Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environ Toxicol Chem ; 43(6): 1285-1299, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558477

RESUMEN

Current regulations require that toxicity assessments be performed using standardized toxicity testing methods, often using fish. Recent legislation in both the European Union and United States has mandated that toxicity testing alternatives implement the 3Rs of animal research (replacement, reduction, and refinement) whenever possible. There have been advances in the development of alternatives for freshwater assessments, but there is a lack of analogous developments for marine assessments. One potential alternative testing method is the fish embryo toxicity (FET) test, which uses fish embryos rather than older fish. In the present study, FET methods were applied to two marine model organisms, the sheepshead minnow and the inland silverside. Another potential alternative is the mysid shrimp survival and growth test, which uses an invertebrate model. The primary objective of the present study was to compare the sensitivity of these three potential alternative testing methods to two standardized fish-based tests using 3,4-dichloroaniline (DCA), a common reference toxicant. A secondary objective was to characterize the ontogeny of sheepshead minnows and inland silversides. This provided a temporal and visual guide that can be used to identify appropriately staged embryos for inclusion in FET tests and delineate key developmental events (e.g., somite development, eyespot formation, etc.). Comparison of the testing strategies for assessing DCA indicated that: (1) the standardized fish tests possessed comparable sensitivity to each other; (2) the mysid shrimp tests possessed comparable sensitivity to the standardized fish tests; (3) the sheepshead minnow and inland silverside FET tests were the least sensitive testing strategies employed; and (4) inclusion of sublethal endpoints (i.e., hatchability and pericardial edema) in the marine FETs increased their sensitivity. Environ Toxicol Chem 2024;43:1285-1299. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Embrión no Mamífero , Pruebas de Toxicidad , Contaminantes Químicos del Agua , Animales , Pruebas de Toxicidad/métodos , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Alternativas a las Pruebas en Animales , Cyprinidae , Crustáceos/efectos de los fármacos , Compuestos de Anilina/toxicidad , Peces
2.
Environ Sci Technol ; 58(5): 2224-2235, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267018

RESUMEN

Estuarine environments are critical to fish species and serve as nurseries for developing embryos and larvae. They also undergo daily fluctuations in salinity and act as filters for pollutants. Additionally, global climate change (GCC) is altering salinity regimes within estuarine systems through changes in precipitation and sea level rise. GCC is also likely to lead to an increased use of insecticides to prevent pests from damaging agricultural crops as their habitats and mating seasons change from increased temperatures. This underscores the importance of understanding how insecticide toxicity to fish changes under different salinity conditions. In this study, larval Inland Silversides (Menidia beryllina) were exposed to bifenthrin (1.1 ng/L), cyfluthrin (0.9 ng/L), or cyhalothrin (0.7 ng/L) at either 6 or 10 practical salinity units (PSU) for 96 h during hatching, with a subset assessed for end points relevant to neurotoxicity and endocrine disruption by testing behavior, gene expression of a select suite of genes, reproduction, and growth. At both salinities, directly exposed F0 larvae were hypoactive relative to the F0 controls; however, the indirectly exposed F1 larvae were hyperactive relative to the F1 control. This could be evidence of a compensatory response to environmentally relevant concentrations of pyrethroids in fish. Effects on development, gene expression, and growth were also observed. Overall, exposure to pyrethroids at 10 PSU resulted in fewer behavioral and endocrine disruptive effects relative to those observed in organisms at 6 PSU.


Asunto(s)
Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Salinidad , Piretrinas/toxicidad , Insecticidas/toxicidad , Peces/fisiología , Larva , Contaminantes Químicos del Agua/toxicidad
3.
Environ Toxicol Chem ; 43(2): 299-306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37921582

RESUMEN

Salinity has been reported to impact the octanol-water partition coefficient of organic contaminants entering aquatic ecosystems. However, limited data are available on the impacts of salinity on their partitioning from the aqueous phase to adjacent organic compartments. The pesticides bifenthrin, chlorpyrifos, dicloran, myclobutanil, penconazole, and triadimefon were used to investigate the effects of salinity on their partitioning to capelin (Mallotus villosus) eggs in 5 practical salinity units (PSU) versus 25 PSU artificial seawater (ASW). The partitioning coefficient was significantly higher in 25 versus 5 PSU ASW for bifenthrin, chlorpyrifos, dicloran, penconazole, and triadimefon by 31%, 28%, 35%, 28%, and 20%, respectively, while for myclobutanil there was no significant difference. Moreover, pesticide partitioning to store-bought capelin eggs was consistent with the partitioning observed for the standard assay species, inland silversides (Menidia beryllina) eggs, after partitioning between the eggs and exposure solution had reached a state of equilibrium. The present study illustrates the importance of considering the influence of salinity on the environmental partitioning and fate of hydrophobic organic contaminants in aquatic ecosystems. Environ Toxicol Chem 2024;43:299-306. © 2023 SETAC.


Asunto(s)
Compuestos de Anilina , Cloropirifos , Nitrilos , Plaguicidas , Piretrinas , Triazoles , Contaminantes Químicos del Agua , Animales , Plaguicidas/química , Salinidad , Ecosistema , Peces , Agua/química , Contaminantes Químicos del Agua/química
4.
Aquat Toxicol ; 174: 247-60, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26975043

RESUMEN

Pyrethroid pesticides are a class of insecticides found to have endocrine disrupting properties in vertebrates such as fishes and in human cell lines. Endocrine disrupting chemicals (EDCs) are environmental contaminants that mimic or alter the process of hormone signaling. In particular, EDCs that alter estrogen and androgen signaling pathways are of major concern for fishes because these EDCs may alter reproductive physiology, behavior, and ultimately sex ratio. Bifenthrin, a pyrethroid with escalating usage, is confirmed to disrupt estrogen signaling in several species of fish, including Menidia beryllina (inland silverside), an Atherinid recently established as a euryhaline model. Our main objective was to broadly assess the molecular and physiological responses of M. beryllina to the ng/L concentrations of bifenthrin typically found in the environment, with a focus on endocrine-related effects, and to discern links between different tiers of the biological hierarchy. As such, we evaluated the response of juvenile Menidia to bifenthrin using a Menidia-specific microarray, quantitative real-time polymerase chain reaction (qPCR) on specific endocrine-related genes of interest, and a Menidia-specific ELISA to the egg-coat protein choriogenin, to evaluate a multitude of molecular-level responses that would inform mechanisms of toxicity and any underlying causes of change at higher biological levels of organization. The sublethal nominal concentrations tested (0.5, 5 and 50ng/L) were chosen to represent the range of concentrations observed in the environment and to provide coverage of a variety of potential responses. We then employed a 21-day reproductive assay to evaluate reproductive responses to bifenthrin (at 0.5ng/L) in a separate group of adult M. beryllina. The microarray analysis indicated that bifenthrin influences a diverse suite of molecular pathways, from baseline metabolic processes to carcinogenesis. A more targeted examination of gene expression via qPCR demonstrated that bifenthrin downregulates a number of estrogen-related transcripts, particularly at the lowest exposure level. Choriogenin protein also decreased with exposure to increasing concentrations of bifenthrin, and adult M. beryllina exposed to 0.5ng/L had significantly reduced reproductive output (fertilized eggs per female). This reduction in fecundity is consistent with observed changes in endocrine-related gene expression and choriogenin production. Taken together, our results demonstrate that environmental concentrations of bifenthrin have potential to interfere with metabolic processes, endocrine signaling, and to decrease reproductive output.


Asunto(s)
Proteínas del Huevo/genética , Fertilidad/efectos de los fármacos , Peces/fisiología , Piretrinas/toxicidad , Transcriptoma/efectos de los fármacos , Animales , Disruptores Endocrinos/toxicidad , Sistema Endocrino/efectos de los fármacos , Estrógenos/metabolismo , Femenino , Peces/genética , Insecticidas/toxicidad , Modelos Teóricos , Contaminantes Químicos del Agua/toxicidad
5.
Environ Sci Pollut Res Int ; 22(22): 17397-413, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25731088

RESUMEN

Ibuprofen is one of the most commonly detected pharmaceuticals in wastewater effluent; however, the effects of ibuprofen on aquatic organisms are poorly understood. This study presents the transcriptome-wide response of the inland silverside, Menidia beryllina, to chronic exposure to ibuprofen. At the lowest exposure concentration (0.0115 mg/L), we detected a downregulation of many genes involved in skeletal development, aerobic respiration, and immune function. At the highest exposure concentration (1.15 mg/L), we detected increased expression of regulatory genes in the arachidonic acid metabolism pathway and several immune genes involved in an inflammatory response. Additionally, there was differential expression of genes involved in oxidative stress responses and a downregulation of genes involved in osmoregulation. This study provides useful information for monitoring the effects of this common wastewater effluent contaminant in the environment and for the generation of biomarkers of exposure to ibuprofen that may be transferable to other fish species.


Asunto(s)
Peces , Regulación de la Expresión Génica/efectos de los fármacos , Ibuprofeno/toxicidad , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Peces/genética , Peces/metabolismo , Pruebas de Toxicidad Crónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA