Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Genomics ; 25(1): 761, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107730

RESUMEN

BACKGROUND: Currently, diverse minipigs have acquired a common dwarfism phenotype through independent artificial selections. Characterizing the population and genetic diversity in minipigs is important to unveil genetic mechanisms regulating their body sizes and effects of independent artificial selections on those genetic mechanisms. However, full understanding for the genetic mechanisms and phenotypic consequences in minipigs still lag behind. RESULTS: Here, using whole genome sequencing data of 41 pig breeds, including eight minipigs, we identified a large genomic diversity in a minipig population compared to other pig populations in terms of population structure, demographic signatures, and selective signatures. Selective signatures reveal diverse biological mechanisms related to body size in minipigs. We also found evidence for neural development mechanism as a minipig-specific body size regulator. Interestingly, selection signatures within those mechanisms containing neural development are also highly different among minipig breeds. Despite those large genetic variances, PLAG1, CHM, and ESR1 are candidate key genes regulating body size which experience different differentiation directions in different pig populations. CONCLUSIONS: These findings present large variances of genetic structures, demographic signatures, and selective signatures in the minipig population. They also highlight how different artificial selections with large genomic diversity have shaped the convergent dwarfism.


Asunto(s)
Enanismo , Porcinos Enanos , Animales , Porcinos Enanos/genética , Porcinos , Enanismo/genética , Enanismo/veterinaria , Tamaño Corporal/genética , Fenotipo , Selección Genética , Variación Genética , Genómica , Secuenciación Completa del Genoma
2.
Microorganisms ; 12(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38543563

RESUMEN

Investigating the diversity of a given species could give clues for the development of autochthonous starter cultures. However, few studies have focused on the intraspecies diversity of Lactobacillus delbrueckii strains, a technologically important lactic acid bacterium for the dairy industry. For this reason, Lactobacillus delbrueckii strains from the Saint-Nectaire Protected Designation of Origin (PDO) area were isolated and characterized. Genetic diversity was determined based on core genome phylogenetic reconstruction and pangenome analysis, while phenotypic assessments encompassed proteolysis and volatile compound production potential. A total of 15 L. delbrueckii ssp. lactis unique new strains were obtained. The genetic analysis and further proteolytic activities measurement revealed low variability among these Saint-Nectaire strains, while substantial genetic variability was observed within the L. delbrueckii ssp. lactis subspecies as a whole. The volatile compound profiles slightly differed among strains, and some strains produced volatile compounds that could be of particular interest for cheese flavor development. While the genetic diversity among Saint-Nectaire strains was relatively modest compared to overall subspecies diversity, their distinct characteristics and pronounced differentiation from publicly available genomes position them as promising candidates for developing autochthonous starter cultures for cheese production.

3.
Plant Dis ; 106(3): 984-989, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34735277

RESUMEN

Yellow tailflower mild mottle virus (YTMMV, genus Tobamovirus) was identified from wild plants of solanaceous species in Australia. Nicotiana benthamiana is a species indigenous to the arid north of Australia. N. benthamiana accession RA-4 (the lab type), which has a mutant, functionally defective, RNA-dependent RNA polymerase 1 (Rdr1) gene (Nb-Rdr1m), has played a significant role in plant virology, but little study has been done regarding responses to virus infection by other accessions of N. benthamiana. All wild-collected N. benthamiana accessions used in this study harbored wild-type Rdr1 genes (Nb-Rdr1). We compared symptoms of YTMMV infection and viral RNA load on RA-4 and nine wild-collected accessions of N. benthamiana from mainland Western Australia, an island, and the Northern Territory. After inoculation with YTMMV, RA-4 plants responded with systemic hypersensitivity and all individuals were dead 35 days postinoculation (dpi). Plants of wild-collected accessions exhibited a range of symptoms, from mild to severe, and some, but not all, died in the same period. Quantitative reverse transcription PCR revealed that the Rdr1 mutation was not a predictor of viral RNA load or symptom severity. For example, wild-collected A019412 plants carried more than twice the viral RNA load of RA-4 plants, but symptom expression was moderate. For plants of most accessions, viral RNA load did not increase after 10 dpi. The exception was plants of accession Barrow-1, in which viral RNA load was low until 15 dpi, after which it increased more than 29-fold. This study revealed differential responses by N. benthamiana accessions to infection by an isolate of YTMMV. The Rdr1 gene, whether mutant or wild-type, did not appear to influence viral RNA load or disease expression. Genetic diversity of the 10 N. benthamiana accessions in some cases reflected geographical location, but in other accessions this was not so.


Asunto(s)
Tobamovirus , Enfermedades de las Plantas , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Nicotiana , Tobamovirus/genética
4.
mSystems ; 6(4): e0051121, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34374564

RESUMEN

Methicillin-resistant Staphylococcus sciuri (MRSS) strain C2865 from a stranded dog in Nigeria was trimethoprim (TMP) resistant but lacked formerly described staphylococcal TMP-resistant dihydrofolate reductase genes (dfr). Whole-genome sequencing, comparative genomics, and pan-genome analyses were pursued to unveil the molecular bases for TMP resistance via resistome and mobilome profiling. MRSS C2865 comprised a species subcluster and positioned just above the intraspecies boundary. Lack of species host tropism was observed. S. sciuri exhibited an open pan-genome, while MRSS C2865 harbored the highest number of unique genes (75% associated with mobilome). Within this fraction, we discovered a transferable TMP resistance gene, named dfrE, which confers high-level TMP resistance in Staphylococcus aureus and Escherichia coli. dfrE was located in a novel multidrug resistance mosaic plasmid (pUR2865-34) encompassing adaptive, mobilization, and segregational stability traits. dfrE was formerly denoted as dfr_like in Exiguobacterium spp. from fish farm sediment in China but escaped identification in one macrococcal and diverse staphylococcal genomes in different Asian countries. dfrE shares the highest identity with dfr of soil-related Paenibacillus anaericanus (68%). Data analysis discloses that dfrE has emerged from a single ancestor and places S. sciuri as a plausible donor. C2865 unique fraction additionally enclosed novel chromosomal mobile islands, including a multidrug-resistant pseudo-SCCmec cassette, three apparently functional prophages (Siphoviridae), and an SaPI4-related staphylococcal pathogenicity island. Since dfrE seems not yet common in staphylococcal clinical specimens, our data promote early surveillance and enable molecular diagnosis. We evidence the genome plasticity of S. sciuri and highlight its role as a resourceful reservoir for adaptive traits. IMPORTANCE The discovery and surveillance of antimicrobial resistance genes (AMRG) and their mobilization platforms are critical to understand the evolution of bacterial resistance and to restrain further expansion. Limited genomic data are available on Staphylococcus sciuri; regardless, it is considered a reservoir for critical AMRG and mobile elements. We uncover a transferable staphylococcal TMP resistance gene, named dfrE, in a novel mosaic plasmid harboring additional resistance, adaptive, and self-stabilization features. dfrE is present but evaded detection in diverse species from varied sources geographically distant. Our analyses evidence that the dfrE-carrying element has emerged from a single ancestor and position S. sciuri as the donor species for dfrE spread. We also identify novel mobilizable chromosomal islands encompassing AMRG and three unrelated prophages. We prove high intraspecies heterogenicity and genome plasticity for S. sciuri. This work highlights the importance of genome-wide ecological studies to facilitate identification, characterization, and evolution routes of bacteria adaptive features.

5.
BMC Genomics ; 22(1): 124, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602135

RESUMEN

BACKGROUND: Micrococcus luteus is a group of actinobacteria that is widely used in biotechnology and is being thought as an emerging nosocomial pathogen. With one of the smallest genomes of free-living actinobacteria, it is found in a wide range of environments, but intraspecies genetic diversity and adaptation strategies to various environments remain unclear. Here, comparative genomics, phylogenomics, and genome-wide association studies were used to investigate the genomic diversity, evolutionary history, and the potential ecological differentiation of the species. RESULTS: High-quality genomes of 66 M. luteus strains were downloaded from the NCBI GenBank database and core and pan-genome analysis revealed a considerable intraspecies heterogeneity. Phylogenomic analysis, gene content comparison, and average nucleotide identity calculation consistently indicated that the species has diverged into three well-differentiated clades. Population structure analysis further suggested the existence of an unknown ancestor or the fourth, yet unsampled, clade. Reconstruction of gene gain/loss events along the evolutionary history revealed both early events that contributed to the inter-clade divergence and recent events leading to the intra-clade diversity. We also found convincing evidence that recombination has played a key role in the evolutionary process of the species, with upto two-thirds of the core genes having been affected by recombination. Furthermore, distribution of mammal-associated strains (including pathogens) on the phylogenetic tree suggested that the last common ancestor had a free-living lifestyle, and a few recently diverged lineages have developed a mammal-associated lifestyle separately. Consistently, genome-wide association analysis revealed that mammal-associated strains from different lineages shared genes functionally relevant to the host-associated lifestyle, indicating a recent ecological adaption to the new host-associated habitats. CONCLUSIONS: These results revealed high intraspecies genomic diversity of M. luteus and highlighted that gene gain/loss events and extensive recombination events played key roles in the genome evolution. Our study also indicated that, as a free-living species, some lineages have recently developed or are developing a mammal-associated lifestyle. This study provides insights into the mechanisms that drive the genome evolution and adaption to various environments of a bacterial species.


Asunto(s)
Genoma Bacteriano , Micrococcus luteus , Animales , Evolución Molecular , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica , Micrococcus luteus/genética , Filogenia , Recombinación Genética
6.
Int J Food Microbiol ; 316: 108475, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31874326

RESUMEN

Lactobacillus (L.) sanfranciscensis is a competitive key species in sourdough fermentations. However, the principles involved in establishing the commonly observed phenomenon of strain dominance are unresolved. This has been studied little because the methods for fast and reliable differentiation of strains and their monitoring during fermentation are tedious and cannot be done with large numbers of isolates. In this contribution, we present a strain-specific, PCR-based typing method that uses length heterogeneities of the clustered regularly interspaced short palindromic repeats (CRISPR) loci as they occur in the genomes of different strains. In silico analysis of 21 genomes revealed 14 different CRISPR genotypes. We then designed a primer set to simultaneously detect different strains in a multiplex PCR assay designated CRISPR locus length polymorphism PCR (CLLP-PCR). The usefulness of this method was evaluated in lab-scale sourdough fermentations conducted with rye and wheat flours. First, the flour was mixed with water to a dough yield of 200. Then each dough was inoculated with four different L. sanfranciscensis strains (TMW 1.1150, TMW 1.392, TMW 1.2142, and TMW 1.2138) at levels of 109 cfu/g each. Sourdoughs were propagated at 28 °C for 5 days by back slopping 5% to the flour mass every 24 h. Samples were collected each day; DNA was isolated, and the presence of strains was detected qualitatively in the sourdoughs with PCR. L. sanfranciscensis TMW 1.392 became dominant as early as 2 days into the fermentation and remained the only detectable strain for the rest of the sampling period. CLLP-PCR proved to be useful in investigating the assertiveness of different strains of L. sanfranciscensis in sourdoughs. Therefore, CLLP-PCR may be used as a tool to investigate assertiveness of microorganisms in food fermentations at the strain level.


Asunto(s)
Pan/microbiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Lactobacillus/aislamiento & purificación , Secale , Triticum , Fermentación , Alimentos Fermentados , Harina/microbiología , Microbiología de Alimentos , Lactobacillus/clasificación , Lactobacillus/genética , Lactobacillus/metabolismo , Reacción en Cadena de la Polimerasa Multiplex
7.
Front Microbiol ; 10: 2698, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824466

RESUMEN

Concerns about food contamination by Listeria monocytogenes are on the rise with increasing consumption of ready-to-eat foods. Biofilm production of L. monocytogenes is presumed to be one of the ways that confer its increased resistance and persistence in the food chain. In this study, a collection of isolates from foods and food processing environments (FPEs) representing persistent, prevalent, and rarely detected genotypes was evaluated for biofilm forming capacities including adhesion and sessile biomass production under diverse environmental conditions. The quantity of sessile biomass varied according to growth conditions, lineage, serotype as well as genotype but association of clonal complex (CC) 26 genotype with biofilm production was evidenced under cold temperature. In general, relative biofilm productivity of each strain varied inconsistently across growth conditions. Under our experimental conditions, there were no clear associations between biofilm formation efficiency and persistent or prevalent genotypes. Distinct extrinsic factors affected specific steps of biofilm formation. Sudden nutrient deprivation enhanced cellular adhesion while a prolonged nutrient deficiency impeded biofilm maturation. Salt addition increased biofilm production, moreover, nutrient limitation supplemented by salt significantly stimulated biofilm formation. Pan-genome-wide association study (Pan-GWAS) assessed genetic composition with regard to biofilm phenotypes for the first time. The number of reported genes differed depending on the growth conditions and the number of common genes was low. However, a broad overview of the ontology contents revealed similar patterns regardless of the conditions. Functional analysis showed that functions related to transformation/competence and surface proteins including Internalins were highly enriched.

8.
Pathogens ; 7(1)2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29342100

RESUMEN

The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.

9.
Genome Biol Evol ; 8(5): 1556-70, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27189983

RESUMEN

We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed.


Asunto(s)
Alteromonas/genética , Organismos Acuáticos/genética , Evolución Molecular , Variación Genética , Genoma Bacteriano , Anotación de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
10.
Mol Ecol ; 25(1): 403-13, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26211679

RESUMEN

A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms.


Asunto(s)
Citomegalovirus/genética , Flujo Genético , Variación Genética , Selección Genética , Citomegalovirus/clasificación , ADN Viral/genética , Evolución Molecular , ARN Largo no Codificante/genética , Recombinación Genética , Análisis de Secuencia de ADN
11.
FEMS Yeast Res ; 14(4): 642-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24645649

RESUMEN

High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.


Asunto(s)
Ácido Acético/metabolismo , Ácido Acético/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Estrés Fisiológico , Tolerancia a Medicamentos , Variación Genética , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA