RESUMEN
Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99âA, G112âT, C113âT, and G114âA. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.
Asunto(s)
Alelos , Pollos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Plásmidos , Enfermedades de las Aves de Corral , Replicón , Animales , Pollos/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Replicón/genética , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Enfermedades de las Aves de Corral/microbiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Salmonella/genética , Salmonella/efectos de los fármacosRESUMEN
BACKGROUND: The emergence of multidrug-resistant (MDR) Escherichia coli strains poses significant challenges in clinical settings, particularly when these strains harbor New Delhi metallo-ß-lactamase (NDM) gene, which confer resistance to carbapenems, a critical class of last-resort antibiotics. This study investigates the genetic characteristics and implications of a novel blaNDM-5-carrying plasmid pNDM-5-0083 isolated from an E. coli strain GZ04-0083 from clinical specimen in Zhongshan, China. RESULTS: Phenotypic and genotypic evaluations confirmed that the E. coli ST167 strain GZ04-0083 is a multidrug-resistant organism, showing resistance to diverse classes of antibiotics including ß-lactams, carbapenems, fluoroquinolones, aminoglycosides, and sulfonamides, while maintaining susceptibility to monobactams. Investigations involving S1 pulsed-field gel electrophoresis, Southern blot analysis, and conjugation experiments, alongside genomic sequencing, confirmed the presence of the blaNDM-5 gene within a 146-kb IncFIB plasmid pNDM-5-0083. This evidence underscores a significant risk for the horizontal transfer of resistance genes among bacterial populations. Detailed annotations of genetic elements-such as resistance genes, transposons, and insertion sequences-and comparative BLAST analyses with other blaNDM-5-carrying plasmids, revealed a unique architectural configuration in the pNDM-5-0083. The MDR region of this plasmid shares a conserved gene arrangement (repA-IS15DIV-blaNDM-5-bleMBL-IS91-suI2-aadA2-dfrA12) with three previously reported plasmids, indicating a potential for dynamic genetic recombination and evolution within the MDR region. Additionally, the integration of virulence factors, including the iro and sit gene clusters and enolase, into its genetic architecture poses further therapeutic challenges by enhancing the strain's pathogenicity through improved host tissue colonization, immune evasion, and increased infection severity. CONCLUSIONS: The detailed identification and characterization of pNDM-5-0083 enhance our understanding of the mechanisms facilitating the spread of carbapenem resistance. This study illuminates the intricate interplay among various genetic elements within the novel blaNDM-5-carrying plasmid, which are crucial for the stability and mobility of resistance genes across bacterial populations. These insights highlight the urgent need for ongoing surveillance and the development of effective strategies to curb the proliferation of antibiotic resistance.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Pruebas de Sensibilidad Microbiana , Plásmidos , beta-Lactamasas , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , beta-Lactamasas/genética , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/transmisión , China , Transferencia de Gen Horizontal , Carbapenémicos/farmacologíaRESUMEN
The global spread of antimicrobial resistance genes (ARGs) is a major public health concern. Mobile genetic elements (MGEs) are the main drivers of this spread by horizontal gene transfer (HGT). Escherichia coli is widespread in various environments and serves as an indicator for monitoring antimicrobial resistance (AMR). Therefore, the objective of this work was to evaluate the whole genome of multidrug-resistant E. coli strains isolated from human clinical, animal, and environmental sources. Four E. coli strains previously isolated from human urine (n = 2), retail meat (n = 1), and water from the Rio Grande River (n = 1) collected in northern Tamaulipas, Mexico, were analyzed. E. coli strains were evaluated for antimicrobial susceptibility, followed by whole genome sequencing and bioinformatic analysis. Several ARGs were detected, including blaCTX-M-15, blaOXA-1, blaTEM-1B, blaCMY-2, qnrB, catB3, sul2, and sul3. Additionally, plasmid replicons (IncFIA, IncFIB, IncFII, IncY, IncR, and Col) and intact prophages were also found. Insertion sequences (ISs) were structurally linked with resistance and virulence genes. Finally, these findings indicate that E. coli strains have a large repertoire of resistance determinants, highlighting a high pathogenic potential and the need to monitor them.
RESUMEN
Raoultella ornithinolytica PX02 is a Gram-negative, encapsulated bacterium, part of the Enterobacteriaceae family, emerging as a notable human pathogen. Here, we present the whole genome sequence of R. ornithinolytica PX02 isolated from San Jacinto River sediment near a Burnet Shores community in Baytown, Texas. This microorganism harbors a large 200,000 bp incF plasmid and can potentially be a significant antibiotic reservoir. The PX02 genome consists of 5,970,914 base pairs encoding approximately 5,661 functional proteins. Strain PX02 (chromosomal and plasmid) was compiled at the scaffold level and can be accessed through the National Center for Biotechnology Information database under accession NZ_NJBC00000000.1.
RESUMEN
BACKGROUND: Enterobacterales carrying blaNDM represent an emerging challenge in treating infectious diseases. In this study, we aimed to investigate the characteristics of blaNDM-producing Enterobacterales from three hospitals in southern Taiwan. METHODS: Enterobacterales strains that were nonsusceptible to more than one carbapenem (ertapenem, meropenem, imipenem, or doripenem) were collected from hospitalized patients. Molecular typing for New Delhi metallo-ß-lactamase (NDM) and antibiotic susceptibility tests were performed, followed by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and plasmid analysis by PCR-based replicon typing. RESULTS: A total of 1311 carbapenem-nonsusceptible Enterobacterales were isolated from 2017 to 2021. blaNDM-encoding genes were detected in 108 isolates, with 53 (49.1%) harboring blaNDM-1 and 55 (50.9%) harboring blaNDM-5. The rate of blaNDM-1 detection among isolates decreased to 2% in 2021. However, the rate of E. coli harboring blaNDM-5 increased from 1% to 12% of total isolates during the study period. Of 47 NDM-5-positive E. coli isolates, 44 (93.6%) were ST8346 with high genetic relatedness. E. coli ST8346 isolates showed high-level resistance to both carbapenems and aminoglycosides. Most (38 out of 47, 80.9%) blaNDM-5-harboring E. coli isolates co-harbored blaOXA-181. We analyzed the regions harboring blaNDM-5 in E. coli ST8346 via PCR amplification. blaNDM-5 and blaOXA-181 were located on two separate plasmids, IncF and IncX3, respectively. CONCLUSION: The dissemination of E. coli ST8346 caused an increase in blaNDM-5 and blaOXA-181 co-harboring Enterobacterales in southern Taiwan, which show high-level resistance to both carbapenems and aminoglycosides. We identified a distinct IncF plasmid encoding blaNDM-5 that has the potential for rapid spread and needs further surveillance.
Asunto(s)
Antibacterianos , Escherichia coli , Humanos , Escherichia coli/genética , Tipificación de Secuencias Multilocus , Taiwán/epidemiología , Antibacterianos/farmacología , Carbapenémicos/farmacología , AminoglicósidosRESUMEN
Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.
Asunto(s)
Colistina , Aves de Corral , Animales , Humanos , Colistina/farmacología , Klebsiella pneumoniae , Granjas , Cobre/farmacología , Pollos/microbiología , Ecosistema , Antibacterianos/farmacología , Plásmidos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genéticaRESUMEN
Klebsiella pneumoniae sequence type 14 (ST14) and ST15 caused outbreaks of CTX-M-15 and/or carbapenemase producers worldwide, but their phylogeny and global dynamics remain unclear. We clarified the evolution of K. pneumoniae clonal group 14 (CG14) and CG15 by analyzing the capsular locus (KL), resistome, virulome, and plasmidome of public genomes (n = 481) and de novo sequences (n = 9) representing main sublineages circulating in Portugal. CG14 and CG15 evolved independently within 6 main subclades defined according to the KL and the accessory genome. The CG14 (n = 65) clade was structured in two large monophyletic subclades, CG14-I (KL2, 86%) and CG14-II (KL16, 14%), whose emergences were dated to 1932 and 1911, respectively. Genes encoding extended-spectrum ß-lactamase (ESBL), AmpC, and/or carbapenemases were mostly observed in CG14-I (71% versus 22%). CG15 clade (n = 170) was segregated into subclades CG15-IA (KL19/KL106, 9%), CG15-IB (variable KL types, 6%), CG15-IIA (KL24, 43%) and CG15-IIB (KL112, 37%). Most CG15 genomes carried specific GyrA and ParC mutations and emerged from a common ancestor in 1989. CTX-M-15 was especially prevalent in CG15 (68% CG15 versus 38% CG14) and in CG15-IIB (92%). Plasmidome analysis revealed 27 predominant plasmid groups (PG), including particularly pervasive and recombinant F-type (n = 10), Col (n = 10), and new plasmid types. While blaCTX-M-15 was acquired multiple times by a high diversity of F-type mosaic plasmids, other antibiotic resistance genes (ARGs) were dispersed by IncL (blaOXA-48) or IncC (blaCMY/TEM-24) plasmids. We first demonstrate an independent evolutionary trajectory for CG15 and CG14 and how the acquisition of specific KL, quinolone-resistance determining region (QRDR) mutations (CG15), and ARGs in highly recombinant plasmids could have shaped the expansion and diversification of particular subclades (CG14-I and CG15-IIA/IIB). IMPORTANCE Klebsiella pneumoniae represents a major threat in the burden of antibiotic resistance (ABR). Available studies to explain the origin, the diversity, and the evolution of certain ABR K. pneumoniae populations have mainly been focused on a few clonal groups (CGs) using phylogenetic analysis of the core genome, the accessory genome being overlooked. Here, we provide unique insights into the phylogenetic evolution of CG14 and CG15, two poorly characterized CGs which have contributed to the global dissemination of genes responsible for resistance to first-line antibiotics such as ß-lactams. Our results point out an independent evolution of these two CGs and highlight the existence of different subclades structured by the capsular type and the accessory genome. Moreover, the contribution of a turbulent flux of plasmids (especially multireplicon F type and Col) and adaptive traits (antibiotic resistance and metal tolerance genes) to the pangenome reflect the exposure and adaptation of K. pneumoniae under different selective pressures.
Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Filogenia , Plásmidos/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Infecciones por Klebsiella/epidemiología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genéticaRESUMEN
Neuroscience has made significant strides over the past decade in moving from a largely closed science characterized by anemic data sharing, to a largely open science where the amount of publicly available neuroscience data has increased dramatically. While this increase is driven in significant part by large prospective data sharing studies, we are starting to see increased sharing in the long tail of neuroscience data, driven no doubt by journal requirements and funder mandates. Concomitant with this shift to open is the increasing support of the FAIR data principles by neuroscience practices and infrastructure. FAIR is particularly critical for neuroscience with its multiplicity of data types, scales and model systems and the infrastructure that serves them. As envisioned from the early days of neuroinformatics, neuroscience is currently served by a globally distributed ecosystem of neuroscience-centric data repositories, largely specialized around data types. To make neuroscience data findable, accessible, interoperable, and reusable requires the coordination across different stakeholders, including the researchers who produce the data, data repositories who make it available, the aggregators and indexers who field search engines across the data, and community organizations who help to coordinate efforts and develop the community standards critical to FAIR. The International Neuroinformatics Coordinating Facility has led efforts to move neuroscience toward FAIR, fielding several resources to help researchers and repositories achieve FAIR. In this perspective, I provide an overview of the components and practices required to achieve FAIR in neuroscience and provide thoughts on the past, present and future of FAIR infrastructure for neuroscience, from the laboratory to the search engine.
RESUMEN
Introduction. The New Delhi metallo-ß-lactamase (NDM) variant NDM-5 was first described in 2011 in an isolate of Escherichia coli. We noted that a high proportion of isolates of E. coli positive for bla NDM carbapenemase genes submitted to the UK Health Security Agency (formerly Public Health England) between 2019 and mid-2021 carried the bla NDM-5 allele, with many co-harbouring rmtB, rendering them highly resistant to aminoglycosides as well as to most ß-lactams.Hypothesis/Gap Statement. This observation suggested that a common plasmid may be circulating.Aim. To compare these isolates and describe the plasmids carrying these resistance elements.Methodology. All isolates were sequenced on an Illumina platform, with five also subjected to long-read nanopore sequencing to provide complete assemblies. The locations of bla NDM-5, rmtB and other associated genetic elements were identified. Susceptibility testing to a wide range of antibiotics was carried out on representative isolates.Results. The 34 isolates co-harbouring bla NDM-5 and rmtB were from 14 hospital groups and six different regions across England and consisted of 11 distinct sequence types. All carried IncF plasmids. Assembly of the NDM plasmids in five isolates revealed that they carried rmtB and bla NDM-5 in an IncF conjugative plasmid ranging in size from 85.5 to 161 kb. All carried a highly conserved region, previously described in E. coli plasmid pHC105-NDM, that included bla TEM-1B and rmtB followed by sequence bounded by two IS26 elements containing ΔISAba125, bla NDM-5, ble, trpF and tat followed by ISCR1 and an integron with sul1, aadA2 and dfrA12 cassettes. This arrangement has been described in isolates from other countries and continents, suggesting that such plasmids are widely distributed, at least in E. coli, with similar plasmids also found in Klebsiella pneumoniae. Tested isolates were resistant to most antibiotics except colistin, fosfomycin and tigecycline.Conclusion. These observations suggest that conjugative plasmids carrying a highly conserved resistance gene segment have become widespread in England and elsewhere. This study highlights the value of routine whole-genome sequencing in identifying genetic elements responsible for resistance dissemination.
Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacología , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Proteínas de Escherichia coli/genética , Humanos , Metiltransferasas/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , beta-Lactamasas/genéticaRESUMEN
Aquaculture is a rapidly expanding sector in which it is important to monitor the occurrence of multi-drug resistant (MDR) bacteria. The presence of extended-spectrum ß-lactamase (ESBL-) or carbapenemase-producing Enterobacterales is a commonly used indicator of the resistance burden in a given sector. In this study, 641 pieces of farmed fish (sea bream and sea bass), as well as 1075 Mediterranean clams, were analyzed. All ESBL- and carbapenemase-producing Enterobacterales collected were whole-genome sequenced. The proportion of ESBL-producing Enterobacterales was 1.4% in fish and 1.6% in clams, carried by Escherichia coli (n = 23) and Klebsiella pneumoniae (n = 4). The ESBL phenotype was exclusively due to the presence of blaCTX-M genes, the most frequent one being blaCTX-M-15. The blaCTX-M-1 gene was also identified in six E. coli, among which four were carried by IncI1/pST3 plasmids, possibly betraying an animal origin. Carbapenemases were absent in fish but identified in two K. pneumoniae isolates from clams (blaNDM-1 and blaOXA-48). Several sequence types (STs) identified were associated with human MDR clones such as E. coli ST131 and ST617, or K. pneumoniae ST307 and ST147. Our results might indicate that bacteria from hospital or farm effluents can reach the open sea and contaminate seafood and fish that are living or raised nearby. Therefore, monitoring the quality of water discharged to the sea and the presence of MDR bacteria in seafood is mandatory to ensure the quality of fishery products.
RESUMEN
Necrotoxigenic Escherichia coli 2 (NTEC2) are defined as E. coli producing the toxin known as cytotoxic necrotizing factor 2 (CNF2), a potent toxin primarily found in bovine but also in humans. NTEC2 are mostly associated with bovine, and cnf2 is known to be carried by pVir-like plasmids. In this study, we looked for NTEC2 in a collection of E. coli collected between 2011 and 2018 in French bovine. Thirty-two isolates, collected from both sick (n = 19) and healthy (n = 13) animals, were identified and characterized using whole-genome sequencing. One F74 plasmid of this bacterial collection was long-read sequenced: its size was 138 121 bp and it carried the cnf2, F17cA-eG, cdtB, iutA, iucC and ompP virulence factors (VFs), but no resistance gene. A large variety of genetic backgrounds was observed, but all cnf2-carrying plasmids belonged to the IncF family, and most of them (78·1%) were of the F74 group. Similar F74 plasmids were also reported from bovine in the United Kingdom and the United States, as identified in the publically available databases. Consequently, these F74 plasmids, which are widely disseminated among E. coli from cattle in the French territory, are vectors of virulence determinants that largely went unnoticed until now.
Asunto(s)
Toxinas Bacterianas , Enfermedades de los Bovinos , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Toxinas Bacterianas/genética , Bovinos , Enfermedades de los Bovinos/microbiología , Citotoxinas , Escherichia coli , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Humanos , Plásmidos/genética , Virulencia/genéticaRESUMEN
Multidrug resistance (MDR) in Enterobacteriaceae including resistance to quinolones is rising worldwide. The plasmid-mediated quinolone resistance (PMQR) gene qnrS is prevalent in Enterobacteriaceae. However, the qnrS gene is rarely found in Enterobacter hormaechei (E. hormaechei). Here, we reported one multidrug resistant E. hormaechei strain M1 carrying the qnrS1 and blaTEM-1 genes. This study was to analyze the characteristics of MDR E. hormaechei strain M1. The E. hormaechei strain M1 was identified as Enterobacter cloacae complex by biochemical assay and 16S rRNA sequencing. The whole genome was sequenced by the Oxford Nanopore method. Taxonomy of the E. hormaechei was based on multilocus sequence typing (MLST). The qnrS with the other antibiotic resistance genes were coexisted on IncF plasmid (pM1). Besides, the virulence factors associated with pathogenicity were also located on pM1. The qnrS1 gene was located between insertion element IS2A (upstream) and transposition element ISKra4 (downstream). The comparison result of IncF plasmids revealed that they had a common plasmid backbone. Susceptibility experiment revealed that the E. hormaechei M1 showed extensive resistance to the clinical antimicrobials. The conjugation transfer was performed by filter membrane incubation method. The competition and plasmid stability assays suggested the host bacteria carrying qnrS had an energy burden. As far as we know, this is the first report that E. hormaechei carrying qnrS was isolated from chicken feed. The chicken feed and poultry products could serve as a vehicle for these MDR bacteria, which could transfer between animals and humans through the food chain. We need to pay close attention to the epidemiology of E. hormaechei and prevent their further dissemination. IMPORTANCE Enterobacter hormaechei is an opportunistic pathogen. It can cause infections in humans and animals. Plasmid-mediated quinolone resistance (PMQR) gene qnrS can be transferred intergenus, which is leading to increase the quinolone resistance levels in Enterobacteriaceae. Chicken feed could serve as a vehicle for the MDR E. hormaechei. Therefore, antibiotic-resistance genes (ARGs) might be transferred to the intestinal flora after entering the gastrointestinal tract with the feed. Furthermore, antibiotic-resistant bacteria (ARB) were also excreted into environment with feces, posing a huge threat to public health. This requires us to monitor the ARB and antibiotic-resistant plasmids in the feed. Here, we demonstrated the characteristics of one MDR E. hormaechei isolate from chicken feed. The plasmid carrying the qnrS gene is a conjugative plasmid with transferability. The presence of plasmid carrying antibiotic-resistance genes requires the maintenance of antibiotic pressure. In addition, the E. hormaechei M1 belonged to new sequence type (ST). These data show the MDR E. hormaechei M1 is a novel strain that requires our further research.
Asunto(s)
Pollos , Quinolonas , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Antibacterianos/farmacología , Enterobacter , Enterobacteriaceae/genética , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos/genética , Quinolonas/farmacología , ARN Ribosómico 16SRESUMEN
OBJECTIVES: Determinants showing plasmid-mediated quinolone resistance, which usually leads to antimicrobial ineffectiveness, have become an emerging clinical problem. In our previous study in the Philippines, a high prevalence of qnr determinants was found in clinical samples and food-producing animals and their food products. However, no qnr-carrying plasmids have been investigated in animals or animal-derived foods. Hence, in the present, we aimed to characterise qnr-carrying plasmids in Escherichia coli isolated from the food supply chain. METHODS: Plasmids from 44 qnr-positive isolates were assigned to incompatibility groups by Polymerase chain reaction (PCR)-based replicon typing, and the presence of ß-lactamase-encoding genes were investigated by PCR. Localisation of qnr in plasmids was determined by S1-PFGE and Southern blot hybridisation. The transferability of qnr-carrying plasmids was examined by conjugation analysis. RESULTS: Overall, 77.3% (95% confidence interval [CI]: 62.2-88.5) of the isolates harbouring qnr determinants were positive for seven plasmid types, and 56.8% concurrently harboured blaTEM-1. Plasmid IncFrepB was prevalent (65.9% [95% CI: 50.1-79.5]) among qnr determinants. Localisation of qnr determinants in IncFrepB and transferability of plasmids was further confirmed. CONCLUSION: The current study proved that qnr in E. coli isolated from food-producing animals and their food products could spread via plasmid IncFrepB upon selective pressure with quinolones or other antimicrobials. Therefore, to curb the emergence and spread of qnr-harbouring bacteria in the Philippines, prudent use of antimicrobials in animal production and stricter hygiene and food handling are recommended.
Asunto(s)
Infecciones por Escherichia coli , Quinolonas , Animales , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Filipinas , Plásmidos/genética , Quinolonas/farmacología , beta-Lactamasas/genéticaRESUMEN
The rapid emergence of multidrug-resistant Klebsiella pneumoniae is being driven largely by the spread of specific clonal groups (CGs). Of these, CG147 includes 7-gene multilocus sequence typing (MLST) sequence types (STs) ST147, ST273 and ST392. CG147 has caused nosocomial outbreaks across the world, but its global population dynamics remain unknown. Here, we report a pandrug-resistant ST147 clinical isolate from India (strain DJ) and define the evolution and global emergence of CG147. Antimicrobial-susceptibility testing following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines and genome sequencing (Illumina and Oxford Nanopore Technologies, Unicycler assembly) were performed on strain DJ. Additionally, we collated 217 publicly available CG147 genomes [National Center for Biotechnology Information (NCBI), May 2019]. CG147 evolution was inferred within a temporal phylogenetic framework (beast) based on a recombination-free sequence alignment (Roary/Gubbins). Comparative genomic analyses focused on resistance and virulence genes and other genetic elements (BIGSdb, Kleborate, PlasmidFinder, phaster, ICEfinder and CRISPRCasFinder). Strain DJ had a pandrug-resistance phenotype. Its genome comprised the chromosome, seven plasmids and one linear phage-plasmid. Four carbapenemase genes were detected: blaNDM-5 and two copies of blaOXA-181 in the chromosome, and a second copy of blaNDM-5 on an 84 kb IncFII plasmid. CG147 genomes carried a mean of 13 acquired resistance genes or mutations; 63â% carried a carbapenemase gene and 83â% harboured blaCTX-M. All CG147 genomes presented GyrA and ParC mutations and a common subtype I-E CRISPR-Cas system. ST392 and ST273 emerged in 2005 and 1995, respectively. ST147, the most represented phylogenetic branch, was itself divided into two main clades with distinct capsular loci: KL64 (74â%, DJ included, emerged in 1994 and disseminated worldwide, with carbapenemases varying among world regions) and KL10 (20â%, emerged in 2002, predominantly found in Asian countries, associated with carbapenemases NDM and OXA-48-like). Furthermore, subclades within ST147-KL64 differed at the yersiniabactin locus, OmpK35/K36 mutations, plasmid replicons and prophages. The absence of IncF plasmids in some subclades was associated with a possible activity of a CRISPR-Cas system. K. pneumoniae CG147 comprises pandrug-resistant or extensively resistant isolates, and carries multiple and diverse resistance genes and mobile genetic elements, including chromosomal blaNDM-5. Its emergence is being driven by the spread of several phylogenetic clades marked by their own genomic features and specific temporo-spatial dynamics. These findings highlight the need for precision surveillance strategies to limit the spread of particularly concerning CG147 subsets.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Genómica/métodos , Klebsiella pneumoniae/clasificación , Secuenciación Completa del Genoma/métodos , Evolución Molecular , Genoma Bacteriano , India , Secuencias Repetitivas Esparcidas , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Filogenia , Plásmidos/genética , Profagos/genética , Factores de Virulencia/genéticaRESUMEN
There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.
Asunto(s)
Neurociencias , Reproducibilidad de los ResultadosRESUMEN
The Escherichia coli ST131 H30-Rx subclone vehicles CTX-M-15 plasmids and mutations in gyrA and parC conferring multidrug resistance successfully in the clinical setting. The aim of this study was (1) to investigate the relationship of specific topoisomerase mutations on the stability of IncF (CTX-M producing) plasmids using isogenic E. coli mutants and (2) to investigate the impact of the IncF-type plasmids present in the E. coli clone ST131 on the evolution of quinolone resistance. E. coli ATCC 25922 (background strain) and derived mutants encoding specific QRDR substitutions were used. Also, NGS-characterized IncFIA and IncFIB plasmids (encoding CTX-M genes) were included. Plasmid stability was evaluated by sequential dilutions into Luria broth medium without antibiotics for 7 days. Mutant frequency to ciprofloxacin was also evaluated. Moderate differences in the IncF plasmids stability were observed among E. coli ATCC 25922 and isogenic mutants. Under our experimental conditions, the fluctuation of bacteria harboring plasmids was less than 0.5-log(10) in all cases. In the mutant frequency tests, it was observed that the presence of these IncF plasmids increased this value significantly (10-1000-fold). Quinolone resistance substitutions in gyrA or parC genes, frequently found associated with E. coli clone ST131, do not modify the stability of ST131-associated IncFIA and IncFIB plasmids under in vitro conditions. IncF-type plasmids present in E. coli clone ST131 facilitate the selection of resistance to quinolones. These results are consistent with the clinical scenario in which the combination of resistance to quinolones and beta-lactams is highly frequent in the E. coli clone ST131.
RESUMEN
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the disease with the highest economic loss for the broiler industry. However, studies focusing on the prevalence and population structure of APEC in the broiler production pyramid are scarce. Here, we used genotyping and serotyping data to elucidate the APEC population structure and its changes in different broiler production stages along with whole-genome sequencing (WGS) in a subset of APEC isolates to determine transmission patterns amongst dominant APEC sequence types (STs) and characterize them in detail. Comparison of genotypes encountered in both APEC and avian fecal E. coli (AFEC) provided further insights. Overall, APEC-related mortality, as the proportion of the total sampled mortality in the broiler production, was high (35%), while phylogroup C and serogroup O78 were predominant amongst APEC isolates. We found a low (34.0%) and high (53.3%) incidence of colibacillosis in chicks and end-cycle broilers, respectively, which may be related to a shift in APEC genotypes, suggesting a trend from commensalism to pathogenicity across different broiler production stages. Despite considerable APEC genotypic diversity, there was substantial genotype overlap (40.9%, overall) over the production stages and convergence of STs to the four clusters. Within these clusters, WGS data provided evidence of clonal transmission events and revealed an enriched virulence and resistance APEC repertoire. More specifically, sequenced APEC were assigned to defined pathotypes based on their virulence gene content while the majority (86%) was genotypically multi-drug resistant. Interestingly, WGS-based phylogeny showed that a subset of APEC, which are cephalosporin-resistant, may originate directly from cephalosporin-resistant AFEC. Finally, exploration of the APEC plasmidome indicated that the small fraction of the APEC virulome carried by IncF plasmids is pivotal for the manifestation of the APEC pathotype; thus, plasmid exchange can promote pathogenicity in strains that are at the edge of the commensal and pathogenic states.
RESUMEN
BACKGROUND: Klebsiella pneumoniae, as a global priority pathogen, is well known for its capability of acquiring mobile genetic elements that carry resistance and/or virulence genes. Its virulence plasmid, previously deemed nonconjugative and restricted within hypervirulent K. pneumoniae (hvKP), has disseminated into classic K. pneumoniae (cKP), particularly carbapenem-resistant K. pneumoniae (CRKP), which poses alarming challenges to public health. However, the mechanism underlying its transfer from hvKP to CRKP is unclear. METHODS: A total of 28 sequence type (ST) 11 bloodstream infection-causing CRKP strains were collected from Ruijin Hospital in Shanghai, China, and used as recipients in conjugation assays. Transconjugants obtained from conjugation assays were confirmed by XbaI and S1 nuclease pulsed-field gel electrophoresis, PCR detection and/or whole-genome sequencing. The plasmid stability of the transconjugants was evaluated by serial culture. Genetically modified strains and constructed mimic virulence plasmids were employed to investigate the mechanisms underlying mobilization. The level of extracellular polysaccharides was measured by mucoviscosity assays and uronic acid quantification. An in silico analysis of 2608 plasmids derived from 814 completely sequenced K. pneumoniae strains available in GenBank was performed to investigate the distribution of putative helper plasmids and mobilizable virulence plasmids. RESULTS: A nonconjugative virulence plasmid was mobilized by the conjugative plasmid belonging to incompatibility group F (IncF) from the hvKP strain into ST11 CRKP strains under low extracellular polysaccharide-producing conditions or by employing intermediate E. coli strains. The virulence plasmid was mobilized via four modes: transfer alone, cotransfer with the conjugative IncF plasmid, hybrid plasmid formation due to two rounds of single-strand exchanges at specific 28-bp fusion sites or homologous recombination. According to the in silico analysis, 31.8% (242) of the putative helper plasmids and 98.8% (84/85) of the virulence plasmids carry the 28-bp fusion site. All virulence plasmids carry the origin of the transfer site. CONCLUSIONS: The nonconjugative virulence plasmid in ST11 CRKP strains is putatively mobilized from hvKP or E. coli intermediates with the help of conjugative IncF plasmids. Our findings emphasize the importance of raising public awareness of the rapid dissemination of virulence plasmids and the consistent emergence of hypervirulent carbapenem-resistant K. pneumoniae (hv-CRKP) strains.
Asunto(s)
Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Plásmidos/genética , Carbapenémicos/farmacología , Biología Computacional/métodos , Conjugación Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Anotación de Secuencia Molecular , Polisacáridos Bacterianos/biosíntesis , Análisis de Secuencia de ADN , Virulencia/genética , Secuenciación Completa del Genoma , Resistencia betalactámicaRESUMEN
OBJECTIVES: In extreme environments, such as the Arctic region, the anthropogenic influence is low and the presence of antimicrobial-resistant bacteria is unexpected. In this study, we screened wild reindeer (Rangifer tarandus platyrhynchus) from the Svalbard High Arctic Archipelago for antimicrobial-resistant Escherichia coli and performed in-depth strain characterisation. METHODS: Using selective culturing of faecal samples from 55 animals, resistant E. coli were isolated and subjected to minimum inhibitory concentration (MIC) determination, conjugation experiments and whole-genome sequencing. RESULTS: Twelve animals carried antimicrobial-resistant E. coli. Genomic analysis showed IncF plasmids as vectors both for resistance and virulence genes in most strains. Plasmid-associated genes encoding resistance to ampicillin, sulfonamides, streptomycin and trimethoprim were found in addition to virulence genes typical for colicin V (ColV)-producing plasmids. Comparison with previously reported IncF ColV plasmids from human and animal hosts showed high genetic similarity. The plasmids were detected in E. coli sequence types (STs) previously described as hosts for such plasmids, such as ST58, ST88 and ST131. CONCLUSION: Antimicrobial-resistant E. coli were detected from Svalbard reindeer. Our findings show that successful hybrid antimicrobial resistance-ColV plasmids and their host strains are widely distributed also occurring in extreme environmental niches such as arctic ecosystems. Possible introduction routes of resistant bacterial strains and plasmids into Svalbard ecosystems may be through migrating birds, marine fish or mammals, arctic fox (Vulpes lagopus) or via human anthropogenic activities such as tourism.
Asunto(s)
Escherichia coli , Reno , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Ecosistema , Escherichia coli/genética , Plásmidos/genética , Virulencia/genéticaRESUMEN
The development of carbapenem resistance in extraintestinal pathogenic Escherichia coli (ExPEC) has significant clinical implications, particularly in countries where second-line antimicrobials are not readily available, rendering treatments ineffective, and ExPEC infections untreatable. Thus, early detection of high-risk ExPEC lineages and raising awareness of the specific mechanisms underlying carbapenem resistance are mandatory for the selection of appropriate treatment options and the prevention of E. coli spread. This study aims to investigate the phenotypic and genotypic features of the first NDM-5 carbapenemase-producing ExPEC strain isolated from the blood of a patient admitted to the Maputo Central Hospital (MCH), in Mozambique. E. coli SSM100 isolate was identified by MALDI-TOF, it displayed high-level resistance to third generation cephalosporins, carbapenems, fluoroquinolones, and aminoglycosides, performing antimicrobial susceptibilities testing by VITEK 2 system. E. coli SSM100 isolate was classified through whole-genome sequencing as ST405-D-O102: H6, a globally distributed lineage associated with antimicrobial resistance, carrying the blaNDM-5 gene located on an F1:A1:B49 plasmid, coharboring blaCTX-M-15, blaTEM-1, aadA2, sul1, and dfrA12 genes. In addition, mutations in gyrA (S83L and D87N), parC (S80I and E84V), and parE (I529L) conferring fluoroquinolone resistance were also found. Moreover, SSM100 isolate carried 88 virulence genes, of which 28 are reported to be associated with UPEC. The emergence of NDM-5 carbapenemase in a pandemic ST405-D-O102:H6 clone in Mozambique is of great concern. Locations of extended-spectrum ß-lactamase determinants and NDM-5 carbapenemase gene on IncF-plasmid can increase their spread reinforcing the need for antimicrobial surveillance and the urgent introduction of carbapenemase detection tests in diagnostic laboratories of the country.