Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 968
Filtrar
1.
Pharmacotherapy ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225417

RESUMEN

Obesity continues to be a significant global health challenge, affecting over 800 million individuals worldwide. Traditional management strategies, including dietary, exercise, and behavioral interventions, often result in insufficient and unsustainable weight loss. Lifestyle modification remains the cornerstone of obesity management, providing the foundation for other strategies. While options such as bariatric surgery remain an effective intervention for severe obesity, it is associated with its own set of risks and is typically reserved for patients who have not achieved the desired results with pharmacotherapy and lifestyle interventions. Incretin hormone agonists represent a significant advancement in the pharmacotherapy of obesity, offering substantial weight reduction and cardiometabolic benefits. Agents like liraglutide, semaglutide, and tirzepatide supported by key clinical trials such as Satiety and Clinical Adipose Liraglutide Evidence (SCALE), Semaglutide Treatment Effect in People with Obesity (STEP) program trials, and Tirzepatide Once Weekly for the Treatment of Obesity (SURMOUNT-1) have demonstrated remarkable efficacy in promoting weight loss and improving metabolic outcomes. Additionally, novel therapies, including dual and triple incretin agonists, are under investigation and hold the potential for further advancements in obesity treatment. These novel therapies can be categorized by their mechanisms of action and route of administration into oral glucagon-like peptide-1 (GLP-1) receptor agonists, triple agonists (targeting GLP-1, glucose-dependent insulinotropic polypeptide [GIP], and glucagon receptors), and glucagon receptor-GLP-1 receptor co-agonists. Other innovative approaches include oral GIP-GLP-1 receptor co-agonists, and the combination of long-acting amylin receptor agonists with GLP-1 receptor agonists. The ongoing development of incretin-based therapies and the expanding availability of currently available agents are expected to enhance clinical outcomes further and reduce the burden of obesity-related health complications. This review aims to discuss the mechanisms and efficacy of current and emerging incretin hormone agonists for obesity management.

2.
Sleep Med Rev ; 78: 101996, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39244884

RESUMEN

Despite the commonly-accepted paradigm that patients with obstructive sleep apnea (OSA) also invariably have obesity, OSA prevalence extends beyond obesity. This necessitates a reevaluation of screening strategies, biomarkers of increased OSA risk, and heightened awareness among healthcare providers about the array of OSA treatments for diverse adult populations. While obesity contributes importantly to OSA pathogenesis, there is substantial evidence that non-anatomical factors also play a crucial role, especially in patients who do not have obesity. In recent years, notwithstanding the recognition of diverse contributors to OSA pathogenesis, research has frequently focused on weight reduction to address OSA. Insights from past experiences with bariatric surgery in OSA serve as a lens to anticipate potential outcomes of emerging anti-obesity pharmacotherapies. Pharmacological alternatives, particularly incretin agonists, exhibit promise in weight reduction and OSA improvement, but encounter obstacles such as potential side effects and high costs. With this comprehensive narrative review, we delve into the complex epidemiological and pathophysiological connections between OSA and obesity. Additionally, we emphasize the importance of a multifaceted approach to OSA treatment, recognizing that while weight management is crucial, there is a need for comprehensive strategies that go beyond traditional weight-centric perspectives.

4.
medRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39108516

RESUMEN

Type 2 diabetes (T2D) and prediabetes are classically defined by the level of fasting glucose or surrogates such as hemoglobin HbA1c. This classification does not take into account the heterogeneity in the pathophysiology of glucose dysregulation, the identification of which could inform targeted approaches to diabetes treatment and prevention and/or predict clinical outcomes. We performed gold-standard metabolic tests in a cohort of individuals with early glucose dysregulation and quantified four distinct metabolic subphenotypes known to contribute to glucose dysregulation and T2D: muscle insulin resistance, ß-cell dysfunction, impaired incretin action, and hepatic insulin resistance. We revealed substantial inter-individual heterogeneity, with 34% of individuals exhibiting dominance or co-dominance in muscle and/or liver IR, and 40% exhibiting dominance or co-dominance in ß-cell and/or incretin deficiency. Further, with a frequently-sampled oral glucose tolerance test (OGTT), we developed a novel machine learning framework to predict metabolic subphenotypes using features from the dynamic patterns of the glucose time-series ("shape of the glucose curve"). The glucose time-series features identified insulin resistance, ß-cell deficiency, and incretin defect with auROCs of 95%, 89%, and 88%, respectively. These figures are superior to currently-used estimates. The prediction of muscle insulin resistance and ß-cell deficiency were validated using an independent cohort. We then tested the ability of glucose curves generated by a continuous glucose monitor (CGM) worn during at-home OGTTs to predict insulin resistance and ß-cell deficiency, yielding auROC of 88% and 84%, respectively. We thus demonstrate that the prediabetic state is characterized by metabolic heterogeneity, which can be defined by the shape of the glucose curve during standardized OGTT, performed in a clinical research unit or at-home setting using CGM. The use of at-home CGM to identify muscle insulin resistance and ß-cell deficiency constitutes a practical and scalable method by which to risk stratify individuals with early glucose dysregulation and inform targeted treatment to prevent T2D.

5.
J Clin Med ; 13(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39200816

RESUMEN

Owing to their potent glucose-lowering efficacy and substantial weight loss effects, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are now considered part of the frontline therapeutic options to treat both type 2 diabetes mellitus and nondiabetic overweight/obesity. Stemming from successful demonstration of their cardiometabolic modulation and reduction of major adverse cardiovascular events in clinical outcome trials, GLP-1 RAs have since been validated as agents with compelling cardiovascular protective properties. Studies spanning from the bench to preclinical and large-scale randomised controlled trials have consistently corroborated the cardiovascular benefits of this pharmacological class. Most notably, there is converging evidence that they exert favourable effects on atherosclerotic ischaemic endpoints, with preclinical data indicating that they may do so by directly modifying the burden and composition of atherosclerotic plaques. This narrative review examines the underlying pharmacology and clinical evidence behind the cardiovascular benefits of GLP-1 RAs, with particular focus on atherosclerotic cardiovascular disease. It also delves into the mechanisms that underpin their putative plaque-modifying actions, addresses existing knowledge gaps and therapeutic challenges and looks to future developments in the field, including the use of combination incretin agents for diabetes and weight loss management.

6.
Diabetes Obes Metab ; 26 Suppl 4: 3-15, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39157881

RESUMEN

Obesity is a chronic multi-system disease and major driver of type 2 diabetes and cardiometabolic disease. Nutritional interventions form the cornerstone of obesity and type 2 diabetes management. Some interventions such as Mediterranean diet can reduce incident cardiovascular disease, probably independently of weight loss. Weight loss of 5% or greater can improve many adiposity-related comorbidities. Although this can be achieved with lifestyle intervention, it is often difficult to sustain in the longer term due to adaptive endocrine changes. In recent years glucagon-like-peptide-1 receptor agonists (GLP-1RAs) have emerged as effective treatments for both type 2 diabetes and obesity. Newer GLP-1RAs can achieve average weight loss of 15% or greater and improve cardiometabolic health. There is heterogeneity in the weight loss response to GLP-1RAs, with a substantial number of patients unable to achieve 5% or greater weight. Weight loss, on average, is lower in older adults, male patients and people with type 2 diabetes. Mechanistic studies are needed to understand the aetiology of this variable response. Gastrointestinal side effects leading to medication discontinuation are a concern with GLP-1RA treatment, based on real-world data. With weight loss of 20% or higher with newer GLP-1RAs, nutritional deficiency and sarcopenia are also potential concerns. Lifestyle interventions that may potentially mitigate the side effects of GLP-1RA treatment and enhance weight loss are discussed here. The efficacy of such interventions awaits confirmation with well-designed randomized controlled trials.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Obesidad , Pérdida de Peso , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Péptido 1 Similar al Glucagón/uso terapéutico , Péptido 1 Similar al Glucagón/agonistas , Obesidad/complicaciones , Obesidad/terapia , Receptor del Péptido 1 Similar al Glucagón/agonistas , Pérdida de Peso/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Estilo de Vida , Terapia Combinada , Masculino , Femenino
7.
J Equine Vet Sci ; 142: 105179, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197558

RESUMEN

Equine insulin dysregulation (ID) is a significant metabolic problem because the hyperinsulinaemia that develops increases the animal's risk of developing laminitis, a debilitating foot condition. The role of gastrointestinal factors, such as incretin hormones, in the pathogenesis of ID and hyperinsulinaemia in horses is poorly understood, particularly in comparison to other species. Glucagon-like peptide-2 (GLP-2) is an intestinotrophic peptide released from L cells in the gastrointestinal tract and is implicated in metabolic dysfunction in other species. The aim of this study in vitro was to establish basic physiological understanding about intestinal secretion of GLP-2 in horses. Basal and glucose-stimulated GLP-2 secretion was measured in post-mortem tissue samples from the duodenum, jejunum, and ileum. We observed that GLP-2 secretion was minimal in samples from the duodenum compared to the jejunum and ileum (5-9-fold higher; P < 0.05). Furthermore, GLP-2 secretion was not responsive to glucose stimulation in the ileum or duodenum but was responsive to glucose in the jejunum. This effect in the jejunum was inhibited by 30 % (P = 0.02) using phlorizin, a selective sodium-glucose cotransporter-1 (SGLT-1) inhibitor, and by 38 % (P = 0.04) using phloretin, a non-selective SGLT-1/GLUT-2 inhibitor. The localisation of glucose-responsive GLP-2 secretion in the jejunum might be relevant to the development of post-prandial hyperinsulinaemia. This study has provided data on GLP-2 secretion from the equine small intestine that will enable more complex and dynamic studies on the pathogenesis of ID.

9.
Diabetes Obes Metab ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192527

RESUMEN

AIM: To test the effect of the glucagon-like peptide-1 receptor agonist, liraglutide, on residual beta-cell function in adults with newly diagnosed type 1 diabetes. MATERIALS AND METHODS: In a multicentre, double-blind, parallel-group trial, adults with newly diagnosed type 1 diabetes and stimulated C-peptide of more than 0.2 nmol/L were randomized (1:1) to 1.8-mg liraglutide (Victoza) or placebo once daily for 52 weeks with 6 weeks of follow-up with only insulin treatment. The primary endpoint was the between-group difference in C-peptide area under the curve (AUC) following a liquid mixed-meal test after 52 weeks of treatment. RESULTS: Sixty-eight individuals were randomized. After 52 weeks, the 4-hour AUC C-peptide response was maintained with liraglutide, but decreased with placebo (P = .002). Six weeks after end-of-treatment, C-peptide AUCs were similar for liraglutide and placebo. The average required total daily insulin dose decreased from 0.30 to 0.23 units/kg/day with liraglutide, but increased from 0.29 to 0.43 units/kg/day in the placebo group at week 52 (P < .001). Time without the need for insulin treatment was observed in 13 versus two patients and lasted for 22 weeks (from 3 to 52 weeks) versus 6 weeks (from 4 to 8 weeks) on average for liraglutide and placebo, respectively. Patients treated with liraglutide had fewer episodes of hypoglycaemia compared with placebo-treated patients. The adverse events with liraglutide were predominantly gastrointestinal and transient. CONCLUSIONS: Treatment with liraglutide improves residual beta-cell function and reduces the dose of insulin during the first year after diagnosis. Beta-cell function was similar at 6 weeks postliraglutide treatment.

10.
Clin Diabetes Endocrinol ; 10(1): 20, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049087

RESUMEN

AIM: Type 2 diabetes is increasing in Sub-Saharan Africa, but the pathophysiology in this population is poorly investigated. In Western populations, the incretin effect is reduced in type 2 diabetes, leading to lowered insulin secretion. The aim of this study was to investigate the incretin effect in a group of Sub-Saharan Africans with type 2 diabetes. METHODS: Twenty adults diagnosed with type 2 diabetes, based on either an oral glucose tolerance test (n = 10) or on glycated hemoglobin A1c (n = 10), and 10 non-diabetic controls were included in an interventional study in Tanzania. We investigated the incretin effect as the difference between the plasma insulin area under the curve during an oral glucose tolerance test and that obtained during an intravenous glucose infusion. Differences between diabetes groups were analyzed by Kruskal-Wallis one-way analysis of variance. RESULTS: The incretin effect did not differ between groups (p = 0.45), and there was no difference in plasma concentrations of the incretin hormones during the OGTT. CONCLUSION: A reduced incretin effect appears not to contribute to hyperglycemia in type 2 diabetes in this Tanzanian population. More research is needed to explain the diabetes phenotype often seen in Sub-Saharan Africa. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03106480 , date of registration: 04/10/2017.

11.
Biomolecules ; 14(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062586

RESUMEN

Glucagon-like peptide-1 (GLP-1)-based drugs have been approved by the United States Food and Drug Administration (FDA) and are widely used to treat type 2 diabetes mellitus (T2DM) and obesity. More recent developments of unimolecular peptides targeting multiple incretin-related receptors ("multi-agonists"), including the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon (Gcg) receptor (GcgR), have emerged with the aim of enhancing drug benefits. In this study, we utilized human and mouse microglial cell lines, HMC3 and IMG, respectively, together with the human neuroblastoma SH-SY5Y cell line as cellular models of neurodegeneration. Using these cell lines, we studied the neuroprotective and anti-inflammatory capacity of several multi-agonists in comparison with a single GLP-1 receptor (GLP-1R) agonist, exendin-4. Our data demonstrate that the two selected GLP-1R/GIPR dual agonists and a GLP-1R/GIPR/GcgR triple agonist not only have neurotrophic and neuroprotective effects but also have anti-neuroinflammatory properties, as indicated by the decreased microglial cyclooxygenase 2 (COX2) expression, nitrite production, and pro-inflammatory cytokine release. In addition, our results indicate that these multi-agonists have the potential to outperform commercially available single GLP-1R agonists in neurodegenerative disease treatment.


Asunto(s)
Antiinflamatorios , Receptor del Péptido 1 Similar al Glucagón , Incretinas , Fármacos Neuroprotectores , Humanos , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Incretinas/farmacología , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Línea Celular , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/metabolismo , Exenatida/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Línea Celular Tumoral , Péptidos/farmacología , Péptidos/química , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/agonistas
12.
Alzheimers Res Ther ; 16(1): 173, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085976

RESUMEN

Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aß pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Agonistas Receptor de Péptidos Similares al Glucagón , Animales , Femenino , Humanos , Masculino , Ratones , Administración Intranasal , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Exenatida , Fragmentos Fc de Inmunoglobulinas/administración & dosificación , Incretinas , Ratones Transgénicos , Presenilina-1/genética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/farmacocinética , Agonistas Receptor de Péptidos Similares al Glucagón/farmacocinética
13.
Diabetes Obes Metab ; 26(9): 3897-3905, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951936

RESUMEN

AIM: To perform a direct, double-blind, randomised, crossover comparison of subcutaneous and intravenous glucagon-like peptide-1 (GLP-1) in hyperglycaemic subjects with type 2 diabetes naïve to GLP-1-based therapy. MATERIALS AND METHODS: Ten fasted, hyperglycaemic subjects (1 female, age 63 ± 10 years [mean ± SD], glycated haemoglobin 73.5 ± 22.0 mmol/mol [8.9% ± 2.0%], both mean ± SD) received subcutaneous GLP-1 and intravenous saline, or intravenous GLP-1 and subcutaneous saline. Infusion rates were doubled every 120 min (1.2, 2.4, 4.8 and 9.6 pmol·kg-1·min-1 for subcutaneous, and 0.3, 0.6, 1.2 and 2.4 pmol·kg-1·min-1 for intravenous). Plasma glucose, total and intact GLP-1, insulin, C-peptide, glucagon and gastrointestinal symptoms were evaluated over 8 h. The results are presented as mean ± SEM. RESULTS: Plasma glucose decreased more with intravenous (by ~8.0 mmol/L [144 mg/dL]) than subcutaneous GLP-1 (by ~5.6 mmol/L [100 mg/dL]; p < 0.001). Plasma GLP-1 increased dose-dependently, but more with intravenous than subcutaneous for both total (∆max 154.2 ± 3.9 pmol/L vs. 85.1 ± 3.8 pmol/L; p < 0.001), and intact GLP-1 (∆max 44.2 ± 2.2 pmol/L vs. 12.8 ± 2.2 pmol/L; p < 0.001). Total and intact GLP-1 clearance was higher for subcutaneous than intravenous GLP-1 (p < 0.001 and p = 0.002, respectively). The increase in insulin secretion was greater, and glucagon was suppressed more with intravenous GLP-1 (p < 0.05 each). Gastrointestinal symptoms did not differ (p > 0.05 each). CONCLUSIONS: Subcutaneous GLP-1 administration is much less efficient than intravenous GLP-1 in lowering fasting plasma glucose, with less stimulation of insulin and suppression of glucagon, and much less bioavailability, even at fourfold higher infusion rates.


Asunto(s)
Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Hiperglucemia , Hipoglucemiantes , Humanos , Femenino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Persona de Mediana Edad , Péptido 1 Similar al Glucagón/administración & dosificación , Masculino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Método Doble Ciego , Anciano , Inyecciones Subcutáneas , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Infusiones Intravenosas , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Glucagón/administración & dosificación , Glucagón/sangre , Péptido C/sangre
14.
Expert Opin Investig Drugs ; 33(8): 757-773, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38984950

RESUMEN

INTRODUCTION: One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified. AREAS COVERED: This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction. EXPERT OPINION: Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.


Asunto(s)
Fármacos Antiobesidad , Polipéptido Inhibidor Gástrico , Obesidad , Receptores de la Hormona Gastrointestinal , Pérdida de Peso , Humanos , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Animales , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/metabolismo , Fármacos Antiobesidad/farmacología , Pérdida de Peso/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Drogas en Investigación/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Incretinas/farmacología , Desarrollo de Medicamentos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo
15.
Diabetes Ther ; 15(9): 2079-2095, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39052163

RESUMEN

INTRODUCTION: The study was designed to assess outcomes with once-daily oral semaglutide in adults with type 2 diabetes (T2D) naïve to injectable glucose-lowering agents, in Swedish clinical practice. METHODS: In this non-interventional, multicentre study, participants initiated oral semaglutide and were followed for 34-44 weeks. The primary endpoint was glycated haemoglobin (HbA1c) change from baseline to end of study (EOS). Secondary endpoints included body weight (BW) change from baseline to EOS, proportion of participants achieving HbA1c < 7%, and proportion achieving both a HbA1c reduction ≥ 1% and BW reduction of ≥ 3% or ≥ 5%, at EOS. Participants completed Diabetes Treatment Satisfaction Questionnaires (DTSQ status/change) and a dosing conditions questionnaire. RESULTS: A total of 187 participants (mean age 62.5 years) initiated oral semaglutide. Baseline mean HbA1c and BW were 7.8% (n = 177) and 96.9 kg (n = 165), respectively. Estimated mean changes in HbA1c and BW were - 0.88%-points (95% confidence interval [CI] - 1.01 to - 0.75; P < 0.0001) and - 4.72% (95% CI - 5.58 to - 3.86; P < 0.0001), respectively. At EOS, 64.6% of participants had HbA1c < 7%, and 22.9% achieved HbA1c reduction of ≥ 1% and BW reduction of ≥ 5%. DTSQ status and change scores improved by 1.44 (P = 0.0260) and 12.3 points (P < 0.0001), respectively. Oral semaglutide was easy or very easy to consume for 86.4% of participants. Most common adverse events (AEs) were gastrointestinal disorders; nine participants (4.8%) had serious AEs; one (0.5%) experienced severe hypoglycaemia. CONCLUSION: In this real-world study population, we observed significant reductions in HbA1c and BW in people living with T2D when prescribed semaglutide tablets as part of routine clinical practice in Sweden, with improved treatment satisfaction among participants and no new safety concerns. TRIAL REGISTRATION: NCT04601753.

16.
Obes Surg ; 34(8): 3071-3083, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38951388

RESUMEN

In recent years, there has been a gradual increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM), with bariatric surgery remaining the most effective treatment strategy for these conditions. Vertical sleeve gastrectomy (VSG) has emerged as the most popular surgical procedure for bariatric/metabolic surgeries, effectively promoting weight loss and improving or curing T2DM. The alterations in the gastrointestinal tract following VSG may improve insulin secretion and resistance by increasing incretin secretion (especially GLP-1), modifying the gut microbiota composition, and through mechanisms dependent on weight loss. This review focuses on the potential mechanisms through which the enhanced action of incretin and metabolic changes in the digestive system after VSG may contribute to the remission of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gastrectomía , Obesidad Mórbida , Pérdida de Peso , Humanos , Diabetes Mellitus Tipo 2/cirugía , Gastrectomía/métodos , Obesidad Mórbida/cirugía , Inducción de Remisión , Incretinas , Microbioma Gastrointestinal , Cirugía Bariátrica/métodos , Resultado del Tratamiento , Resistencia a la Insulina , Péptido 1 Similar al Glucagón/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-39032854

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by impaired social interactions, and increased repetitive behaviors. There is evidence of genetic changes in ASD, and several of these altered genes are linked to the process of DNA repair. Therefore, individuals with ASD must have improved DNA repair efficiency to mitigate risks associated with ASD. Despite numerous milestones in ASD research, the disease remains incurable, with a high occurrence rate and substantial financial burdens. This motivates scientists to search for new drugs to manage the disease. Disruption of glucagon-like peptide-1 (GLP-1) signaling, a regulator in neuronal development and maintains homeostasis, has been associated with the pathogenesis and progression of several neurological disorders, such as ASD. Our study aimed to assess the impact of semaglutide, a new GLP-1 analog antidiabetic medication, on behavioral phenotypes and DNA repair efficiency in the BTBR autistic mouse model. Furthermore, we elucidated the underlying mechanism(s) responsible for the ameliorative effects of semaglutide against behavioral problems and DNA repair deficiency in BTBR mice. The current results demonstrate that repeated treatment with semaglutide efficiently decreased autism-like behaviors in BTBR mice without affecting motor performance. Semaglutide also mitigated spontaneous DNA damage and enhanced DNA repair efficiency in the BTBR mice as determined by comet assay. Moreover, administering semaglutide recovered oxidant-antioxidant balance in BTBR mice. Semaglutide restored the disrupted DNA damage/repair pathways in the BTBR mice by reducing Gadd45a expression and increasing Ogg1 and Xrcc1 expression at both the mRNA and protein levels. This suggests that semaglutide holds great potential as a novel therapeutic candidate for treating ASD traits.

18.
Diabetologia ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985162

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to evaluate the efficacy and safety of oral semaglutide monotherapy vs placebo in a predominantly Chinese population with type 2 diabetes insufficiently controlled with diet and exercise alone. METHODS: The Peptide Innovation for Early Diabetes Treatment (PIONEER) 11 trial was a double-blind, randomised, Phase IIIa trial conducted across 52 sites in the China region (mainland China and Taiwan), Hungary, Serbia and Ukraine. Eligible participants were ≥18 years (≥20 years in Taiwan), had a diagnosis of type 2 diabetes with HbA1c 53-86 mmol/mol (7.0-10.0%) and were not receiving any glucose-lowering drugs. After a 4-week run-in period in which participants were treated with diet and exercise alone, those who fulfilled the randomisation criteria were randomised (1:1:1:1) using a web-based randomisation system to receive once-daily oral semaglutide 3 mg, 7 mg or 14 mg or placebo for 26 weeks (using a 4-week dose-escalation regimen for the higher doses). Randomisation was stratified according to whether participants were from the China region or elsewhere. The primary and confirmatory secondary endpoints were change from baseline to week 26 in HbA1c and body weight (kg), respectively. Safety was assessed in all participants exposed to at least one dose of the trial product. RESULTS: Between October 2019 and October 2021, a total of 774 participants were screened and 521 participants were randomised to oral semaglutide 3 mg (n=130), 7 mg (n=130), 14 mg (n=130) or placebo (n=131); most participants (92.5%, n=482) completed the trial, with 39 participants prematurely discontinuing treatment. The number of participants contributing to the trial analyses was based on the total number of participants who were randomised at the beginning of the trial. The majority of participants were male (63.7%), and the mean age of participants was 52 years. At baseline, mean HbA1c and body weight were 63 mmol/mol (8.0%) and 79.6 kg, respectively. Oral semaglutide resulted in significantly greater reductions in HbA1c than placebo at week 26 (p<0.001 for all doses). The estimated treatment differences (ETDs [95% CIs]) for oral semaglutide 3 mg, 7 mg and 14 mg vs placebo were -11 (-13, -9) mmol/mol, -16 (-18, -13) mmol/mol and -17 (-19, -15) mmol/mol, respectively. The corresponding ETDs in percentage points (95% CI) vs placebo were -1.0 (-1.2, -0.8), -1.4 (-1.6, -1.2) and -1.5 (-1.8, -1.3), respectively. Significantly greater reductions in body weight were also observed for oral semaglutide 7 mg and 14 mg than for placebo at week 26 (ETD [95% CI] -1.2 kg [-2.0 kg, -0.4 kg; p<0.01] and -2.0 kg [-2.8 kg, -1.2 kg; p<0.001], respectively), but not for oral semaglutide 3 mg (ETD [95% CI] -0.0 kg [-0.9 kg, 0.8 kg; not significant]). Similar reductions in HbA1c and body weight were observed in the Chinese subpopulation, which represented 74.9% of participants in the overall population. Adverse events (AEs) occurred in between 65.4% and 72.3% of participants receiving oral semaglutide (for all doses) and 57.3% of participants with placebo. Most AEs were mild to moderate in severity, with few serious AEs reported; the most commonly reported AEs were gastrointestinal-related and were more frequent with semaglutide (all doses) than with placebo. The proportion of AEs was slightly higher in the Chinese subpopulation. CONCLUSIONS/INTERPRETATION: Oral semaglutide resulted in significantly greater reductions in HbA1c across all doses and in significant body weight reductions for the 7 mg and 14 mg doses when compared with placebo in predominantly Chinese participants with type 2 diabetes insufficiently controlled by diet and exercise alone. Oral semaglutide was generally well tolerated, with a safety profile consistent with that seen in the global PIONEER trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT04109547. FUNDING: Novo Nordisk A/S.

19.
Diabetologia ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985161

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to assess the efficacy and safety of oral semaglutide vs sitagliptin in a predominantly Chinese population with type 2 diabetes inadequately controlled with metformin treatment. METHODS: The Peptide Innovation for Early Diabetes Treatment (PIONEER) 12 trial was a randomised, double-dummy, active-controlled, parallel-group, Phase IIIa trial conducted over 26 weeks at 90 sites across the China region (including mainland China, Taiwan and Hong Kong) and five other countries. Adults aged ≥18 years (≥20 years in Taiwan) with a diagnosis of type 2 diabetes, HbA1c between 53 and 91 mmol/mol (inclusive) and treated with a stable daily dose of metformin were eligible for inclusion. Participants were randomised (1:1:1:1) using a web-based randomisation system to either once-daily oral semaglutide (3 mg, 7 mg or 14 mg) or once-daily oral sitagliptin 100 mg. Treatment allocation was masked to both participants and investigators. Randomisation was stratified according to whether participants were from the China region or elsewhere. The primary endpoint was change in HbA1c from baseline to week 26. The confirmatory secondary endpoint was change in body weight (kg) from baseline to week 26. All randomised participants were included in the full analysis set (FAS). All participants exposed to at least one dose of trial product were included in the safety analysis (SAS). RESULTS: Of 1839 participants screened, 1441 were randomly assigned to oral semaglutide 3 mg (n=361), 7 mg (n=360), 14 mg (n=361) or sitagliptin 100 mg (n=359) and included in the FAS. A total of 1438 participants were included in the SAS. In total, 75.2% of participants were from the China region. A total of 1372 (95.2%) participants completed the trial and 130 participants prematurely discontinued treatment (8.3%, 8.6% and 15.0% for oral semaglutide 3 mg, 7 mg and 14 mg, respectively; 4.2% for sitagliptin 100 mg). Significantly greater reductions in HbA1c from baseline to week 26 were reported for all doses of oral semaglutide vs sitagliptin 100 mg. For oral semaglutide 3 mg, 7 mg and 14 mg vs sitagliptin 100 mg, the estimated treatment differences (ETDs [95% CI]) were -2 (-4, -1) mmol/mol, -8 (-9, -6) mmol/mol and -11 (-12, -9) mmol/mol, respectively. The corresponding ETDs (95% CI) in percentage points vs sitagliptin 100 mg were -0.2 (-0.3, -0.1), -0.7 (-0.8, -0.6) and -1.0 (-1.1, -0.8), respectively. Reductions in body weight were significantly greater for all doses of oral semaglutide vs sitagliptin 100 mg (ETD [95% CI] -0.9 [-1.4, -0.4] kg, -2.3 [-2.8, -1.8] kg and -3.3 [-3.8, -2.8] kg for 3 mg, 7 mg and 14 mg, respectively). In the subpopulation of participants from the China region (75.2% of trial participants), reductions in HbA1c and body weight from baseline to week 26 were similar to those seen in the overall population. The most frequent adverse events in the semaglutide treatment arms were gastrointestinal, although these were mostly transient and mild/moderate in severity. CONCLUSIONS/INTERPRETATION: Significantly greater reductions in both HbA1c and body weight over 26 weeks were seen with oral semaglutide 3 mg, 7 mg and 14 mg than with sitagliptin 100 mg in a predominantly Chinese population with type 2 diabetes inadequately controlled with metformin treatment. Oral semaglutide was generally well tolerated, with a safety profile consistent with that seen in the global PIONEER trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT04017832. FUNDING: This trial was funded by Novo Nordisk A/S, Søborg, Denmark.

20.
World J Methodol ; 14(2): 91319, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38983664

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a global epidemic, affecting more than half of the people living with type 2 diabetes (T2D). The relationship between NAFLD and T2D is bidirectional and the presence of one perpetuates the other, which significantly increases the hepatic as well as extrahepatic complications. Until recently, there was no approved pharmacological treatment for NAFLD/ nonalcoholic steatohepatitits (NASH). However, there is evidence that drugs used for diabetes may have beneficial effects on NAFLD. Insulin sensitizers acting through peroxisome proliferator-activated receptor (PPAR) modulation act on multiple levels of NAFLD pathogenesis. Pioglitazone (PPARγ agonist) and saroglitazar (PPARα/γ agonist) are particularly beneficial and recommended by several authoritative bodies for treating NAFLD in T2D, although data on biopsy-proven NASH are lacking with the latter. Initial data on elafibanor (PPAR α/δ agonist) and Lanifibranor (pan PPAR agonist) are promising. On the other hand, incretin therapies based on glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RA) and dual- and triple-hormone receptor co-agonists reported impressive weight loss and may have anti-inflammatory and antifibrotic properties. GLP-1 RAs have shown beneficial effects on NAFLD/NASH and more studies on potential direct effects on liver function by dual- and triple-agonists are required. Furthermore, the long-term safety of these therapies in NAFLD needs to be established. Collaborative efforts among healthcare providers such as primary care doctors, hepatologists, and endocrinologists are warranted for selecting patients for the best possible management of NAFLD in T2D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA