminative size among varieties. The barcode system was measured and determined, different maize hybrids and inbreds were clearly discriminated efficiently with these markers, and hybrids responding parents were accurately determined. Compared with microarray data of more than 200 maize lines, the barcode system can discriminate maize varieties with 1.57% of different loci as a threshold. The barcode system can be used in standardized easy and quick operation with very low cost and minimum equipment requirements. CONCLUSION: A barcode system was constructed for genetic discrimination of maize lines, including 37 InDel markers with high PIC values and user-friendly. The barcode system was measured and determined for efficient identification of maize lines.

13.
Plant Dis ; 104(7): 1932-1938, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32432983

RESUMEN

Rice blast disease caused by the fungus Magnaporthe oryzae damages cereal crops and poses a high risk to rice production around the world. Currently, planting cultivars with resistance (R) genes is still the most environment-friendly approach to control this disease. Effective identification of R genes existing in diverse rice cultivars is important for understanding the distribution of R genes and predicting their contribution to resistance against blast isolates in regional breeding. Here, we developed a new insertion/deletion (InDel) marker, Pigm/2/9InDel, that can differentiate the cloned R genes (Pigm, Pi9, and Pi2/Piz-t) at the Pi2/9 locus. Pigm/2/9InDel combined with the marker Pi2-LRR for Pi2 was applied to determine the distribution of these four R genes among 905 rice varieties, most of which were collected from the major rice-producing regions in China. In brief, nine Pigm-containing varieties from Fujian and Guangdong provinces were identified. All of the 62 Pi2-containing varieties were collected from Guangdong, and 60 varieties containing Piz-t were from seven provinces. However, Pi9 was not found in any of the Chinese varieties. The newly identified varieties carrying the Pi2/9 alleles were further subjected to inoculation tests with regional blast isolates and field trials. Our results indicate that Pigm and Pi2 alleles have been introgressed for blast resistance breeding mainly in the Fujian and Guangdong region, and Pi9 is a valuable blast resistance resource to be introduced into China.


Asunto(s)
Magnaporthe , Oryza/genética , Alelos , China , Genes de Plantas , Enfermedades de las Plantas
14.
Plants (Basel) ; 9(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012666

RESUMEN

Actaea (Ranunculaceae; syn. Cimicifuga) is a controversial and complex genus. Dried rhizomes of Actaea species are used as Korean traditional herbal medicine. Although Actaea species are valuable, given their taxonomic classification and medicinal properties, sequence information of Actaea species is limited. In this study, we determined the complete chloroplast (cp) genome sequences of three Actaea species, including A. simplex, A. dahurica, and A. biternata. The cp genomes of these species varied in length from 159,523 to 159,789 bp and contained 112 unique functional genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. Gene order, orientation, and content were well conserved in the three cp genomes. Comparative sequence analysis revealed the presence of hotspots, including ndhC-trnV-UAC, in Actaea cp genomes. High-resolution phylogenetic relationships were established among Actaea species based on cp genome sequences. Actaea species were clustered into each Actaea section, consistent with the Angiosperm Phylogeny Group (APG) IV system of classification. We also developed a novel indel marker, based on copy number variation of tandem repeats, to facilitate the authentication of the herbal medicine Cimicifugae Rhizoma. The availability Actaea cp genomes will provide abundant information for the taxonomic and phylogenetic analyses of Actaea species, and the Actaea (ACT) indel marker will be useful for the authentication of the herbal medicine.

15.
3 Biotech ; 10(1): 29, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32015946

RESUMEN

The complete chloroplast genome sequence of Korean Cymbidium goeringii acc. smg222 was analyzed. Based on a comparison with Chinese C. goeringii, losses of nine ndh subunits (ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhH, ndhJ, and ndhK), three protein-coding genes (ycf 1-like, ycf 15, and ycf 68), six transfer RNAs, and one conserved open reading frame (orf 42). In addition, 219 InDels (insertion or deletion) and 171 simple sequence repeats were observed. Twenty-Five of which InDel markers have been evaluated, that useful for distinguishing Korean and Chinese Cymbidium associations based on the polymorphisms of chloroplast genomes between Korean Cymbidium goeringii acc. smg222 and Chinese C. goeringii and evaluation of genetic diversity. Finally, the phylogenetic relationships of the 39 Korean and 22 Chinese species was constructed based on the five InDel markers of them and obtained high support, indicating that our data may be useful in resolving relationships in this genus. The information about chloroplast DNA structure and gene variants of C. goeringii acc. smg222 chloroplast genome will provide sufficient phylogenetic information for resolving evolutionary relationships. The molecular markers developed in here will contribute to further research of Cymbidium species and conservation of endemic Cymbidium species.

16.
Front Plant Sci ; 9: 965, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026751

RESUMEN

Ipomoea L. is the largest genus within the Convolvulaceae and contains 600-700 species. Ipomoea species (morning glories) are economically valuable as horticultural species and scientifically valuable as ecological model plants to investigate mating systems, molecular evolution, and both plant-herbivore and plant-parasite interactions. Furthermore, the dried seeds of I. nil or I. purpurea are used in Korean traditional herbal medicines. In this study, chloroplast (cp) genomes were sequenced from six Ipomoea species, namely, I. nil and I. purpurea and, for the first time, I. triloba, I. lacunosa, I. hederacea, and I. hederacea var. integriuscula. The cp genomes were 161,354-161,750 bp in length and exhibited conserved quadripartite structures. In total, 112 genes were identified, including 78 protein-coding regions, 30 transfer RNA genes, and 4 ribosomal RNA genes. The gene order, content, and orientation of the six Ipomoea cp genomes were highly conserved and were consistent with the general structure of angiosperm cp genomes. Comparison of the six Ipomoea cp genomes revealed locally divergent regions, mainly within intergenic spacer regions (petN-psbM, trnI-CAU-ycf2, ndhH-ndhF, psbC-trnS, and ccsA-ndhD). In addition, the protein-coding genes accD, cemA, and ycf2 exhibited high sequence variability and were under positive selection (Ka/Ks > 1), indicating adaptive evolution to the environment within the Ipomoea genus. Phylogenetic analysis of the six Ipomoea species revealed that these species clustered according to the APG IV system. In particular, I. nil and I. hederacea had monophyletic positions, with I. purpurea as a sister. I. triloba and I. lacunosa in the section Batatas and I. hederacea and I. hederacea var. integriuscula in the section Quamoclit were supported in this study with strong bootstrap values and posterior probabilities. We uncovered high-resolution phylogenetic relationships between Ipomoeeae. Finally, indel markers (IPOTY and IPOYCF) were developed for the discrimination of the important herbal medicine species I. nil and I. purpurea. The cp genomes and analyses in this study provide useful information for taxonomic, phylogenetic, and evolutionary analysis of the Ipomoea genome, and the indel markers will be useful for authentication of herbal medicines.

17.
Zhongguo Zhong Yao Za Zhi ; 43(7): 1441-1445, 2018 Apr.
Artículo en Chino | MEDLINE | ID: mdl-29728034

RESUMEN

Panax ginseng and P. quinquefolius are two kinds of important medicinal herbs. They are morphologically similar but have different pharmacological effects. Therefore, botanical origin authentication of these two ginsengs is of great importance for ensuring pharmaceutical efficacy and food safety. Based on the fact that intron position in orthologous genes is highly conserved across plant species, intron length polymorphisms were exploited from unigenes of ginseng. Specific primers were respectively designed for these two species based on their insertion/deletion sequences of cytochrome P450 and glyceraldehyde 3-phosphate dehydrogenase, and multiplex PCR was conducted for molecular authentication of P.ginseng and P. quinquefolius. The results showed that the developed multiplex PCR assay was effective for molecular authentication of P.ginseng and P. quinquefolius without strict PCR condition and the optimization of reaction system.This study provides a preferred ideal marker system for molecular authentication of ginseng,and the presented method can be employed in origin authentication of other herbal preparations.


Asunto(s)
Marcadores Genéticos , Mutación INDEL , Panax/clasificación , Cartilla de ADN , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
18.
Rice (N Y) ; 10(1): 41, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28861736

RESUMEN

BACKGROUND: Rice (Oryza sativa L.) is the staple food for more than 3.5 billion people, mainly in Asia. Brown planthopper (BPH) is one of the most destructive insect pests of rice that limits rice production. Host-plant resistance is one of the most efficient ways to overcome BPH damage to the rice crop. RESULTS: BPH bioassay studies from 2009 to 2015 conducted in India and at the International Rice Research Institute (IRRI), Philippines, revealed that the cultivar CR2711-76 developed at the National Rice Research Institute (NRRI), Cuttack, India, showed stable and broad-spectrum resistance to several BPH populations of the Philippines and BPH biotype 4 of India. Genetic analysis and fine mapping confirmed the presence of a single dominant gene, BPH31, in CR2711-76 conferring BPH resistance. The BPH31 gene was located on the long arm of chromosome 3 within an interval of 475 kb between the markers PA26 and RM2334. Bioassay analysis of the BPH31 gene in CR2711-76 was carried out against BPH populations of the Philippines. The results from bioassay revealed that CR2711-76 possesses three different mechanisms of resistance: antibiosis, antixenosis, and tolerance. The effectiveness of flanking markers was tested in a segregating population and the InDel type markers PA26 and RM2334 showed high co-segregation with the resistance phenotype. Foreground and background analysis by tightly linked markers as well as using the Infinium 6 K SNP chip respectively were applied for transferring the BPH31 gene into an indica variety, Jaya. The improved BPH31-derived Jaya lines showed strong resistance to BPH biotypes of India and the Philippines. CONCLUSION: The new BPH31 gene can be used in BPH resistance breeding programs on the Indian subcontinent. The tightly linked DNA markers identified in the study have proved their effectiveness and can be utilized in BPH resistance breeding in rice.

19.
Breed Sci ; 67(3): 191-206, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28744172

RESUMEN

Quantitative trait loci (QTLs) associated with eating quality, grain appearance quality and yield-related traits were mapped in recombinant inbred lines (RILs) derived from closely related rice (Oryza sativa L. subsp. japonica) cultivars, Yukihikari (good eating quality) and Joiku462 (superior eating quality and high grain appearance quality). Apparent amylose content (AAC), protein content (PC), brown grain length (BGL), brown grain width (BGWI), brown grain thickness (BGT), brown grain weight per plant (BGW) and nine yield-related traits were evaluated in 133 RILs grown in four different environments in Hokkaido, near the northernmost limit for rice paddy cultivation. Using 178 molecular markers, a total of 72 QTLs were detected, including three for AAC, eight for PC, two for BGL, four for BGWI, seven for BGT, and six for BGW, on chromosomes 1, 2, 3, 4, 6, 7, 8, 9, 11 and 12. Fifteen intervals were found to harbor multiple QTLs affecting these different traits, with most of these QTL clusters located on chromosomes 4, 6, 8, 9 and 12. These QTL findings should facilitate gene isolation and breeding application for improvement of eating quality, grain appearance quality and yield of rice cultivars.

20.
Front Plant Sci ; 8: 520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443113

RESUMEN

For genetic identification of soybean [Glycine max (L.) Merrill] cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, co-dominant and relatively abundant. Despite their biological importance, the investigation of InDels with proven quality and reproducibility has been limited. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a dense variation block (dVB) with non-random recombination due to many variations. Firstly, 2,274 VBs were mined by analyzing whole genome data in six soybean cultivars (Backun, Sinpaldal 2, Shingi, Daepoong, Hwangkeum, and Williams 82) for transferability to dVB-specific InDel markers. Secondly, 73,327 putative InDels in the dVB regions were identified for the development of soybean barcode system. Among them, 202 dVB-specific InDels from all soybean cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the markers were assessed in 147 soybean cultivars, and the soybean barcode system that allows a clear distinction among soybean cultivars is also detailed. In addition, the changing of the dVBs in a chromosomal level can be quickly identified due to investigation of the reshuffling pattern of the soybean cultivars with 27 maker sets. Especially, a backcross-inbred offspring, "Singang" and a recurrent parent, "Sowon" were identified by using the 27 InDel markers. These results indicate that the soybean barcode system enables not only the minimal use of molecular markers but also comparing the data from different sources due to no need of exploiting allele binning in new varieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA