Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.461
Filtrar
1.
J Conserv Dent Endod ; 27(9): 942-948, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39450365

RESUMEN

Aim: This study aimed to evaluate the effectiveness of combining Channa striata extract with calcium hydroxide (Ca(OH)2) in reducing lymphocyte counts and interleukin (IL)-1ß levels in inflamed pulp teeth. Materials and Methods: A laboratory experimental setup with a posttest control group (CG) design was employed. Thirty-two rat incisor teeth were divided into four groups: a positive CG (100% Ca(OH)2), treatment 1 (25% C. striata extract + 75% Ca(OH)2), treatment 2 (50% C. striata extract + 50% Ca(OH)2), and treatment 3 (75% C. striata extract + 25% Ca(OH)2). These test materials were applied to Class 1 cavities extending to the pulp roof, with samples collected on days 1, 3, 5, and 7. Data were analyzed using analysis of variance and post hoc least significant difference tests. Results: In all the groups, the highest levels of lymphocytes and IL-1ß were observed on day 3, followed by a decline on days 5 and 7. The combination of C. striata extract with Ca(OH)2 significantly reduced inflammatory markers, particularly lymphocyte and IL-1ß levels. Conclusion: The extract of C. striata holds significant potential as an innovative therapeutic approach for managing inflamed dental pulp.

2.
Pain Res Manag ; 2024: 9179928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372838

RESUMEN

Although previous studies suggest that Piezo2 regulates chronic pain in the orofacial area, few studies have reported the direct evidence of Piezo2's involvement in inflammatory and neuropathic pain in the orofacial region. In this study, we used male Sprague Dawley rats to investigate the role of the Piezo2 pathway in the development of inflammatory and neuropathic pain. The present study used interleukin (IL)-1ß-induced pronociception as an inflammatory pain model. Subcutaneous injection of IL-1ß produced significant mechanical allodynia and thermal hyperalgesia. Subcutaneous injection of a Piezo2 inhibitor significantly blocked mechanical allodynia and thermal hyperalgesia induced by subcutaneously injected IL-1ß. Furthermore, the present study also used a neuropathic pain model caused by the misplacement of a dental implant, leading to notable mechanical allodynia as a consequence of inferior alveolar nerve injury. Western blot analysis revealed increased levels of Piezo2 in the trigeminal ganglion and the trigeminal subnucleus caudalis after inferior alveolar nerve injury. Furthermore, subcutaneous and intracisternal injections of a Piezo2 inhibitor blocked neuropathic mechanical allodynia. These results suggest that the Piezo2 pathway plays a critical role in the development of inflammatory and neuropathic pain in the orofacial area. Therefore, blocking the Piezo2 pathway could be the foundation for developing new therapeutic strategies to treat orofacial pain conditions.


Asunto(s)
Dolor Facial , Hiperalgesia , Neuralgia , Ratas Sprague-Dawley , Animales , Masculino , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Ratas , Dolor Facial/tratamiento farmacológico , Dolor Facial/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/antagonistas & inhibidores , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
3.
Mol Med ; 30(1): 159, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333859

RESUMEN

BACKGROUND: Retinal ischemia/reperfusion (IR) injury is a common pathological process in many ophthalmic diseases. Interleukin-1ß (IL-1ß) is an important inflammatory factor involved in the pathology of retinal IR injury, but the mechanism by which IL-1ß is regulated in such injury remains unclear. Caspase-11 non-canonical inflammasomes can regulate the synthesis and secretion of IL-1ß, but its role in retinal IR injury has not been elucidated. This study aimed to evaluate the role of caspase-11 non-canonical inflammasomes in retinal IR injury. METHODS: Retinal IR injury was induced in C57BL/6J mice by increasing the intraocular pressure to 110 mmHg for 60 min. The post-injury changes in retinal morphology and function and in IL-1ß expression were compared between caspase-11 gene knockout (caspase-11-/-) mice and wild-type (WT) mice. Morphological and functional changes were evaluated using hematoxylin-eosin staining and retinal whole mount staining and using electroretinography (ERG), respectively. IL-1ß expression in the retina was measured using enzyme-linked immunosorbent assay (ELISA). The levels of caspase-11-related protein were measured using western blot analysis. The location of caspase-11 in the retina was determined via immunofluorescence staining. Mouse type I astrocytes C8-D1A cells were used to validate the effects of caspase-11 simulation via hypoxia in vitro. Small-interfering RNA targeting caspase-11 was constructed. Cell viability was evaluated using the MTT assay. IL-1ß expression in supernatant and cell lysate was measured using ELISA. The levels of caspase-11-related protein were measured using western blot analysis. RESULTS: Retinal ganglion cell death and retinal edema were more ameliorated, and the ERG b-wave amplitude was better after retinal IR injury in caspase-11-/- mice than in WT mice. Further, caspase-11-/- mice showed lower protein expressions of IL-1ß, cleaved caspase-1, and gasdermin D (GSDMD) in the retina after retinal IR injury. Caspase-11 protein was expressed in retinal glial cells, and caspase-11 knockdown played a protective role against hypoxia in C8-D1A cells. The expression levels of IL-1ß, cleaved caspase-1, and GSDMD were inhibited after hypoxia in the si-caspase-11 constructed cells. CONCLUSIONS: Retinal IR injury activates caspase-11 non-canonical inflammasomes in glial cells of the retina. This results in increased protein levels of GSDMD and IL-1ß and leads to damage in the inner layer of the retina.


Asunto(s)
Caspasas Iniciadoras , Inflamasomas , Daño por Reperfusión , Retina , Animales , Masculino , Ratones , Caspasas Iniciadoras/metabolismo , Caspasas Iniciadoras/genética , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Retina/metabolismo , Retina/patología , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/etiología , Enfermedades de la Retina/patología , Enfermedades de la Retina/genética
4.
Biomedicines ; 12(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39335538

RESUMEN

Objective: Chondrocyte apoptosis has been considered a crucial mechanism that is responsible for cartilage destruction in osteoarthritis (OA). The mechanism of interleukin-37 (IL-37) on chondrocyte apoptosis has not been clearly determined in the pathogenesis of OA. Here, we explored the role of IL-37 in the regulation of cellular apoptosis in rat chondrocytes stimulated by IL-1ß. Methods: Rat chondrocytes were used in in vitro study, and were stimulated with IL-1ß (10 ng/mL) and/or recombinant IL-37 (rIL-37; 100 ng/mL) after cytotoxicity assessments using these cytokines were conducted. After rIL-37 treatment of chondrocytes stimulated with IL-1ß, the cell proliferation assay, apoptosis assays, including expression of mitochondrial apoptosis-related markers, flow cytometry analysis of annexin V-FITC/propidium iodide (PI), cell cycle analysis, and Hoechst 33342 staining, and reactive oxygen species (ROS) measurement were used. Results: IL-1ß induced expression of inflammatory cytokines and triggered degradation of the extracellular matrix of rat chondrocytes, but this effect was significantly attenuated by rIL-37 treatment. Enhanced ROS generation following IL-1ß stimulation was reduced in a dose-dependent manner after stimulation with rIL-37. IL-1ß induced pro-apoptotic markers and suppressed anti-apoptotic markers in rat chondrocytes. Flow cytometry using annexin V-FITC/PI revealed that IL-1ß increased the apoptosis rate of rat chondrocytes, and that this effect was markedly reversed by treatment with rIL-37. Conclusions: IL-37 potently attenuated IL-1ß-mediated apoptosis of rat chondrocytes by blocking ROS production. This study suggests that IL-37 can serve as a novel anti-cytokine therapy in OA by blocking chondrocyte apoptosis.

5.
Nutrients ; 16(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39339760

RESUMEN

Endothelial dysfunction occurs prior to atherosclerosis, which is an independent predictor of cardiovascular diseases (CVDs). Diabetes mellitus impairs endothelial function by triggering oxidative stress and inflammation in vascular tissues. Isoliquiritigenin (ISL), one of the major bioactive ingredients extracted from licorice, has been reported to inhibit inflammation and oxidative stress. However, the therapeutic effects of ISL on ameliorating type 2 diabetes (T2D)-associated endothelial dysfunction remain unknown. In our animal study, db/db male mice were utilized as a model for T2D-associated endothelial dysfunction, while their counterpart, heterozygote db/m+ male mice, served as the control. Mouse brain microvascular endothelial cells (mBMECs) were used for in vitro experiments. Interleukin-1ß (IL-1ß) was used to induce endothelial cell dysfunction. ISL significantly reversed the impairment of endothelium-dependent relaxations (EDRs) in db/db mouse aortas. ISL treatment decreased ROS (reactive oxygen species) levels in db/db mice aortic sections and IL-1ß-treated endothelial cells. Encouragingly, ISL attenuated the overexpression of pro-inflammatory factors MCP-1, TNF-α, and IL-6 in db/db mouse aortas and IL-1ß-impaired endothelial cells. The NOX2 (NADPH oxidase 2) overexpression was inhibited by ISL treatment. Notably, ISL treatment restored the expression levels of IL-10, SOD1, Nrf2, and HO-1 in db/db mouse aortas and IL-1ß-impaired endothelial cells. This study illustrates, for the first time, that ISL attenuates endothelial dysfunction in T2D mice, offering new insights into the pharmacological effects of ISL. Our findings demonstrate the potential of ISL as a promising therapeutic agent for the treatment of vascular diseases, paving the way for the further exploration of novel vascular therapies.


Asunto(s)
Chalconas , Diabetes Mellitus Tipo 2 , Células Endoteliales , Endotelio Vascular , Glycyrrhiza , Estrés Oxidativo , Extractos Vegetales , Animales , Chalconas/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glycyrrhiza/química , Masculino , Ratones , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Extractos Vegetales/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Aorta/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratones Endogámicos C57BL , Interleucina-1beta/metabolismo
6.
Sci Rep ; 14(1): 22652, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349636

RESUMEN

The metabolic syndrome is characterized by obesity, insulin resistance, dyslipidemia and hypertension and predisposes to cardiorenal injury. Here, we tested our hypothesis that 8-aminoguanine, an endogenous purine, exerts beneficial effects in Zucker Diabetic-Sprague Dawley (ZDSD) rats, a preclinical model of the metabolic syndrome. ZDSD rats were instrumented for blood pressure radiotelemetry and randomized to vehicle or 8-aminoguanine (10 mg/kg/day, po). The protocol was divided into four phases: Phase 1: 17 days of tap water/normal diet; Phase 2: 30 days of 1% saline/normal diet; Phase 3: 28 days of 1% saline/diabetogenic diet; Phase 4: acute/terminal measurements. 8-Aminoguanine: (1) decreased mean arterial blood pressure (P = 0.0004; 119.5 ± 1.0 (vehicle) versus 116.3 ± 1.0 (treated) mmHg) throughout all three phases of the radiotelemetry study; (2) rebalanced the purine metabolome away from hypoxanthine (pro-inflammatory) and towards inosine (anti-inflammatory); (3) reduced by 71% circulating IL-1ß, a cytokine that contributes to hypertension-induced adverse cardiovascular events and type 2 diabetes; (4) attenuated renovascular responses to angiotensin II; (5) improved cardiac and renal histopathology; (6) attenuated diet-induced polydipsia/polyuria; and (7) reduced HbA1c. In the metabolic syndrome, 8-aminoguanine lowers blood pressure, improves diabetes and reduces organ damage, likely by rebalancing the purine metabolome leading to reductions in injurious cytokines such as IL-1ß.


Asunto(s)
Síndrome Metabólico , Ratas Zucker , Animales , Síndrome Metabólico/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Ratas , Masculino , Presión Sanguínea/efectos de los fármacos , Ratas Sprague-Dawley , Guanina/análogos & derivados , Guanina/metabolismo , Guanina/farmacología , Modelos Animales de Enfermedad
7.
World J Clin Cases ; 12(25): 5665-5672, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39247746

RESUMEN

BACKGROUND: Dry eye is a common eye disease. Artificial tears supplements are widely used for the treatment of dry eyes. However, multiple adverse effects have been observed in patients receiving long-term treatment with artificial tears, which may affect the therapeutic effect. AIM: To analyze the characteristics of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels in patients with dry eye and the therapeutic effect of artificial tears combined with cyclosporine A. METHODS: A total of 124 dry eye patients treated at The First People's Hospital of Xining from April 2020 to April 2022 were selected as the observation group, while 20 healthy individuals served as the control group during the same period. Levels of inflammatory markers, including IL-1ß, IL-6, and TNF-α, were analyzed. The observation group was further divided into a study group and a control group, each consisting of 62 patients. The control group received artificial tears, whereas the study group received a combination of artificial tears and cyclosporine A. Inflammatory markers, Schirmer's test (SIT), tear break-up time (TBUT), corneal fluorescein staining (CFS), National Eye Institute Visual Function Questionnaire-25 (NEI-VFQ-25) scores, and adverse events (AEs) were compared between the two groups. RESULTS: The observation group exhibited significantly elevated serum levels of IL-1ß, IL-6, and TNF-α in comparison to the healthy group. Following treatment, the study group demonstrated substantial reductions in IL-1ß, IL-6, and TNF-α levels relative to the control group. Moreover, after treatment, the study group experienced a marked decrease in CFS scores and significant increases in both SIT and BUT levels when compared to the control group. Additionally, significant improvements were observed in the primary symptom of dry eye and secondary symptoms such as photophobia, foreign body sensation, fatigue, red eye, and burning sensation within the study group. Furthermore, post-treatment NEI-VFQ-25 scores across all dimensions exhibited significant enhancements in the study group compared to the control group (P < 0.05). It is noteworthy that significant AEs were reported in both groups throughout the treatment period. CONCLUSION: Cyclosporine A combined with artificial tears is effective in treating dry eye, yielding enhanced outcomes by improving SIT and TBUT levels, reducing CFS scores, and ameliorating vision-related quality of life.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39091665

RESUMEN

Background: Diabetes mellitus (DM) is associated with the increased risk of development and the advancement of cholangiocarcinoma (CCA). High glucose levels were previously shown for upregulating interleukin-1ß (IL-1ß) in CCA cells with unclear functions. The present study, thus, aimed to investigate molecular mechanisms linking DM to CCA progression, with IL-1ß hypothesized as a communicating cytokine. Methods: CCA cells were cultured in media with normal (5.6 mM) or high (25 mM) glucose, resembling euglycemia and hyperglycemia, respectively. Expressions of IL-1ß and IL-1 receptor (IL-1R) in CCA tissues from patients with and without DM were examined using immunohistochemistry. Functional analyses of IL-1ß were performed using siRNA and recombinant human IL-1R antagonist (rhIL-1RA), in which Western blots investigated the knockdown efficacy. BALB/c Rag-2-/- Jak3-/- (BRJ) mice were implanted with CCA xenografts to investigate hyperglycemia's effects on CCA growth and the anti-tumor effects of IL-1RA. Results: CCA tumors from patients with hyperglycemia showed significantly higher IL-1ß expression than those from non-DM patients, while IL-1ß was positively correlated with fasting blood glucose (FBG) levels. CCA cells cultured in high glucose showed increased IL-1ß expression, resulting in increased proliferation rates. Suppressing IL-1ß signaling by si-IL-1ß or rhIL-1RA significantly reduced CCA cell proliferation in vitro. Anakinra, a synthetic IL-1RA, also exerted significant anti-tumor effects in vivo and significantly reversed the effects of hyperglycemia-induced growth in CCA xenografts. Conclusions: IL-1ß plays a crucial role in CCA progression in a high-glucose environment. Targeting IL-1ß might, then, help improve therapeutic outcomes of CCA in patients with DM and hyperglycemia.

9.
Ann Transl Med ; 12(4): 62, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39118955

RESUMEN

Multiple sclerosis (MS) stands as a chronic inflammatory disease characterized by its neurodegenerative impacts on the central nervous system. The complexity of MS and the significant challenges it poses to patients have made the exploration of effective treatments a crucial area of research. Among the various mechanisms under investigation, the role of inflammation in MS progression is of particular interest. Inflammatory responses within the body are regulated by various cellular mechanisms, one of which involves the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domains (PYD)-containing protein 3 (NLRP3). NLRP3 acts as a sensor within cells, playing a pivotal role in controlling the inflammatory response. Its activation is a critical step leading to the assembly of the NLRP3 inflammasome complex, a process that has profound implications for inflammatory diseases like MS. The NLRP3 inflammasome's activation is intricately linked to the subsequent activation of caspase 1 and gasdermin D (GsdmD), signaling pathways that are central to the inflammatory process. GsdmD, a prominent member of the Gasdermin protein family, is particularly noteworthy for its role in pyroptotic cell death, a form of programmed cell death that is distinct from apoptosis and is characterized by its inflammatory nature. This pathway's activation contributes significantly to the pathology of MS by exacerbating inflammatory responses within the nervous system. Given the detrimental effects of unregulated inflammation in MS, therapeutics targeting these inflammatory processes offer a promising avenue for alleviating the symptoms experienced by patients. This review delves into the intricacies of the pyroptotic pathways, highlighting how the formation of the NLRP3 inflammasome induces such pathways and the potential intervention points for therapeutic agents. By inhibiting key steps within these pathways, it is possible to mitigate the inflammatory response, thereby offering relief to those suffering from MS. Understanding these mechanisms not only sheds light on the pathophysiology of MS but also paves the way for the development of novel therapeutic strategies aimed at controlling the disease's progression through the modulation of the body's inflammatory response.

10.
Neurochem Int ; 179: 105840, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181245

RESUMEN

Our previous study has verified that activation of group Ⅰ metabotropic glutamate receptors (mGluRⅠ) in the red nucleus (RN) facilitate the development of neuropathological pain. Here, we further discussed the functions and possible molecular mechanisms of red nucleus mGluR Ⅱ (mGluR2 and mGluR3) in the development of neuropathological pain induced by spared nerve injury (SNI). Our results showed that mGluR2 and mGluR3 both were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the protein expression of mGluR2 rather than mGluR3 was significantly reduced in the RN contralateral to the nerve lesion. Injection of mGluR2/3 agonist LY379268 into the RN contralateral to the nerve injury at 2 weeks post-SNI significantly attenuated SNI-induced neuropathological pain, this effect was reversed by mGluR2/3 antagonist EGLU instead of selective mGluR3 antagonist ß-NAAG. Intrarubral injection of LY379268 did not alter the PWT of contralateral hindpaw in normal rats, while intrarubral injection of EGLU rather than ß-NAAG provoked a significant mechanical allodynia. Further studies indicated that the expressions of nociceptive factors TNF-α and IL-1ß in the RN were enhanced at 2 weeks post-SNI. Intrarubral injection of LY379268 at 2 weeks post-SNI significantly suppressed the overexpressions of TNF-α and IL-1ß, these effects were reversed by EGLU instead of ß-NAAG. Intrarubral injection of LY379268 did not influence the protein expressions of TNF-α and IL-1ß in normal rats, while intrarubral injection of EGLU rather than ß-NAAG significantly boosted the expressions of TNF-α and IL-1ß. These findings suggest that red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1ß. mGluR Ⅱ may be potential targets for drug development and clinical treatment of neuropathological pain.


Asunto(s)
Interleucina-1beta , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico , Núcleo Rojo , Factor de Necrosis Tumoral alfa , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/biosíntesis , Masculino , Interleucina-1beta/metabolismo , Interleucina-1beta/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Ratas , Núcleo Rojo/metabolismo , Núcleo Rojo/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Aminoácidos
11.
Adv Pharm Bull ; 14(2): 434-444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39206409

RESUMEN

Purpose: At present, therapeutic interventions to treat acute lung injury (ALI) remain largely limited to lung-protective strategies, as no real molecular-driven therapeutic intervention has yet become available. The administration of bacterial lipopolysaccharides (LPS) is known as an inflammatory activator, representing a frequently used model of ALI. This study investigated the biological function of normoxic (21% O2 ) vs. hypoxic conditions (5% O2 ) obtained from human Wharton's Jelly mesenchymal stem cells (hWJ-MSCs) and discovered that exosomes have the ability to suppress inflammatory responses by specifically targeting TNF-α, IL-1ß, IL-6. and identify the toll-like receptor 4 (TLR4) NF-κß gene expression. Methods: Primer culture hWJ-MSCs characterization with trilineage differentiation and CD markers was conducted. To obtain exosomes, hWJ-MSCs were stimulated with two different oxygen levels: 21% (nor-exo) and 5% (hypo-exo). Then, the L2 cell line was induced with LPS 1 µg/mL. Inflamed-L2 was treated with nor-exo, hypo-exo, and dexamethasone as a positive control. The RNA extracted from treated L2 cells was utilized to examine the gene expression profiles of TLR4 and NF-κß, and the medium was used to measure tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, and IL-6 levels using ELISA. Lastly, proteomic analysis of the exosome using LC/MS-MS was conducted. Results: Nor-exo and hypo-exo can be characterized and can produce higher yields exosomes under hypoxic conditions. The expression of TLR4 and NF-κß genes and the proinflammatory levels such as IL-6, IL-1ß, and TNF-α levels in nor-exo and hypo-exo treatments decreased. Conclusion: Nor-exo and hypo-exo derived from hWJ-MSCs were proven to have anti-inflammatory activities.

12.
Eur J Pharmacol ; 982: 176933, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39182540

RESUMEN

The medial prefrontal cortex (mPFC) has been identified as a key brain region involved in the modulation of chronic pain. Our recent study demonstrated that unilateral anterior crossbite (UAC) developed the comorbidity model of temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS), which was characterized by both orofacial and somatic hyperalgesia. In the present study, UAC rats exhibited significant changes in gene expression in the mPFC. Enrichment analysis revealed that the significantly involved pathways were cytokines-cytokine receptor interaction and immune response. The expression of group III secretory phospholipase A2 (sPLA2-III) was significantly increased in the mPFC of UAC rats. Silencing sPLA2-III expression in the mPFC blocked the orofacial and somatic hyperalgesia. Immunofluorescence showed that sPLA2-III was mainly localized in neurons. The expression of interleukin-1ß (IL-1ß) in the mPFC significantly increased after UAC. Injection of IL-1ß antibody into the mPFC blocked orofacial and somatic hyperalgesia. IL-1ß was mainly localized in microglia cells. Furthermore, injection of IL-1ß antibody significantly reduced the expression of sPLA2-III. These results indicate that neuroinflammatory cascade responses induced by glial-neuron crosstalk in the mPFC may contribute to the development of TMD and FMS comorbidity, and IL-1ß and sPLA2-III are identified as novel potential therapeutic targets for the treatment of chronic pain in the comorbidity of TMD and FMS.


Asunto(s)
Hiperalgesia , Interleucina-1beta , Neuroglía , Neuronas , Corteza Prefrontal , Regulación hacia Arriba , Animales , Femenino , Ratas , Modelos Animales de Enfermedad , Dolor Facial/metabolismo , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Maloclusión/metabolismo , Maloclusión/complicaciones , Neuroglía/metabolismo , Neuronas/metabolismo , Fosfolipasas A2 Secretoras/metabolismo , Fosfolipasas A2 Secretoras/genética , Corteza Prefrontal/metabolismo , Ratas Sprague-Dawley
13.
Cell Commun Signal ; 22(1): 392, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118068

RESUMEN

Epithelial-mesenchymal transition (EMT) is a cellular process in embryonic development, wound healing, organ fibrosis, and cancer metastasis. Previously, we and others have reported that proinflammatory cytokine interleukin-1ß (IL-1ß) induces EMT. However, the exact mechanisms, especially the signal transduction pathways, underlying IL-1ß-mediated EMT are not yet completely understood. Here, we found that IL-1ß stimulation leads to the partial EMT-like phenotype in human lung epithelial A549 cells, including the gain of mesenchymal marker (vimentin) and high migratory potential, without the complete loss of epithelial marker (E-cadherin). IL-1ß-mediated partial EMT induction was repressed by PI3K inhibitor LY294002, indicating that the PI3K/AKT pathway plays a significant role in the induction. In addition, ERK1/2 inhibitor FR180204 markedly inhibited the IL-1ß-mediated partial EMT induction, demonstrating that the MEK/ERK pathway was also involved in the induction. Furthermore, we found that the activation of the PI3K/AKT and MEK/ERK pathways occurred downstream of the epidermal growth factor receptor (EGFR) pathway and the IL-1 receptor (IL-1R) pathway, respectively. Our findings suggest that the PI3K/AKT and MEK/ERK pathways coordinately promote the IL-1ß-mediated partial EMT induction. The inhibition of not one but both pathways is expected yield clinical benefits by preventing partial EMT-related disorders such as organ fibrosis and cancer metastasis.


Asunto(s)
Transición Epitelial-Mesenquimal , Interleucina-1beta , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Interleucina-1beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células A549 , Receptores ErbB/metabolismo
14.
Front Mol Neurosci ; 17: 1430080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169949

RESUMEN

Proinflammatory cytokines are implicated in promoting neurodegeneration in multiple sclerosis (MS) by affecting excitatory and inhibitory transmission at central synapses. Conversely, the synaptic effects of anti-inflammatory molecules remain underexplored, despite their potential neuroprotective properties and their presence in the cerebrospinal fluid (CSF) of patients. In a study involving 184 newly diagnosed relapsing-remitting (RR)-MS patients, we investigated whether CSF levels of the anti-inflammatory interleukin (IL)-10 were linked to disease severity and neurodegeneration measures. Additionally, we examined IL-10 impact on synaptic transmission in striatal medium spiny neurons and its role in counteracting inflammatory synaptopathy induced by IL-1ß in female C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Our findings revealed a significant positive correlation between IL-10 CSF levels and changes in EDSS (Expanded Disability Status Scale) scores one year after MS diagnosis. Moreover, IL-10 levels in the CSF were positively correlated with volumes of specific subcortical brain structures, such as the nucleus caudate. In both MS patients' CSF and EAE mice striatum, IL-10 and IL-1ß expressions were upregulated, suggesting possible antagonistic effects of these cytokines. Notably, IL-10 exhibited the ability to decrease glutamate transmission, increase GABA transmission in the striatum, and reverse IL-1ß-induced abnormal synaptic transmission in EAE. In conclusion, our data suggest that IL-10 exerts direct neuroprotective effects in MS patients by modulating both excitatory and inhibitory transmission and attenuating IL-1ß-induced inflammatory synaptopathy. These findings underscore the potential therapeutic significance of IL-10 in mitigating neurodegeneration in MS.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39178016

RESUMEN

INTRODUCTION: Systemic juvenile idiopathic arthritis (sJIA), a multifaceted autoinflammatory disorder, can be complicated by life-threatening conditions such as macrophage activation syndrome (MAS) and interstitial lung disease (ILD). The management of these conditions presents a therapeutic challenge, underscoring the need for innovative treatment approaches. OBJECTIVES: to report the possible role of MAS825, a bispecific anti-IL1ß and IL-18 monoclonal antibody, in the treatment of multi-drug-resistant sJIA. METHODS: We report two patients affected by sJIA with severe and refractory MAS and high serum IL-18 levels, responding to dual blockade of IL-1ß and IL-18. RESULTS: The first patient is a 20-year-old man, presenting a severe MAS complicated by thrombotic microangiopathy, following SARS-CoV-2 infection. He was treated with MAS825, with quick improvement. Eighteen months later, the patient is still undergoing biweekly treatment with MAS825, associated with MTX, ciclosporin and low-dose glucocorticoids, maintaining good control over the systemic features of the disease.The second patient, a 10-year-old girl, presented a severe MAS case, complicated by posterior reversible encephalopathy syndrome (PRES), following an otomastoiditis. The MAS was not fully controlled despite treatment with IV high-dose glucocorticoids, anakinra and ciclosporin. She began biweekly MAS825, which led to a prompt amelioration of MAS parameters. After 10 months, the patient continues to receive MAS825 and is in complete remission. CONCLUSION: In light of the pivotal role of IL-1ß and IL-18 in sJIA, MAS and ILD, MAS825 might represent a possible valid and safe option in the treatment of drug-resistant sJIA, especially in the presence of high serum IL-18 levels.

17.
Vet Immunol Immunopathol ; 274: 110805, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002362

RESUMEN

Interleukin-1ß (IL-1ß) is one of the key mediators of inflammation during innate immune responses. Mature bioactive IL-1ß mediates essential host defense mechanisms but also has a mechanistic role in several autoinflammatory and degenerative diseases. In horses, specific and sensitive assays for IL-1ß are crucial for immunological research on inflammatory processes and diseases. In this article, we describe the development of four monoclonal antibodies (mAbs) against equine IL-1ß. The specificity of the new IL-1ß mAbs was confirmed using a panel of equine recombinant cytokines and chemokines. The mAbs were validated for detection of native mature IL-1ß in a fluorescent bead-based assay and for staining of IL-1ß-producing immune cells by flow cytometry. The bead-based assay for equine IL-1ß had a linear quantification range between 60 pg/ml to 960 ng/ml. Horse peripheral blood mononuclear cells (PBMC) secreted IL-1ß after lipopolysaccharide (LPS) stimulation in time and dose dependent manner as quantified by the new equine IL-1ß bead-based assay. A comparison of two commercial equine IL-1ß ELISA kits with the new IL-1ß fluorescent bead-based assay revealed that the bead-based assay improved the quantification of native equine IL-1ß in LPS stimulated PBMC supernatants by detecting it with high intensity and a broad linear quantification range, while both ELISAs resulted in low signals and poor native IL-1ß recognition. Intracellular staining and flow cytometric analysis confirmed that the main cellular source of IL-1ß in equine PBMC after LPS stimulation were CD14+ monocytes. IL-1ß secretion from PBMC was inhibited by a caspase inhibitor but protein translation within the cells was not, supporting the accumulation of pro-IL-1ß within the cells even when proteolytic cleavage for IL-1ß activation is missing. This confirmed the importance of specific mAbs for analyzing the biologically active, mature IL-1ß in horses.


Asunto(s)
Anticuerpos Monoclonales , Citometría de Flujo , Interleucina-1beta , Leucocitos Mononucleares , Animales , Ratones , Anticuerpos Monoclonales/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Citometría de Flujo/veterinaria , Caballos/inmunología , Interleucina-1beta/inmunología , Leucocitos Mononucleares/inmunología , Lipopolisacáridos
18.
Curr Drug Deliv ; 21(10): 1375-1385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034716

RESUMEN

BACKGROUND: The tear ferning test can be an easy clinical procedure for the evaluation and characterization of the ocular tear film. OBJECTIVE: The objective of this study was to examine the restoration of tear ferning patterns and reduction of glycosylation peak after amlodipine application in carrageenan-induced conjunctivitis. METHODS: At the rabbit's upper palpebral region, carrageenan was injected for cytokine-mediated conjunctivitis. Ferning pattern and glycosylation of the tear fluid were characterized using various instrumental analyses. The effect of amlodipine was also examined after ocular instillation and flexible docking studies. RESULTS: Optical microscopy showed a disrupted ferning of the tear collected from the inflamed eye. FTIR of the induced tear fluid exhibited peaks within 1000-1200 cm-1, which might be due to the protein glycosylation absent in the normal tear spectrogram. The glycosylation peak reduced significantly in the tear sample collected from the amlodipine-treated group. Corresponding energy dispersive analysis showed the presence of sulphur, indicating protein leakage from the lacrimal gland in the induced group. The disappearance of sulphur from the treated group indicated its remedial effect. The flexible docking studies revealed a stronger binding mode of amlodipine with Interleukin-1ß (IL-1ß). The reduction in the intensity of the glycosylated peak and the restoration offering are probably due to suppression of IL-1ß. CONCLUSION: This study may be helpful in obtaining primary information for drug discovery to be effective against IL-1ß and proving tear fluid as a novel diagnostic biomarker.


Asunto(s)
Amlodipino , Carragenina , Interleucina-1beta , Simulación del Acoplamiento Molecular , Lágrimas , Lágrimas/metabolismo , Lágrimas/química , Amlodipino/administración & dosificación , Amlodipino/química , Animales , Conejos , Glicosilación , Interleucina-1beta/metabolismo , Administración Oftálmica , Masculino
19.
Int J Biol Macromol ; 273(Pt 2): 133135, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876231

RESUMEN

Largemouth bass (Micropterus salmoides) has emerged as a significant economic fish species, with a rise in Aeromonas veronii infections in farming. However, research on adjuvants for vaccines against A. veronii in largemouth bass remains scarce. In present study, recombinant largemouth bass IL-1ß (LbIL-1ß) was expressed to explore its adjuvant effect on the A. veronii inactivated vaccine. Following vaccination with recombinant LbIL-1ß (rLbIL-1ß) and the inactivated A. veronii, higher serum SOD levels and lysozyme activities were observed in largemouth bass from inactivated A. veronii + rLbIL-1ß vaccinated group. Furthermore, it was discovered that rLbIL-1ß was able to boost the serum-specific antibody levels induced by the inactivated A. veronii. The qRT-PCR analysis revealed that rLbIL-1ß also enhanced the expression of IgM, CD4, and MHC II in largemouth bass triggered by the inactivated A. veronii. After challenged with live A. veronii, the outcomes demonstrated that the relative percentage survival (RPS) for largemouth bass resulting from the inactivated A. veronii in combination with rLbIL-1ß was 76.67 %, surpassing the RPS of 60 % in the inactivated A. veronii group. Collectively, these findings indicate that rLbIL-1ß enhances the protective effect of the A. veronii inactivated vaccine on largemouth bass, showcasing potential as an adjuvant for further development.


Asunto(s)
Adyuvantes Inmunológicos , Aeromonas veronii , Vacunas Bacterianas , Lubina , Enfermedades de los Peces , Interleucina-1beta , Vacunas de Productos Inactivados , Animales , Aeromonas veronii/inmunología , Vacunas Bacterianas/inmunología , Lubina/inmunología , Lubina/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Vacunación , Vacunas de Productos Inactivados/inmunología
20.
Free Radic Biol Med ; 222: 72-84, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825211

RESUMEN

Premature ovarian insufficiency (POI) is a clinical syndrome characterised by a decline in ovarian function in women before 40 years of age and is associated with oestradiol deficiency and a complex pathogenesis. However, the aetiology of POI is still unclear and effective preventative and treatment strategies are still lacking. Methyltransferase like 3 (METTL3) is an RNA methyltransferase that is involved in spermatogenesis, oocyte development and maturation, early embryonic development, and embryonic stem cell differentiation and formation, but its role in POI is unknown. In the present study, METTL3 deficiency in follicular theca cells was found to lead to reduced fertility in female mice, with a POI-like phenotype, and METTL3 knockout promoted ovarian inflammation. Further, a reduction in METTL3 in follicular theca cells led to a decrease in the m6A modification of pri-miR-21, which further reduced pri-miR-21 recognition and binding by DGCR8 proteins, leading to a decrease in the synthesis of mature miR-21-5p. Decrease of miR-21-5p promoted the secretion of interleukin-1ß (IL-1ß) from follicular theca cells. Acting in a paracrine manner, IL-1ß inhibited the cAMP-PKA pathway and activated the NF-κB pathway in follicular granulosa cells. This activation increased the levels of reactive oxygen species in granulosa cells, causing disturbances in the intracellular Ca2+ balance and mitochondrial damage. These cellular events ultimately led to granulosa cell apoptosis and a decrease in oestradiol synthesis, resulting in POI development. Collectively, these findings reveal how METTL3 deficiency promotes the expression and secretion of IL-1ß in theca cells, which regulates ovarian functions, and proposes a new theory for the development of POI disease.


Asunto(s)
Interleucina-1beta , Metiltransferasas , Insuficiencia Ovárica Primaria , Células Tecales , Animales , Femenino , Humanos , Ratones , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Insuficiencia Ovárica Primaria/patología , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/metabolismo , Transducción de Señal , Células Tecales/metabolismo , Células Tecales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA