Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.432
Filtrar
1.
Clin Pediatr Endocrinol ; 33(4): 224-228, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39359667

RESUMEN

To date, heterozygous loss-of-function variants of RFX6 have been identified in 13 families with diabetes. Here, we present initial clinical information regarding a young male with diabetes who carried a heterozygous nonsense variant of RFX6 (p.Arg377Ter) previously reported in his family with diabetes. At 11 yr and 7 mo of age, the patient experienced severe thirst and hyperglycemia (331-398 mg/dL). Laboratory tests revealed elevated levels of glycated hemoglobin (HbA1c) (47 mmol/mL, 6.5%) and the Homeostatic Model for Insulin Resistance (HOMA-IR) (3.4). Blood glucose self-monitoring demonstrated grossly normal blood glucose levels, together with occasional postprandial hyperglycemia, and a few episodes of hypoglycemia. An oral glucose tolerance test revealed mild hyperglycemia and a delayed peak insulin level. His laboratory indices improved over two years with self-control of diet and exercise. These results indicate that the initial presentation of RFX6-variant-associated diabetes includes occasional hyperglycemia and hypoglycemia in response to changes in lifestyle. The possible association between RFX6 variants and mild insulin resistance requires further validation in future studies.

2.
J Physiol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383208

RESUMEN

Fetal glucagon concentrations are elevated in the presence of a compromised intrauterine environment, as in cases of placental insufficiency and perinatal acidaemia. Our objective was to investigate the impact of late gestation fetal hyperglucagonaemia on in vivo insulin secretion and pancreatic islet structure. Chronically catheterized late gestation fetal sheep received an intravenous infusion of glucagon at low (5 ng/kg/min; GCG-5) or high (50 ng/kg/min; GCG-50) concentrations or a vehicle control (CON) for 8-10 days. Glucose-stimulated fetal insulin secretion (GSIS) was measured following 3 h (acute response) and 8-10 days (chronic response) of experimental infusions. Insulin, glucose and amino acid concentrations were measured longitudinally. The pancreas was collected at the study end for histology and gene expression analysis. Acute exposure (3 h) to GCG-50 induced a 3-fold increase in basal insulin concentrations with greater GSIS. Meanwhile, chronic exposure to both GCG-5 and GCG-50 decreased basal insulin concentrations 2-fold by day 8-10. Chronic GCG-50 also blunted GSIS at the study end. Fetal amino acid concentrations were decreased within 24 h of GCG-5 and GCG-50, while there were no differences in fetal glucose. Histologically, GCG-5 and GCG-50 had lower ß- and α-cell proliferation, as well as lower α-cell mass and pancreas weight, while GCG-50 had lower islet area. This study demonstrates that chronic glucagon elevation in late gestation fetuses impairs ß-cell proliferation and insulin secretion, which has the potential to contribute to later-life diabetes risk. We speculate that the action of glucagon in lower circulating fetal amino acid concentrations may have a suppressive effect on insulin secretion. KEY POINTS: We have previously demonstrated in a chronically catheterized fetal sheep model that experimentally elevated glucagon in the fetus impairs placental function, reduces fetal protein accretion and lowers fetal weight. In the present study, we further characterized the effects of elevated fetal glucagon on fetal physiology with a focus on pancreatic development and ß-cell function. We show that experimentally elevated fetal glucagon results in lower ß- and α-cell proliferation, as well as decreased insulin secretion after 8-10 days of glucagon infusion. These results have important implications for ß-cell reserve and later-life predisposition to diabetes.

3.
Endocrinology ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363149

RESUMEN

Ketone supplementation has been gaining interest in improving health and treating some diseases, such as diabetes. However, the mechanism of action of how these ketone supplements work is not fully understood. In a recent paper, Banerjee et al. (2024) showed that physiological concentrations of ßHB can affect hormone secretion and signalling within pancreatic islets. They showed that acute treatment with ßHB increases insulin secretion and decreases glucagon secretion at physiological glucose concentrations. Their studies also suggest chronic ßHB treatment may protect human islet cells from cytokine-induced cell death. Although more work is needed, it is possible that physiological concentrations of ßHB may influence hormone secretion and signalling within islets.

4.
Biochem Biophys Res Commun ; 734: 150753, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39366180

RESUMEN

OBJECTIVES: Platelets, originally described for their role in blood coagulation, are now also recognized as key players in modulating inflammation, tissue regeneration, angiogenesis, and carcinogenesis. Recent evidence suggests that platelets also influence insulin secretion from pancreatic ß cells. The multifaceted functions of platelets are mediated by the factors stored in their alpha granules (AGs) and dense granules (DGs). AGs primarily contain proteins, while DGs are rich in small molecules, and both types of granules are released during blood coagulation. Specific components stored in AGs and DGs are implicated in various inflammatory, regenerative, and tumorigenic processes. However, the relative contributions of AGs and DGs to the regulation of pancreatic ß cell function have not been previously explored. METHODS: In this study, we utilized mouse models deficient in AG content (neurobeachin-like 2 (Nbeal2) -deficient mice) and models with defective DG release (Unc13d-deficiency in bone marrow-derived cells) to investigate the impact of platelet granules on insulin secretion from pancreatic ß cells. RESULTS: Our findings indicate that AG deficiency has little to no effect on pancreatic ß cell function and glucose homeostasis. Conversely, mice with defective DG release exhibited glucose intolerance and reduced insulin secretion. Furthermore, Unc13d-deficiency in hematopoietic stem cells led to a reduction in adipose tissue gain in obese mice. CONCLUSIONS: Obtained data suggest that DGs, but not AGs, mediate the influence of platelets on pancreatic ß cells, thereby modulating glucose metabolism.

5.
J Diabetes Investig ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305123

RESUMEN

AIMS/INTRODUCTION: We previously showed that glucokinase haploinsufficiency improves the glucose tolerance of db/db mice by preserving pancreatic ß-cell mass and function. In the present study, we aimed to determine the effects of glucokinase haploinsufficiency on the ß-cell mass and function of long-term high-fat, high-sucrose (HFHS) diet-fed mice. MATERIALS AND METHODS: Four-week-old male glucokinase haploinsufficient (Gck+/-) mice and 4-week-old male wild-type (Gck+/+) mice (controls) were each divided into two groups: an HFHS diet-fed group and a normal chow-fed group, and the four groups were followed until 16, 40 or 60 weeks-of-age. Their glucose tolerance, glucose-stimulated insulin secretion and ß-cell mass were evaluated. In addition, islets were isolated from 40-week-old mice, and the expression of key genes was compared. RESULTS: Gck+/-HFHS mice had smaller compensatory increases in ß-cell mass and glucose-stimulated insulin secretion than Gck+/+HFHS mice, and their glucose tolerance deteriorated from 16 to 40 weeks-of-age. However, their ß-cell mass and glucose-stimulated insulin secretion did not decrease between 40 and 60 weeks-of-age, but rather, tended to increase, and there was no progressive deterioration in glucose tolerance. The expression of Aldh1a3 in pancreatic islets, which is high in several models of diabetes and is associated with an impairment in ß-cell function, was high in Gck+/+HFHS mice, but not in Gck+/-HFHS mice. CONCLUSIONS: Glucokinase haploinsufficiency prevents the progressive deterioration of pancreatic ß-cell mass/function and glucose tolerance in long-term HFHS diet-fed mice.

6.
Heliyon ; 10(16): e35978, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224336

RESUMEN

Sudachitin, a member of the flavonoid family, reportedly improves glucose metabolism after long-term administration, but details of the underlying mechanisms are unknown. We found that Sudachitin approximately doubles insulin secretion under high glucose concentrations in mouse pancreatic islets and MIN6 cells. When Sudachitin was orally administered to mice, early-phase insulin secretion was increased and a 30 % reduction in blood glucose levels was demonstrated 30 min after glucose loading. Insulin tolerance tests also showed Sudachitin to increase systemic insulin sensitivity. Additionally, we observed that Sudachitin raised intracellular cAMP levels in pancreatic islets. Phosphodiesterase (PDE) activity assays revealed Sudachitin to inhibit PDE activity and computer simulations predicted a high binding affinity between PDEs and Sudachitin. These findings suggest that Sudachitin enhances both insulin secretion and insulin sensitivity via an increase in intracellular cAMP resulting from PDE inhibition. These insights may facilitate understanding the mechanisms underlying the regulation of glucose metabolism by Sudachitin and other isoflavones.

7.
Diabetologia ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240351

RESUMEN

AIMS/HYPOTHESIS: Genome-wide association studies (GWAS) have identified hundreds of type 2 diabetes loci, with the vast majority of signals located in non-coding regions; as a consequence, it remains largely unclear which 'effector' genes these variants influence. Determining these effector genes has been hampered by the relatively challenging cellular settings in which they are hypothesised to confer their effects. METHODS: To implicate such effector genes, we elected to generate and integrate high-resolution promoter-focused Capture-C, assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq datasets to characterise chromatin and expression profiles in multiple cell lines relevant to type 2 diabetes for subsequent functional follow-up analyses: EndoC-BH1 (pancreatic beta cell), HepG2 (hepatocyte) and Simpson-Golabi-Behmel syndrome (SGBS; adipocyte). RESULTS: The subsequent variant-to-gene analysis implicated 810 candidate effector genes at 370 type 2 diabetes risk loci. Using partitioned linkage disequilibrium score regression, we observed enrichment for type 2 diabetes and fasting glucose GWAS loci in promoter-connected putative cis-regulatory elements in EndoC-BH1 cells as well as fasting insulin GWAS loci in SGBS cells. Moreover, as a proof of principle, when we knocked down expression of the SMCO4 gene in EndoC-BH1 cells, we observed a statistically significant increase in insulin secretion. CONCLUSIONS/INTERPRETATION: These results provide a resource for comparing tissue-specific data in tractable cellular models as opposed to relatively challenging primary cell settings. DATA AVAILABILITY: Raw and processed next-generation sequencing data for EndoC-BH1, HepG2, SGBS_undiff and SGBS_diff cells are deposited in GEO under the Superseries accession GSE262484. Promoter-focused Capture-C data are deposited under accession GSE262496. Hi-C data are deposited under accession GSE262481. Bulk ATAC-seq data are deposited under accession GSE262479. Bulk RNA-seq data are deposited under accession GSE262480.

8.
Adv Anat Embryol Cell Biol ; 239: 117-139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39283484

RESUMEN

The pancreatic ß cells are at the hub of myriad signals to regulate the secretion of an adequate amount of insulin needed to re-establish postprandial euglycemia. The ß cell possesses sophisticated metabolic enzymes and a variety of extracellular receptors and channels that amplify insulin secretion in response to autocrine, paracrine, and neurohormonal signals. Considerable research has been undertaken to decipher the mechanisms regulating insulin secretion. While the triggering pathway induced by glucose is needed to initiate the exocytosis process, multiple other stimuli modulate the insulin secretion response. This chapter will discuss the recent advances in understanding the role of the diverse glucose- and fatty acid-metabolic coupling factors in amplifying insulin secretion. It will also highlight the intracellular events linking the extracellular receptors and channels to insulin secretion amplification. Understanding these mechanisms provides new insights into learning more about the etiology of ß-cell failure and paves the way for developing new therapeutic strategies for type 2 diabetes.


Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina , Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Glucosa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Transducción de Señal , Ácidos Grasos/metabolismo
9.
EClinicalMedicine ; 75: 102782, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281096

RESUMEN

Obesity and type 2 diabetes mellitus (T2DM) present major global health challenges, with an increasing prevalence worldwide. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a pivotal treatment option for both conditions, demonstrating efficacy in blood glucose management, weight reduction, cardiovascular disease prevention, and kidney health improvement. GLP-1, an incretin hormone, plays a crucial role in glucose metabolism and appetite regulation, influencing insulin secretion, insulin sensitivity, and gastric emptying. The therapeutic use of GLP-1RAs has evolved significantly, offering various formulations that provide different efficacy, routes of administration, and flexibility in dosing. These agents reduce HbA1c levels, facilitate weight loss, and exhibit cardiovascular protective effects, making them an integral component of T2DM and obesity management. This review will discuss the currently approved medication for T2DM and obesity, and will also highlight the advent of novel agents which are dual and triple hormonal agonists which represent the future direction of incretin-based therapy. Funding: National Institutes of HealthNIDDKU24 DK132733 (FCS), UE5 DK137285 (FCS), and P30 DK040561 (FCS).

10.
Diabetes Ther ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347897

RESUMEN

INTRODUCTION: Imeglimin is a first-in-class, novel, oral glucose-lowering agent for the treatment of type 2 diabetes mellitus. The efficacy and safety of imeglimin as an antidiabetic agent have been investigated in clinical trials. However, its metabolic effects in humans have not yet been fully elucidated. METHODS: The Study to InveStIgate the Metabolic Action of Imeglimin on patients with type 2 diabetes mellitus (SISIMAI) is a single-arm intervention study. In this study, we have recruited 25 patients with type 2 diabetes to receive 2000 mg/day imeglimin for 20 weeks. We perform a 75-g oral glucose tolerance test (OGTT) with double-glucose tracers, a two-step hyperinsulinemic-euglycemic clamp with glucose tracer, ectopic fat measurement by proton magnetic resonance spectroscopy, visceral/subcutaneous fat area measurement by magnetic resonance imaging, muscle biopsy, and evaluation of fitness level by cycle ergometer before and after imeglimin administration. PLANNED OUTCOMES: The primary outcome is the change in area under the curve of glucose levels during the OGTT after 20 weeks of imeglimin treatment. We also calculate the endogenous glucose production, rate of oral glucose appearance, and rate of glucose disappearance from the data during the 75-g OGTT and compare them between pre- and post-treatment. Additionally, we will compare other parameters, such as the changes in tissue-specific insulin sensitivity, ectopic fat accumulation, visceral/subcutaneous fat area accumulation, and fitness level between each point. This is the first study to investigate the organ-specific metabolic action of imeglimin in patients with type 2 diabetes mellitus using the 75-g OGTT with the double tracer method. The results of this study are expected to provide useful information for drug selection based on the pathophysiology of individual patients with type 2 diabetes mellitus. TRIAL REGISTRATION: jRCTs031210600.

11.
Mol Cell Endocrinol ; 594: 112376, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39321953

RESUMEN

Zinc transporter 8 (ZnT8) is highly expressed in pancreatic beta cells, localizes to insulin secretory granules (ISG), and regulates zinc content. ZnT8 gene polymorphisms have revealed a relationship between ZnT8 activity and type 2 diabetes (T2D) risk, however, the role of beta-cell ZnT8 is not well understood. A beta cell specific ZnT8 knockout (ZnT8 BKO) mouse model was investigated. ZnT8 BKO islets showed significantly reduced ZnT8 gene expression and reduced zinc content. Compared to controls, ZnT8 BKO mice displayed significantly elevated plasma insulin levels and improved glucose tolerance following acute insulin resistance induced via S961. Glucose stimulated insulin secretion from isolated ZnT8 BKO pancreatic islets revealed enhanced insulin secretion capacity. The difference in insulin secretion between ZnT8 BKO and control islets was negated upon zinc supplementation, and the inhibitory effect of zinc on insulin secretion was confirmed in human islets. These results indicate that the loss of ZnT8 activity and accompanying reduced cellular zinc are associated with increased insulin secretion capacity. The reduction in secreted insulin content upon zinc supplementation in ZnT8 BKO islets suggests that ISG-released zinc normally tempers insulin secretion.

12.
J Med Case Rep ; 18(1): 416, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39242549

RESUMEN

BACKGROUND: This case report explores the long-term dynamics of insulin secretion and glycemic control in two patients with diabetes mellitus type 2 over 20 years. The observations underscore the impact of lifestyle interventions, including weight loss and calorie restriction, on insulin secretion patterns and glucose levels during 75 g oral glucose tolerance tests. Additionally, the role of hemoglobin A1c fluctuations, influenced by various factors such as body weight, exercise, and pharmacological interventions, is investigated. CASE PRESENTATION: Case 1 involves a Japanese woman now in her late 70s who successfully maintained her hemoglobin A1c below 7% for over two decades through sustained weight loss and lifestyle changes. Despite a gradual decline in the homeostasis model assessment of ß cell function, the patient exhibited remarkable preservation of insulin secretion patterns over the 20-year follow-up. In case 2, a Japanese woman, now in her early 70s, experienced an improvement in hemoglobin A1c to 6.3% after a period of calorie limitation due to a wrist fracture in 2018. This incident seemed to trigger a temporary rescue of pancreatic ß cell function, emphasizing the dynamic nature of insulin secretion. Both cases highlight the potential for pancreatic ß cell rescue and underscore the persistence of insulin secretion over the 20-year follow-up. Additionally, we have briefly discussed three additional cases with follow-ups ranging from 10 to 17 years, demonstrating similar trends in glucose and insulin ratios. CONCLUSIONS: Long-term lifestyle interventions, such as weight loss and calorie restriction, can preserve pancreatic ß cell function and maintain glycemic control in type 2 diabetes patients over 20 years. Two patients showed stable or improved insulin secretion and favorable hemoglobin A1c levels, challenging the traditional view of irreversible ß cell decline. The findings highlight the importance of personalized, nonpharmacological approaches, suggesting that sustained lifestyle changes can significantly impact diabetes management and potentially rescue ß cell function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hemoglobina Glucada , Células Secretoras de Insulina , Insulina , Pérdida de Peso , Humanos , Femenino , Diabetes Mellitus Tipo 2/terapia , Hemoglobina Glucada/metabolismo , Insulina/metabolismo , Insulina/sangre , Anciano , Células Secretoras de Insulina/metabolismo , Glucemia/metabolismo , Restricción Calórica , Secreción de Insulina , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/uso terapéutico , Control Glucémico
13.
Biochem Pharmacol ; 230(Pt 1): 116558, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39326678

RESUMEN

Indole derivatives exhibit a broad spectrum of beneficial effects, encompassing anti-inflammatory, antiviral, antimalarial, anti-diabetic, antioxidant, anti-hepatitis, and antidepressant properties. Here, we describe the potentiation of insulin secretion in pancreatic islets and INS-1 cells through methyl 2-(2-ethoxy-1-hydroxy-2-oxoethyl)-1-(pyrimidine-2-yl)-1H-indole-3-carboxylate (HI 129), a novel indole derivative. Treatment with HI 129 led to notably decreased ADP/ATP ratios in pancreatic islets and INS-1 cells compared to those in the vehicle-treated controls, indicating a shift in cellular ATP production. Moreover, the augmentation of insulin secretion by HI 129 was closely correlated with its ability to enhance the mitochondrial membrane potential and respiration, partly by reducing the phosphorylation levels of AMP-activated protein kinase (AMPK). Mechanistically, HI 129 enhanced the association between AMPK and ß-arrestin-1, critical molecules for glucose-induced insulin secretion. Furthermore, ß-arrestin-1 depletion attenuated the effect of HI 129 on glucose-induced insulin secretion, suggesting that HI 129 potentiates insulin secretion via ß-arrestin-1/AMPK signaling. These results collectively underscore the potential of HI 129 in enhancing insulin secretion as a novel candidate for improving glucose homeostasis in type 2 diabetes.

14.
Am J Physiol Cell Physiol ; 327(4): C1111-C1124, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219449

RESUMEN

A central aspect of type 2 diabetes is decreased functional ß-cell mass. The orphan nuclear receptor Nr4a1 is critical for fuel utilization, but little is known regarding its regulation and function in the ß-cell. Nr4a1 expression is decreased in type 2 diabetes rodent ß-cells and type 2 diabetes patient islets. We have shown that Nr4a1-deficient mice have reduced ß-cell mass and that Nr4a1 knockdown impairs glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 ß-cells. Here, we demonstrate that glucose concentration directly regulates ß-cell Nr4a1 expression. We show that 11 mM glucose increases Nr4a1 expression in INS-1 832/13 ß-cells and primary mouse islets. We show that glucose functions through the cAMP/PKA/CREB pathway to regulate Nr4a1 mRNA and protein expression. Using Nr4a1-/- animals, we show that Nr4a1 is necessary for GSIS and systemic glucose handling. Using RNA-seq, we define Nr4a1-regulated pathways in response to glucose in the mouse islet, including Glut2 expression. Our data suggest that Nr4a1 plays a critical role in the ß-cells response to the fed state.NEW & NOTEWORTHY Nr4a1 has a key role in fuel metabolism and ß-cell function, but its exact role is unclear. Nr4a1 expression is regulated by glucose concentration using cAMP/PKA/CREB pathway. Nr4a1 regulates Glut2, Ndufa4, Ins1, In2, Sdhb, and Idh3g expression in response to glucose treatment. These results suggest that Nr4a1 is necessary for proper insulin secretion both through glucose uptake and metabolism machinery.


Asunto(s)
Glucosa , Homeostasis , Secreción de Insulina , Células Secretoras de Insulina , Ratones Noqueados , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Glucosa/metabolismo , Secreción de Insulina/efectos de los fármacos , Ratones , Insulina/metabolismo , Ratones Endogámicos C57BL , Masculino , Ratas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Transducción de Señal , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo
15.
Br J Pharmacol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327688

RESUMEN

BACKGROUND AND PURPOSE: The pharmacology of flavonoids on ß-cell function is largely undefined especially in the context of defective secretion of insulin. We sought to identify flavonoids that increased the insulin-secreting function of ß-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH: INS-1 ß-cells in culture and islets of Langerhans isolated from control and diabetic male rats were used for insulin secretion experiments. Pharmacological and electrophysiological approaches were used for mechanistic studies. KEY RESULTS: Among a set of flavonoids, exposure of INS-1 ß-cells to resokaempferol (ResoK) enhanced glucose-stimulated insulin secretion and therefore we further characterised its activity and its pharmacological mechanism. ResoK glucose-dependently enhanced insulin secretion in INS-1 ß-cells and pancreatic islets isolated from rats. Mechanistically, whole cell patch clamp recordings in INS-1 cells showed that ResoK rapidly and dose-dependently enhanced the L-type Ca2+ current whereas it was inactive towards T-type Ca2+ current. Accordingly, pharmacological inhibition of L-type Ca2+ current but not T-type Ca2+ current blocked the effects of ResoK on glucose-stimulated insulin secretion. ResoK was still active on dysfunctional ß-cells as it ameliorated glucose-stimulated insulin secretion in glucotoxicity-induced dysfunctional INS-1 cells and in pancreatic islets isolated from diabetic rats. CONCLUSION AND IMPLICATIONS: ResoK is a glucose-dependent activator of insulin secretion. Our results indicated that the effects of ResoK on insulin secretion involved its capacity to stimulate L-type Ca2+ currents in cultured ß-cells. As ResoK was also effective on dysfunctional ß-cells, our work provides a new approach to stimulating insulin secretion, using compounds based on the structure of ResoK.

16.
FEBS Open Bio ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300600

RESUMEN

SNAP25 plays an essential role in the glucose-stimulated insulin secretion (GSIS) of pancreatic ß-cells. Carbohydrate response element-binding protein (ChREBP) is an important transcription factor in ß-cells and, in this study, we aimed to explore whether ChREBP regulates SNAP25 expression in ß-cells. We show that diabetic Goto-Kakizaki (GK) rats exhibited impaired insulin secretion and hyperglycemia, along with decreased SNAP25 expression and ChREBP phosphorylation in islets. SNAP25 knockdown decreased GSIS in ß-cells, while SNAP25 overexpression increased GSIS in ß-cells. Activation or overexpression of ChREBP led to reduced SNAP25 expression and subsequent suppression of GSIS. Conversely, ChREBP knockdown mitigated the reduction in SNAP25 expression caused by high glucose. Mechanistically, the activation of ChREBP by high glucose increased its occupancy and decreased the level of H3K4me3 at the Snap25 promoter. Our findings reveal the novel regulatory mechanisms of SNAP25 expression in ß-cells and suggest that SNAP25 may be involved in the regulation of ß-cell secretory function controlled by ChREBP.

18.
EMBO Rep ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322740

RESUMEN

Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.

19.
Nutrients ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39275180

RESUMEN

Dysfunction or loss of pancreatic ß cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is associated with pancreatic ß cell lipotoxicity, resulting in abnormal insulin synthesis and secretion. Increased glutamate release can cause glucotoxicity in ß cells, though the detailed mechanisms remain unclear. This study investigated the effect of N-methyl-D-aspartic acid (NMDA) on ABCA1 expression in INS-1 cells and primary pancreatic islets to elucidate the signaling mechanisms that suppress insulin secretion. Using Western blotting, microscopy, and biochemical analyses, we found that NMDA activated the mitogen-activated protein kinase (MEK)-dependent pathway, suppressing ABCA1 protein and mRNA expression. The MEK-specific inhibitor PD98059 restored ABCA1 promoter activity, indicating the involvement of the extracellular signal-regulated kinase (MEK/ERK) pathway. Furthermore, we identified the liver X receptor (LXR) as an effector transcription factor in NMDA regulation of ABCA1 transcription. NMDA treatment increased cholesterol and triglyceride levels while decreasing insulin secretion, even under high-glucose conditions. These effects were abrogated by treatment with PD98059. This study reveals that NMDA suppresses ABCA1 expression via the MEK/ERK/LXR pathway, providing new insights into the pathological suppression of insulin secretion in pancreatic ß cells and emphasizing the importance of investigating the role of NMDA in ß cell dysfunction.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Células Secretoras de Insulina , Receptores X del Hígado , Sistema de Señalización de MAP Quinasas , N-Metilaspartato , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , N-Metilaspartato/farmacología , Ratas , Receptores X del Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Colesterol/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Masculino , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Línea Celular
20.
Front Physiol ; 15: 1435848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165284

RESUMEN

Introduction: Type 2 diabetes (T2D) is the predominant form of diabetes mellitus and is among the leading causes of death with an increasing prevalence worldwide. However, the pathological mechanism underlying T2D remains complex and unclear. An increasing number of studies have suggested an association between circadian clock disruption and high T2D prevalence. Method: This review explores the physiological and genetic evidence underlying T2D symptoms associated with circadian clock disturbances, including insulin secretion and glucose metabolism. Results and Discussion: Notably, circadian clock disruption reduces insulin secretion and insulin sensitivity and negatively affects glucose homeostasis. The circadian clock regulates the hypothalamic-pituitary-adrenal axis, an important factor that regulates glucose metabolism and influences T2D progression. Therefore, circadian clock regulation is an attractive, novel therapeutic approach for T2D, and various circadian clock stabilizers play therapeutic roles in T2D. Lastly, this review suggests novel therapeutic and preventive approaches using circadian clock regulators for T2D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA