Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.383
Filtrar
1.
Int Immunopharmacol ; 140: 112768, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39088918

RESUMEN

DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.

2.
Methods ; 230: 68-79, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097177

RESUMEN

Beta glucans are found in many natural sources, however, only Baker's Yeast Beta Glucan (BYBG) has been well documented to have structure-function effects that are associated with improved innate immune response to stressors (e.g., exercise, infection, etc.). The purpose was to identify a BYBG-associated mRNA expression pattern following exercise. Participants gave IRB-approved consent and were randomized to BYBG (Wellmune®; N=9) or Placebo (maltodextrin; N=10) for 6-weeks prior to performing 90 min of whole-body exercise. Paxgene blood samples were collected prior to exercise (PRE), after exercise (POST), two hours after exercise (2H), and four hours after exercise (4H). Total RNA was isolated and analyzed for the expression of 770 innate immune response mRNA (730 mRNA targets; 40 housekeepers/controls; Nanostring nCounter). The raw data were normalized against housekeeping controls and expressed as Log2 fold change from PRE for a given condition. Significance was set at p < 0.05 with adjustments for multiple comparisons and false discovery rate. We identified 47 mRNA whose expression was changed after exercise with BYBG and classified them to four functional pathways: 1) Immune Cell Maturation (8 mRNA), 2) Immune Response and Function (5 mRNA), 3) Pattern Recognition Receptors and DAMP or PAMP Detection (25 mRNA), and 4) Detection and Resolution of Tissue Damage (9 mRNA). The identified mRNA whose expression was altered after exercise with BYBG may represent an innate immune response pattern and supports previous conclusions that BYBG improves immune response to a future sterile inflammation or infection.

3.
Rinsho Ketsueki ; 65(7): 702-708, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39098022

RESUMEN

Myelodysplastic syndrome (MDS) is a refractory cancer that arises from hematopoietic stem cells and predominantly affects elderly adults. In addition to driver gene mutations, which are also found in clonal hematopoiesis in healthy elderly people, systemic inflammation caused by infection or collagen disease has long been known as an extracellular factor in the pathogenesis of MDS. Wild-type HSCs have an "innate immune memory" that functions in response to infection and inflammatory stress, and my colleagues and I used an infection stress model to demonstrate that the innate immune response by the TLR-TRIF-PLK-ELF1 pathway is similarly critical in impairment of hematopoiesis and dysregulation of chromatin in MDS stem cells. This revealed that not only are MDS stem cells expanded by the TRAF6-NF-kB pathway, the innate immune response is also involved in generating MDS stem cells. In this review, I will present research findings related to "innate immune memory," one of the pathogenic mechanisms of blood cancer, and discuss future directions for basic pathological research and potential therapeutic development.


Asunto(s)
Transformación Celular Neoplásica , Neoplasias Hematológicas , Mutación , Humanos , Neoplasias Hematológicas/genética , Transformación Celular Neoplásica/genética , Infecciones , Inmunidad Innata , Síndromes Mielodisplásicos/genética , Animales , Estrés Fisiológico
4.
Cell ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39096902

RESUMEN

Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.

6.
Front Immunol ; 15: 1407449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100676

RESUMEN

Innate immune cells in the colorectal cancer microenvironment mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow-derived suppressor cells. They play a pivotal role in tumor initiation and progression through the secretion of diverse cytokines, chemokines, and other factors that govern these processes. Colorectal cancer is a common malignancy of the gastrointestinal tract, and understanding the role of innate immune cells in the microenvironment of CRC may help to improve therapeutic approaches to CRC and increase the good prognosis. In this review, we comprehensively explore the pivotal role of innate immune cells in the initiation and progression of colorectal cancer (CRC), alongside an extensive evaluation of the current landscape of innate immune cell-based immunotherapies, thereby offering valuable insights for future research strategies and clinical trials.


Asunto(s)
Neoplasias Colorrectales , Inmunidad Innata , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Animales , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología
7.
Transl Stroke Res ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103660

RESUMEN

The direct interplay between the immune and nervous systems is now well established. Within the brain, these interactions take place between neurons and resident glial cells, i.e., microglia and astrocytes, or infiltrating immune cells, influenced by systemic factors. A special form of physical cell-cell interactions is the so-called "neuroimmunological (NI) synapse." There is compelling evidence that the same signaling pathways that regulate inflammatory responses to injury or ischemia also play potent roles in brain development, plasticity, and function. Proper synaptic wiring is as important during development as it is during disease states, as it is necessary for activity-dependent refinement of neuronal circuits. Since the process of forming synaptic connections in the brain is highly dynamic, with constant changes in strength and connectivity, the immune component is perfectly suited for the regulatory task as it is in constant turnover. Many cellular and molecular players in this interaction remain to be uncovered, especially in pathological states. In this review, we discuss and propose possible communication hubs between components of the adaptive and innate immune systems and the synaptic element in ischemic stroke pathology.

8.
Open Forum Infect Dis ; 11(8): ofae434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104769

RESUMEN

Background: Chronic immune activation is one of the hallmarks of human immunodeficiency virus (HIV) pathogenesis. Persistent upregulation of interferons (IFNs) and interferon-stimulated genes (ISGs) has previously been associated with chronic immune activation and HIV progression. Here a longitudinal analysis of the IFN and ISG response during HIV infection was performed to gain insights into the ongoing immune activation during HIV infection. Methods: IFN and ISG levels were determined using quantitative polymerase chain reaction in peripheral blood mononuclear cells of people with HIV at pre-seroconversion, during acute and chronic HIV infection, and during suppressive antiretroviral therapy (ART). Results: HIV infection induced the expression of a set of 4 ISGs-RSAD2, ISG15, IFI44L, and IFI27-which remained upregulated during chronic infection. This set of ISGs showed no clear correlations with T-cell activation as determined by co-expression of CD38 and HLA-DR. However, a strong correlation with monocyte activation marker soluble CD163 in serum was found. Furthermore, the expression of this ISG cluster was predictive of viral load before ART initiation and, on ART, expression levels normalized to pre-seroconversion levels. Conclusions: The results presented here suggests that ISG expression is linked to monocyte activation, possibly driven by viral replication.

9.
Gene ; 929: 148813, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094714

RESUMEN

Transcription factors (TFs) have an important role in the regulation of the gene expression network. The role of TFs in the immune response of freshwater crayfish is poorly understood, but leveraging the regulatory mechanisms of immune response could augment the resistance against the invasive oomycete pathogen, Aphanomyces astaci. Previous studies indicated that the TFs CCAAT/enhancer-binding protein (C/EBP) and putative Krüppel homolog-1 protein (Kr-h1) might play a role in immune and stress response of the noble crayfish (Astacus astacus). Here, we aimed to further characterise these two gene products to gain a better understanding of their evolutionary origin, domain organisation and expression patterns across different crayfish tissues. Furthermore, we conducted an immune stimulation experiment to observe the potential changes in the gene expression of C/EBP and Kr-h1 under immune challenge in different crayfish tissues. Our results showed that both C/EBP and Kr-h1 are closely related to other C/EBPs and Kr-h1s in Malacostraca. Gene expression analysis revealed that both TFs are present in all analysed tissues, with higher expression of C/EBP in the gills and Kr-h1 in the abdominal muscle. Immune stimulation with laminarin (mimicking ß-1-3-glucan in the oomycete cell wall) showed an activation of the crayfish immune system, with an overall increase in the total haemocyte count (THC) compared to untreated control and crayfish buffered saline (CBS) treatment. On the gene expression level, an up-regulation of the C/EBP gene was detected in the laminarin treated group in hepatopancreas and heart, while no changes were observed for the Kr-h1 gene. Our results indicate an early change in C/EBP expression in multiple tissues during immune stimulation and suggest its involvement in the immune response of the noble crayfish.

10.
Front Cell Infect Microbiol ; 14: 1386201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091676

RESUMEN

Objective: To explore the underlying mechanisms the airway microbiome contributes to Acute Exacerbation of Chronic Obstructive Pulmonary Disease(AECOPD). Methods: We enrolled 31 AECOPD patients and 26 stable COPD patients, their sputum samples were collected for metagenomic and RNA sequencing, and then subjected to bioinformatic analyses. The expression of host genes was validated by Quantitative Real-time PCR(qPCR) using the same batch of specimens. Results: Our results indicated a higher expression of Rothia mucilaginosa(p=0.015) in the AECOPD group and Haemophilus influenzae(p=0.005) in the COPD group. The Different expressed genes(DEGs) detected were significantly enriched in "type I interferon signaling pathway"(p<0.001, q=0.001) in gene function annotation, and "Cytosolic DNA-sensing pathway"(p=0.002, q=0.024), "Toll-like receptor signaling pathway"(p=0.006, q=0.045), and "TNF signaling pathway"(p=0.006, q=0.045) in KEGG enrichment analysis. qPCR amplification experiment verified that the expression of OASL and IL6 increased significantly in the AECOPD group. Conclusion: Pulmonary bacteria dysbiosis may regulate the pathogenesis of AECOPD through innate immune system pathways like type I interferon signaling pathway and Toll-like receptor signaling pathway.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Esputo , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Humanos , Femenino , Masculino , Anciano , Esputo/microbiología , Persona de Mediana Edad , Haemophilus influenzae/genética , Biología Computacional , Interacciones Microbiota-Huesped , Metagenómica , Progresión de la Enfermedad , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Transducción de Señal , Interacciones Huésped-Patógeno
11.
Acta Pharmacol Sin ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112770

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is a major cytosolic DNA sensor that plays a significant role in innate immunity. Upon binding to double stranded DNA (dsDNA), cGAS utilizes GTP and ATP to synthesize the second messenger cyclic GMP-AMP (cGAMP). The cGAMP then binds to the adapter protein stimulator of interferon genes (STING) in the endoplasmic reticulum, resulting in the activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent induction of type I interferon. An important question is how cGAS distinguishes between self and non-self DNA. While cGAS binds to the phosphate backbone of DNA without discrimination, its activation is influenced by physical features such as DNA length, inter-DNA distance, and mechanical flexibility. This suggests that the recognition of DNA by cGAS may depend on these physical features. In this article we summarize the recent progress in research on cGAS-STING pathway involved in antiviral defense, cellular senescence and anti-tumor response, and focus on DNA recognition mechanisms based on the physical features.

12.
Sci Rep ; 14(1): 18882, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143261

RESUMEN

Oligodeoxynucleotides containing CpG motifs (CpG-ODN) can promote antimicrobial immunity in chickens by enriching immune compartments and activating immune cells. Innate memory, or trained immunity, has been demonstrated in humans and mice, featuring the absence of specificity to the initial stimulus and subsequently cross-protection against pathogens. We hypothesize that CpG-ODN can induce trained immunity in chickens. We delivered single or multiple administrations of CpG-ODN to birds and mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis of peripheral blood mononuclear cells were quantified using Seahorse XFp. Next, chickens were administered with CpG-ODN twice at 1 and 4 day of age and challenged with Escherichia coli at 27 days of age. The CpG-ODN administered groups had significantly higher mitochondrial OXPHOS until 21 days of age while cellular glycolysis gradually declined by 14 days of age. The group administered with CpG-ODN twice at 1 and 4 days of age had significantly higher survival, lower clinical score and bacterial load following challenge with E. coli at 27 d of age. This study demonstrated the induction of trained immunity in broiler chickens following administration of CpG-ODN twice during the first 4 days of age to protect birds against E. coli septicemia at 27 days of age.


Asunto(s)
Pollos , Infecciones por Escherichia coli , Escherichia coli , Oligodesoxirribonucleótidos , Enfermedades de las Aves de Corral , Sepsis , Animales , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/farmacología , Pollos/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Sepsis/inmunología , Sepsis/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Inmunidad Innata/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Fosforilación Oxidativa , Inmunidad Entrenada
13.
Cell Rep ; 43(8): 114618, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146181

RESUMEN

Adar null mutant mouse embryos die with aberrant double-stranded RNA (dsRNA)-driven interferon induction, and Adar Mavs double mutants, in which interferon induction is prevented, die soon after birth. Protein kinase R (Pkr) is aberrantly activated in Adar Mavs mouse pup intestines before death, intestinal crypt cells die, and intestinal villi are lost. Adar Mavs Eifak2 (Pkr) triple mutant mice rescue all defects and have long-term survival. Adenosine deaminase acting on RNA 1 (ADAR1) and PKR co-immunoprecipitate from cells, suggesting PKR inhibition by direct interaction. AlphaFold studies on an inhibitory PKR dsRNA binding domain (dsRBD)-kinase domain interaction before dsRNA binding and on an inhibitory ADAR1 dsRBD3-PKR kinase domain interaction on dsRNA provide a testable model of the inhibition. Wild-type or editing-inactive human ADAR1 expressed in A549 cells inhibits activation of endogenous PKR. ADAR1 dsRNA binding is required for, but is not sufficient for, PKR inhibition. Mutating the ADAR1 dsRBD3-PKR contact prevents co-immunoprecipitation, ADAR1 inhibition of PKR activity, and co-localization of ADAR1 and PKR in cells.

14.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125034

RESUMEN

Ellagic acid (EA) is a phenolic phytochemical found in many plants and their fruits. Vaginal epithelial cells are the first line of defense against pathogen invasion in the female reproductive tract and express antimicrobial peptides, including hBD2 and SLPI. This study investigated the in vitro effects of EA (1) on vaginal innate immunity using human vaginal epithelial cells, and (2) on HPV16 pseudovirus infection. Vaginal cells were cultured in the presence or absence of EA, and the expression of hBD2 and SLPI was determined at both transcriptional and translational levels. In addition, secretion of various cytokines and chemokines was measured. Cytotoxicity of EA was determined by CellTiter-blue and MTT assays. To investigate the ability of EA to inhibit HPV16 infection, EA was used to treat HEK-293FT cells in pre-attachment and adsorption steps. We found significant increases in both hBD2 mRNA (mean 2.9-fold at 12.5 µM EA, p < 0.001) and protein (mean 7.1-fold at 12.5 µM EA, p = 0.002) in response to EA. SLPI mRNA also increased significantly (mean 1.4-fold at 25 µM EA, p = 0.01), but SLPI protein did not. Secretion of IL-2 but not of other cytokines/chemokines was induced by EA in a dose-dependent manner. EA was not cytotoxic. At the pre-attachment step, EA at CC20 and CC50 showed a slight trend towards inhibiting HPV16 pseudovirus, but this was not significant. In summary, vaginal epithelial cells can respond to EA by producing innate immune factors, and at tested concentrations, EA is not cytotoxic. Thus, plant-derived EA could be useful as an immunomodulatory agent to improve vaginal health.


Asunto(s)
Ácido Elágico , Papillomavirus Humano 16 , Inmunidad Innata , Infecciones por Papillomavirus , Vagina , Humanos , Femenino , Ácido Elágico/farmacología , Inmunidad Innata/efectos de los fármacos , Vagina/virología , Vagina/inmunología , Vagina/efectos de los fármacos , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/tratamiento farmacológico , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , beta-Defensinas/metabolismo , Células HEK293
15.
J Mol Cell Biol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143032

RESUMEN

RNA-sensing pathways play a pivotal role in host defense against pathogenic infections to maintain cellular homeostasis. However, even in the absence of infection, certain endogenous self-RNAs still serve as the activators of RNA-sensing pathways. The inappropriate activation of RNA sensors by self-ligands leads to systemic inflammation and autoimmune diseases. In this review, we summarize current findings on the sterile activation of RNA sensors, as well as its implications in autoimmunity, inflammatory diseases, and therapeutics.

16.
Fish Shellfish Immunol ; : 109829, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142373

RESUMEN

As a vital pathway for cellular energy production, mitochondrial fatty acid ß-oxidation (FAO) is essential in regulating immune responses to bacterial pathogens and maintaining intracellular homeostasis in vertebrates. However, the specific role of FAO in antiviral innate immune response in macrophages remains insufficiently understood. In this study, virus infection simulated by poly(I:C) inhibited FAO, as indicated by the reduced expression of FAO-related genes and proteins in the head kidney of large yellow croaker, with similar results observed in poly(I:C)-stimulated macrophages. Then, inhibition of FAO by supplementary mildronate in vivo and etomoxir treatment in vitro revealed varying increases in the mRNA expression of antiviral innate immune response genes after stimulated by poly(I:C) in the head kidney and macrophages. Notably, etomoxir significantly facilitated the transcriptional up-regulation of the IFNh promoter by IRF3. Moreover, inhibiting FAO by knockdown of cpt1b promoted antiviral innate immune response triggered by poly(I:C) in macrophages. Conversely, activating FAO through overexpression of cpt1b or cpt2 significantly reduced the mRNA levels of antiviral response genes in macrophages stimulated by poly(I:C). Unlike etomoxir, cpt1b overexpression inhibited the transcriptional up-regulation of the IFNh promoter by IRF3. Furthermore, in vivo dietary palm oil feeding and in vitro exposure to palmitic acid inhibited the antiviral innate immune response triggered by poly(I:C) in the head kidney and macrophages, respectively. These effects were partly associated with FAO activation, as evidenced by etomoxir. In summary, this study elucidates FAO's critical role in regulating antiviral innate immune response in head kidney macrophages. These findings not only deepen insights into the interaction between metabolic remodeling and host immune responses, but also offer valuable guidance for developing nutritional strategies to improve antiviral immunity in aquaculture.

17.
J Exp Bot ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989653

RESUMEN

In plant biology Fusicoccin (FC) is one of the most studied fungal metabolites to date. Since the structural identification in 1964, much has been learned about its effects on the physiology of plants, about the interference with the action of plant hormones, the molecular nature of the plant receptor(s) for FC and the biosynthetic pathway for FC in the fungus. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase|14-3-3 receptor has taken center stage in explaining all FC induced physiological effects. However, a more critical review shows that this is not at all evident for a number of FC induced effects. Examples of this are: the inhibition of outward rectifying K+-channels in guard cells, the phosphorylation/activation of PEP-carboxylase and malate accumulation, the antagonism with ABA induced production of H2O2 / NO and the effect on ethylene production. In addition, recently two other physiological processes were shown to be targeted by FC, viz. the activation of TORC1 and the interference of FC with the immune response to fungal elicitors. In this review, the notion will be challenged that all FC affected processes start with the binding to and activation of the PM-ATPase and the question is raised whether may be other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule; in analogy to the fungal product and plant hormone gibberellic acid. A relevant question in this respect is whether it is a coincidence that proteins that act in a coordinated fashion during stomatal opening (the ATPases and K+-channels) are targeted by FC? Or are the sites where FC binds in the plant, conserved during evolution because they serve a physiological role, namely the accommodation of a plant produced molecule? In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile to make a renewed attempt with current day improved technology to answer this question and may be upgrade FC or structural analogue(s) to a new level, the level of plant hormone.

18.
J Intensive Care ; 12(1): 26, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982551

RESUMEN

BACKGROUND: Calprotectin (S100A8/A9) is a pro-inflammatory mediator primarily released from neutrophils. Previous studies have revealed associations between plasma calprotectin, disease severity and in-hospital mortality in unselected COVID-19 patients. OBJECTIVE: We aimed to assess whether plasma calprotectin dynamics during the first week of intensive care are associated with mortality and functional outcome in critically ill COVID-19 patients. METHODS: This prospective study included 498 COVID-19 patients admitted to six intensive care units (ICUs) in Sweden between May 2020 and May 2021. Blood samples were collected on ICU admission and on day 7. The primary outcome was 12-month mortality. Secondary outcomes were functional outcome of survivors at 3 and 12 months, and the need for invasive mechanical ventilation (IMV) or continuous renal replacement therapy (CRRT) during the ICU stay. Functional outcome was assessed by the Glasgow Outcome Scale Extended (GOSE, range 1-8, with < 5 representing an unfavourable outcome). Associations between plasma calprotectin and outcomes were examined in binary logistic regression analyses adjusted for age, sex, BMI, hypertension, smoking, and creatinine. RESULTS: High plasma calprotectin on admission and day 7 was independently associated with increased 12-month mortality. Increasing calprotectin from admission to day 7 was independently associated with higher mortality at 12 months [OR 2.10 (95% CI 1.18-3.74), p = 0.012], unfavourable functional outcome at 3 months [OR 2.53 (95% CI 1.07-6.10), p = 0.036], and the use of IMV [OR 2.23 (95% CI 1.10-4.53), p = 0.027)] and CRRT [OR 2.07 (95% CI 1.07-4.00), p = 0.031)]. A receiver operator characteristic (ROC) model including day 7 calprotectin and age was a good predictor of 12-month mortality [AUC 0.79 (95% CI 0.74-0.84), p < 0.001]. Day 7 calprotectin alone predicted an unfavourable functional outcome at 3 months [AUC 0.67 (95% CI 0.58-0.76), p < 0.001]. CONCLUSION: In critically ill COVID-19 patients, increasing calprotectin levels after admission to the ICU are associated with 12-month mortality and unfavourable functional outcome in survivors. Monitoring plasma calprotectin dynamics in the ICU may be considered to evaluate prognosis in critical COVID-19. STUDY REGISTRATION: ClinicalTrials.gov Identifier: NCT04974775, registered April 28, 2020.

19.
Cell Mol Life Sci ; 81(1): 300, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001897

RESUMEN

BACKGROUND: Age-associated impairments in innate immunity are believed to be a causative factor responsible for severe pathogenesis of Staphylococcus aureus (S. aureus) infection in the bone tissue. However, the basis for age-associated decline in innate immune response upon S. aureus infection remains poorly understood. RESULTS: Our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis show up-regulated CXCL9 and CXCL10 (CXCL9/10), which is further confirmed in vitro and in vivo by the present study. Notably, monocytes are a main source for CXCL9/10 production in bone marrow upon S. aureus challenge, but this response declines in middle-aged mice. Interestingly, conditional medium of bone marrow monocytes from middle-aged mice has a strikingly decreased effect on bactericidal functions of neutrophils and macrophages compares with that from young mice. We further show that activation of CXCL9/10-CXCR3 axis between monocytes and macrophages/neutrophils promotes the bactericidal function of the cells, whereas blocking the axis impairs such function. Importantly, treatment with either exogenous CXCL9 or CXCL10 in a middle-aged mice model enhances, while pharmacological inhibition of CXCR3 in young mice model impairs, bacterial clearance and bone marrow structure. CONCLUSIONS: These findings demonstrate that bone marrow monocytes act as a critical promotor of innate immune response via the CXLCL9/10-CXCR3 axis upon S. aureus infection, and that the increased susceptibility to S. aureus infection in skeleton in an aged host may be largely attributable to the declined induction of CXCR9/10 in monocytes.


Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL9 , Modelos Animales de Enfermedad , Inmunidad Innata , Monocitos , Osteomielitis , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Osteomielitis/microbiología , Osteomielitis/inmunología , Osteomielitis/metabolismo , Osteomielitis/patología , Monocitos/inmunología , Monocitos/metabolismo , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Staphylococcus aureus/inmunología , Ratones , Quimiocina CXCL10/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/metabolismo , Ratones Endogámicos C57BL , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Envejecimiento/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo
20.
J Oral Sci ; 66(3): 193-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010168

RESUMEN

PURPOSE: Nausea and vomiting during pregnancy (NVP) are common among pregnant women and can be severe enough to require hospitalization. However, the mechanism underlying NVP pathogenesis remains unclear. This study examined factors associated with adverse events after vaccination, including a past history of NVP. METHODS: A questionnaire-based survey was completed by non-pregnant women working at Nagasaki University Hospital who received two doses of the BNT162b2 coronavirus disease 2019 (COVID-19) vaccine. This study primarily examined the association between a past history of NVP and post-vaccination fever, as fever was determined to be the most objective and reliable indicator of the surveyed adverse events. RESULTS: Multivariate logistic regression analysis showed that post-vaccination fever was more strongly associated with a past history of NVP (odds ratio, 1.88; 95% confidence interval, 1.16-3.07) than either age (0.73; 0.56-0.96) or weight (0.85; 0.70-1.15), which were previously considered to be highly associated with the incidence of adverse events following COVID-19 vaccination. CONCLUSION: These results suggest an involvement of a similar pathological condition in developing NVP and post-vaccination fever.


Asunto(s)
Vacuna BNT162 , Fiebre , Náusea , Vómitos , Humanos , Femenino , Embarazo , Adulto , Vacuna BNT162/efectos adversos , Náusea/etiología , Fiebre/etiología , COVID-19/prevención & control , Encuestas y Cuestionarios , Vacunas contra la COVID-19/efectos adversos , Vacunación/efectos adversos , Adulto Joven , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA