Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Genet Genomic Med ; 11(11): e2238, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37466410

RESUMEN

BACKGROUND: Biallelic pathogenic variants in the KCNJ16 gene result in hypokalemic tubulopathy and deafness (HKTD) (MIM #619406), which is a rare autosomal recessive disease characterized by hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. Currently, nine individuals with HKTD have been reported, and seven pathogenic variants in KCNJ16 have been revealed. METHODS: A 5-year-6-month-old Chinese female patient displayed hypokalemic metabolic acidosis, salt wasting, renin-angiotensin-aldosterone system (RAAS) activation, arrhythmia, myocardial damage, cardiogenic shock and secondary diffuse brain oedema. Trio-based whole-exome sequencing (WES) was applied to detect the genetic cause. RESULTS: Novel compound heterozygous variants, c.190A>C (p.Thr64Pro) and c.628C>G (p.His210Asp), in KCNJ16 were detected in the patient, and these variants were inherited from the patient's mother and father, respectively. Then, we systematically reviewed the available clinical manifestations of individuals with HKTD. We found that HKTD patients are at risk of cardiogenic shock and secondary diffuse brain oedema, which urges clinicians to make early diagnoses with prompt treatments. CONCLUSION: These findings expand the variant spectrum of KCNJ16, enrich the clinical characteristics of HKTD, and provide a solid base for the genetic counseling, diagnosis and treatment of this condition.


Asunto(s)
Acidosis , Edema Encefálico , Sordera , Femenino , Humanos , Acidosis/genética , Edema Encefálico/genética , Pueblos del Este de Asia , Choque Cardiogénico , Preescolar
2.
BMC Endocr Disord ; 23(1): 113, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208644

RESUMEN

BACKGROUND: Recurrent and metastatic thyroid cancer is more invasive and can transform to dedifferentiated thyroid cancer, thus leading to a severe decline in the 10-year survival. The thyroid-stimulating hormone receptor (TSHR) plays an important role in differentiation process. We aim to find a therapeutic target in redifferentiation strategies for thyroid cancer. METHODS: Our study integrated the differentially expressed genes acquired from the Gene Expression Omnibus database by comparing TSHR expression levels in the Cancer Genome Atlas database. We conducted functional enrichment analysis and verified the expression of these genes by RT-PCR in 68 pairs of thyroid tumor and paratumor tissues. Artificial intelligence-enabled virtual screening was combined with the VirtualFlow platform for deep docking. RESULTS: We identified five genes (KCNJ16, SLC26A4, TG, TPO, and SYT1) as potential cancer treatment targets. TSHR and KCNJ16 were downregulated in the thyroid tumor tissues, compared with paired normal tissues. In addition, KCNJ16 was lower in the vascular/capsular invasion group. Enrichment analyses revealed that KCNJ16 may play a significant role in cell growth and differentiation. The inward rectifier potassium channel 5.1 (Kir5.1, encoded by KCNJ16) emerged as an interesting target in thyroid cancer. Artificial intelligence-facilitated molecular docking identified Z2087256678_2, Z2211139111_1, Z2211139111_2, and PV-000592319198_1 (-7.3 kcal/mol) as the most potent commercially available molecular targeting Kir5.1. CONCLUSION: This study may provide greater insights into the differentiation features associated with TSHR expression in thyroid cancer, and Kir5.1 may be a potential therapeutic target in the redifferentiation strategies for recurrent and metastatic thyroid cancer.


Asunto(s)
Canales de Potasio de Rectificación Interna , Neoplasias de la Tiroides , Humanos , Canales de Potasio de Rectificación Interna/genética , Simulación del Acoplamiento Molecular , Inteligencia Artificial , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Receptores de Tirotropina/metabolismo , Descubrimiento de Drogas
3.
Front Physiol ; 13: 1039029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439248

RESUMEN

Basolateral potassium channels in the distal convoluted tubule (DCT) are composed of inwardly-rectifying potassium channel 4.1 (Kir4.1) and Kir5.1. Kir4.1 interacts with Kir5.1 to form a 40 pS K+ channel which is the only type K+ channel expressed in the basolateral membrane of the DCT. Moreover, Kir4.1/Kir5.1 heterotetramer plays a key role in determining the expression and activity of thiazide-sensitive Na-Cl cotransport (NCC). In addition to Kir4.1/Kir5.1, Kir1.1 (ROMK) is expressed in the apical membrane of the late DCT (DCT2) and plays a key role in mediating epithelial Na+ channel (ENaC)-dependent K+ excretion. High dietary-K+-intake (HK) stimulates ROMK and inhibits Kir4.1/Kir5.1 in the DCT. Inhibition of Kir4.1/Kir5.1 is essential for HK-induced suppression of NCC whereas the stimulation of ROMK is important for increasing ENaC-dependent K+ excretion during HK. We have now used the patch-clamp-technique to examine whether gender and Cl- content of K+-diet affect HK-induced inhibition of basolateral Kir4.1/Kir5.1 and HK-induced stimulation of ROMK. Single-channel-recording shows that basolateral 40 pS K+ channel (Kir4.1/Kir5.1) activity of the DCT defined by NPo was 1.34 (1% KCl, normal K, NK), 0.95 (5% KCl) and 1.03 (5% K+-citrate) in male mice while it was 1.47, 1.02 and 1.05 in female mice. The whole-cell recording shows that Kir4.1/Kir5.1-mediated-K+ current of the early-DCT (DCT1) was 1,170 pA (NK), 725 pA (5% KCl) and 700 pA (5% K+-citrate) in male mice whereas it was 1,125 pA, 674 pA and 700 pA in female mice. Moreover, K+-currents (IK) reversal potential of DCT (an index of membrane potential) was -63 mV (NK), -49 mV (5% KCl) and -49 mV (5% K-citrate) in the male mice whereas it was -63 mV, -50 mV and -50 mV in female mice. Finally, TPNQ-sensitive whole-cell ROMK-currents in the DCT2 /initial-connecting tubule (CNT) were 910 pA (NK), 1,520 pA (5% KCl) and 1,540 pA (5% K+-citrate) in male mice whereas the ROMK-mediated K+ currents were 1,005 pA, 1,590 pA and 1,570 pA in female mice. We conclude that the effect of HK intake on Kir4.1/Kir5.1 of the DCT and ROMK of DCT2/CNT is similar between male and female mice. Also, Cl- content in HK diets has no effect on HK-induced inhibition of Kir4.1/Kir5.1 of the DCT and HK-induced stimulation of ROMK in DCT2/CNT.

4.
Am J Physiol Cell Physiol ; 323(3): C706-C717, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35848616

RESUMEN

Inwardly rectifying potassium (Kir) channels are broadly expressed in many mammalian organ systems, where they contribute to critical physiological functions. However, the importance and function of the Kir5.1 channel (encoded by the KCNJ16 gene) have not been fully recognized. This review focuses on the recent advances in understanding the expression patterns and functional roles of Kir5.1 channels in fundamental physiological systems vital to potassium homeostasis and neurological disorders. Recent studies have described the role of Kir5.1-forming Kir channels in mouse and rat lines with mutations in the Kcnj16 gene. The animal research reveals distinct renal and neurological phenotypes, including pH and electrolyte imbalances, blunted ventilatory responses to hypercapnia/hypoxia, and seizure disorders. Furthermore, it was confirmed that these phenotypes are reminiscent of those in patient cohorts in which mutations in the KCNJ16 gene have also been identified, further suggesting a critical role for Kir5.1 channels in homeostatic/neural systems health and disease. Future studies that focus on the many functional roles of these channels, expanded genetic screening in human patients, and the development of selective small-molecule inhibitors for Kir5.1 channels, will continue to increase our understanding of this unique Kir channel family member.


Asunto(s)
Epilepsia , Canales de Potasio de Rectificación Interna , Animales , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Riñón/metabolismo , Mamíferos/metabolismo , Ratones , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Canal Kir5.1
5.
Am J Physiol Cell Physiol ; 323(2): C277-C288, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759440

RESUMEN

The inwardly rectifying potassium channel (Kir) 4.1 (encoded by KCNJ10) interacts with Kir5.1 (encoded by KCNJ16) to form a major basolateral K+ channel in the renal distal convoluted tubule (DCT), connecting tubule (CNT), and the cortical collecting duct (CCD). Kir4.1/Kir5.1 heterotetramer plays an important role in regulating Na+ and K+ transport in the DCT, CNT, and CCD. A recent development in the field has firmly established the role of Kir4.1/Kir5.1 heterotetramer of the DCT in the regulation of thiazide-sensitive Na-Cl cotransporter (NCC). Changes in Kir4.1/Kir5.1 activity of the DCT are an essential step for the regulation of NCC expression/activity induced by dietary K+ and Na+ intakes and play a role in modulating NCC by type 2 angiotensin II receptor (AT2R), bradykinin type II receptor (BK2R), and ß-adrenergic receptor. Since NCC activity determines the Na+ delivery rate to the aldosterone-sensitive distal nephron (ASDN), a distal nephron segment from late DCT to CCD, Kir4.1/Kir5.1 activity plays a critical role not only in the regulation of renal Na+ absorption but also in modulating renal K+ excretion and maintaining K+ homeostasis. Thus, Kir4.1/Kir5.1 activity serves as an important component of renal K+ sensing mechanism. The main focus of this review is to provide an overview regarding the role of Kir4.1 and Kir5.1 of the DCT and CCD in the regulation of renal K+ excretion and Na+ absorption.


Asunto(s)
Canales de Potasio de Rectificación Interna , Túbulos Renales , Túbulos Renales Distales , Potenciales de la Membrana , Nefronas , Canales de Potasio de Rectificación Interna/genética , Sodio
6.
Front Physiol ; 13: 852674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370765

RESUMEN

In 2009, two groups independently linked human mutations in the inwardly rectifying K+ channel Kir4.1 (gene name KCNJ10) to a syndrome affecting the central nervous system (CNS), hearing, and renal tubular salt reabsorption. The autosomal recessive syndrome has been named EAST (epilepsy, ataxia, sensorineural deafness, and renal tubulopathy) or SeSAME syndrome (seizures, sensorineural deafness, ataxia, intellectual disability, and electrolyte imbalance), accordingly. Renal dysfunction in EAST/SeSAME patients results in loss of Na+, K+, and Mg2+ with urine, activation of the renin-angiotensin-aldosterone system, and hypokalemic metabolic alkalosis. Kir4.1 is highly expressed in affected organs: the CNS, inner ear, and kidney. In the kidney, it mostly forms heteromeric channels with Kir5.1 (KCNJ16). Biallelic loss-of-function mutations of Kir5.1 can also have disease significance, but the clinical symptoms differ substantially from those of EAST/SeSAME syndrome: although sensorineural hearing loss and hypokalemia are replicated, there is no alkalosis, but rather acidosis of variable severity; in contrast to EAST/SeSAME syndrome, the CNS is unaffected. This review provides a framework for understanding some of these differences and will guide the reader through the growing literature on Kir4.1 and Kir5.1, discussing the complex disease mechanisms and the variable expression of disease symptoms from a molecular and systems physiology perspective. Knowledge of the pathophysiology of these diseases and their multifaceted clinical spectrum is an important prerequisite for making the correct diagnosis and forms the basis for personalized therapies.

7.
Br J Pharmacol ; 179(12): 2953-2968, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34904226

RESUMEN

BACKGROUND AND PURPOSE: Inwardly rectifying K+ (Kir ) channels located on the basolateral membrane of epithelial cells of the distal nephron play a crucial role in K+ handling and BP control, making these channels an attractive target for the treatment of hypertension. The purpose of the present study was to determine how the inhibition of basolateral Kir 4.1/Kir 5.1 heteromeric K+ channel affects epithelial sodium channel (ENaC)-mediated Na+ transport in the principal cells of cortical collecting duct (CCD). EXPERIMENTAL APPROACH: The effect of fluoxetine, amitriptyline and recently developed Kir inhibitor, VU0134992, on the activity of Kir 4.1, Kir 4.1/Kir 5.1 and ENaC were tested using electrophysiological approaches in CHO cells transfected with respective channel subunits, cultured polarized epithelial mCCDcl1 cells and freshly isolated rat and human CCD tubules. To test the effect of pharmacological Kir 4.1/Kir 5.1 inhibition on electrolyte homeostasis in vivo and corresponding changes in distal tubule transport, Dahl salt-sensitive rats were injected with amitriptyline (15 mg·kg-1 ·day-1 ) for 3 days. KEY RESULTS: We found that inhibition of Kir 4.1/Kir 5.1, but not the Kir 4.1 channel, depolarizes the cell membrane, induces the elevation of intracellular Ca2+ concentration and suppresses ENaC activity. Furthermore, we demonstrate that amitriptyline administration leads to a significant drop in plasma K+ level, triggering sodium excretion and diuresis. CONCLUSION AND IMPLICATIONS: The present data uncover a specific role of the Kir 4.1/Kir 5.1 channel in the modulation of ENaC activity and emphasize the potential for using Kir 4.1/Kir 5.1 inhibitors to regulate electrolyte homeostasis and BP.


Asunto(s)
Túbulos Renales Colectores , Canales de Potasio de Rectificación Interna , Amitriptilina/metabolismo , Amitriptilina/farmacología , Animales , Cricetinae , Cricetulus , Electrólitos/metabolismo , Electrólitos/farmacología , Canales Epiteliales de Sodio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/farmacología , Ratas , Ratas Endogámicas Dahl , Sodio/metabolismo
8.
Physiol Rep ; 9(20): e15080, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665521

RESUMEN

The nitric oxide (NO)-generating enzyme, NO synthase-1ß (NOS1ß), is essential for sodium (Na+ ) homeostasis and blood pressure control. We previously showed that collecting duct principal cell NOS1ß is critical for inhibition of the epithelial sodium channel (ENaC) during high Na+ intake. Previous studies on freshly isolated cortical collecting ducts (CCD) demonstrated that exogenous NO promotes basolateral potassium (K+ ) conductance through basolateral channels, presumably Kir 4.1 (Kcnj10) and Kir 5.1 (Kcnj16). We, therefore, investigated the effects of NOS1ß knockout on Kir 4.1/Kir 5.1 channel activity. Indeed, in CHO cells overexpressing NOS1ß and Kir 4.1/Kir 5.1, the inhibition of NO signaling decreased channel activity. Male littermate control and principal cell NOS1ß knockout mice (CDNOS1KO) on a 7-day, 4% NaCl diet (HSD) were used to detect changes in basolateral K+ conductance. We previously demonstrated that CDNOS1KO mice have high circulating aldosterone despite a high-salt diet and appropriately suppressed renin. We observed greater Kir 4.1 cortical abundance and significantly greater Kir 4.1/Kir 5.1 single-channel activity in the principal cells from CDNOS1KO mice. Moreover, blocking aldosterone action with in vivo spironolactone treatment resulted in lower Kir 4.1 abundance and greater plasma K+ in the CDNOS1KO mice compared to controls. Lowering K+ content in the HSD prevented the high aldosterone and greater plasma Na+ of CDNOS1KO mice and normalized Kir 4.1 abundance. We conclude that during chronic HSD, lack of NOS1ß leads to increased plasma K+ , enhanced circulating aldosterone, and activation of ENaC and Kir 4.1/Kir 5.1 channels. Thus, principal cell NOS1ß is required for the regulation of both Na+ and K+ by the kidney.


Asunto(s)
Homeostasis , Túbulos Renales Colectores/metabolismo , Óxido Nítrico Sintasa de Tipo I/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Transporte Iónico , Masculino , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/genética
9.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205849

RESUMEN

The ability of spermatozoa to swim towards an oocyte and fertilize it depends on precise K+ permeability changes. Kir5.1 is an inwardly-rectifying potassium (Kir) channel with high sensitivity to intracellular H+ (pHi) and extracellular K+ concentration [K+]o, and hence provides a link between pHi and [K+]o changes and membrane potential. The intrinsic pHi sensitivity of Kir5.1 suggests a possible role for this channel in the pHi-dependent processes that take place during fertilization. However, despite the localization of Kir5.1 in murine spermatozoa, and its increased expression with age and sexual maturity, the role of the channel in sperm morphology, maturity, motility, and fertility is unknown. Here, we confirmed the presence of Kir5.1 in spermatozoa and showed strong expression of Kir4.1 channels in smooth muscle and epithelial cells lining the epididymal ducts. In contrast, Kir4.2 expression was not detected in testes. To examine the possible role of Kir5.1 in sperm physiology, we bred mice with a deletion of the Kcnj16 (Kir5.1) gene and observed that 20% of Kir5.1 knock-out male mice were infertile. Furthermore, 50% of knock-out mice older than 3 months were unable to breed. By contrast, 100% of wild-type (WT) mice were fertile. The genetic inactivation of Kcnj16 also resulted in smaller testes and a greater percentage of sperm with folded flagellum compared to WT littermates. Nevertheless, the abnormal sperm from mutant animals displayed increased progressive motility. Thus, ablation of the Kcnj16 gene identifies Kir5.1 channel as an important element contributing to testis development, sperm flagellar morphology, motility, and fertility. These findings are potentially relevant to the understanding of the complex pHi- and [K+]o-dependent interplay between different sperm ion channels, and provide insight into their role in fertilization and infertility.


Asunto(s)
Infertilidad Masculina/genética , Canales de Potasio de Rectificación Interna/genética , Espermatozoides/metabolismo , Animales , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica/genética , Infertilidad Masculina/patología , Masculino , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Músculo Liso/metabolismo , Oocitos/crecimiento & desarrollo , Potasio/metabolismo , Motilidad Espermática/genética , Espermatozoides/crecimiento & desarrollo , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Canal Kir5.1
10.
J Am Soc Nephrol ; 32(6): 1498-1512, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33811157

RESUMEN

BACKGROUND: The transepithelial transport of electrolytes, solutes, and water in the kidney is a well-orchestrated process involving numerous membrane transport systems. Basolateral potassium channels in tubular cells not only mediate potassium recycling for proper Na+,K+-ATPase function but are also involved in potassium and pH sensing. Genetic defects in KCNJ10 cause EAST/SeSAME syndrome, characterized by renal salt wasting with hypokalemic alkalosis associated with epilepsy, ataxia, and sensorineural deafness. METHODS: A candidate gene approach and whole-exome sequencing determined the underlying genetic defect in eight patients with a novel disease phenotype comprising a hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. Electrophysiologic studies and surface expression experiments investigated the functional consequences of newly identified gene variants. RESULTS: We identified mutations in the KCNJ16 gene encoding KCNJ16, which along with KCNJ15 and KCNJ10, constitutes the major basolateral potassium channel of the proximal and distal tubules, respectively. Coexpression of mutant KCNJ16 together with KCNJ15 or KCNJ10 in Xenopus oocytes significantly reduced currents. CONCLUSIONS: Biallelic variants in KCNJ16 were identified in patients with a novel disease phenotype comprising a variable proximal and distal tubulopathy associated with deafness. Variants affect the function of heteromeric potassium channels, disturbing proximal tubular bicarbonate handling as well as distal tubular salt reabsorption.


Asunto(s)
Desequilibrio Ácido-Base/genética , Pérdida Auditiva Sensorineural/genética , Hipopotasemia/genética , Enfermedades Renales/genética , Canales de Potasio de Rectificación Interna/genética , Adolescente , Adulto , Alelos , Animales , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Túbulos Renales , Mutación con Pérdida de Función , Masculino , Ratones , Nefronas/metabolismo , Oocitos , Linaje , Fenotipo , ARN Mensajero/metabolismo , Reabsorción Renal/genética , Sales (Química)/metabolismo , Secuenciación del Exoma , Xenopus laevis , Adulto Joven
11.
Neurogenetics ; 21(2): 135-143, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32062759

RESUMEN

KCNJ10 encodes the inward-rectifying potassium channel (Kir4.1) that is expressed in the brain, inner ear, and kidney. Loss-of-function mutations in KCNJ10 gene cause a complex syndrome consisting of epilepsy, ataxia, intellectual disability, sensorineural deafness, and tubulopathy (EAST/SeSAME syndrome). Patients with EAST/SeSAME syndrome display renal salt wasting and electrolyte imbalance that resemble the clinical features of impaired distal tubular salt transport in Gitelman's syndrome. A key distinguishing feature between these two conditions is the additional neurological (extrarenal) manifestations found in EAST/SeSAME syndrome. Recent reports have further expanded the clinical and mutational spectrum of KCNJ10-related disorders including non-syndromic early-onset cerebellar ataxia. Here, we describe a kindred of three affected siblings with early-onset ataxia, deafness, and progressive spasticity without other prominent clinical features. By using targeted next-generation sequencing, we have identified two novel missense variants, c.488G>A (p.G163D) and c.512G>A (p.R171Q), in the KCNJ10 gene that, in compound heterozygosis, cause this distinctive EAST/SeSAME phenotype in our family. Electrophysiological characterization of these two variants confirmed their pathogenicity. When expressed in CHO cells, the R171Q mutation resulted in 50% reduction of currents compared to wild-type KCNJ10 and G163D showed a complete loss of function. Co-expression of G163D and R171Q had a more pronounced effect on currents and membrane potential than R171Q alone but less severe than single expression of G163D. Moreover, the effect of the mutations seemed less pronounced in the presence of Kir5.1 (encoded by KCNJ16), with whom the renal Kir4.1 channels form heteromers. This partial functional rescue by co-expression with Kir5.1 might explain the lack of renal symptoms in the patients. This report illustrates that a spectrum of disorders with distinct clinical symptoms may result from mutations in different parts of KCNJ10, a gene initially associated only with the EAST/SeSAME syndrome.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Discapacidad Intelectual/genética , Mutación Missense , Canales de Potasio de Rectificación Interna/genética , Convulsiones/genética , Anciano , Animales , Células CHO , Cricetulus , Femenino , Pérdida Auditiva Sensorineural/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual/fisiopatología , Persona de Mediana Edad , Linaje , Fenotipo , Convulsiones/fisiopatología
12.
Am J Physiol Renal Physiol ; 318(2): F332-F337, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31841387

RESUMEN

Inwardly rectifying K+ (Kir) channels are expressed in multiple organs and cell types and play critical roles in cellular function. Most notably, Kir channels are major determinants of the resting membrane potential and K+ homeostasis. The renal outer medullary K+ channel (Kir1.1) was the first renal Kir channel identified and cloned in the kidney over two decades ago. Since then, several additional members, including classical and ATP-regulated Kir family classes, have been identified to be expressed in the kidney and to contribute to renal ion transport. Although the ATP-regulated Kir channel class remains the most well known due to severe pathological phenotypes associated with their mutations, progress is being made in defining the properties, localization, and physiological functions of other renal Kir channels, including those localized to the basolateral epithelium. This review is primarily focused on the current knowledge of the expression and localization of renal Kir channels but will also briefly describe their proposed functions in the kidney.


Asunto(s)
Riñón/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Animales , Regulación de la Expresión Génica , Homeostasis , Humanos , Riñón/fisiopatología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/fisiopatología , Potenciales de la Membrana , Canales de Potasio de Rectificación Interna/genética
13.
Clin Sci (Lond) ; 133(24): 2449-2461, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31799617

RESUMEN

Kir5.1 (encoded by the Kcnj16 gene) is an inwardly rectifying K+ (Kir) channel highly expressed in the aldosterone-sensitive distal nephron of the kidney, where it forms a functional channel with Kir4.1. Kir4.1/Kir5.1 channels are responsible for setting the transepithelial voltage in the distal nephron and collecting ducts and are thereby major determinants of fluid and electrolyte distribution. These channels contribute to renal blood pressure control and have been implicated in salt-sensitive hypertension. However, mechanisms pertaining to the impact of K ir4.1/Kir5.1-mediated K+ transport on the renin-angiotensin-aldosterone system (RAAS) remain unclear. Herein, we utilized a knockout of Kcnj16 in the Dahl salt-sensitive rat (SSKcnj16-/-) to investigate the relationship between Kir5.1 and RAAS balance and function in the sensitivity of blood pressure to the dietary Na+/K+ ratio. The knockout of Kcnj16 caused substantial elevations in plasma RAAS hormones (aldosterone and angiotensin peptides) and altered the RAAS response to changing the dietary Na+/K+ ratio. Blocking aldosterone with spironolactone caused rapid mortality in SSKcnj16-/- rats. Supplementation of the diet with high K+ was protective against mortality resulting from aldosterone-mediated mechanisms. Captopril and losartan treatment had no effect on the survival of SSKcnj16-/- rats. However, neither of these drugs prevented mortality of SSKcnj16-/- rats when switched to high Na+ diet. These studies revealed that the knockout of Kcnj16 markedly altered RAAS regulation and function, suggesting Kir5.1 as a key regulator of the RAAS, particularly when exposed to changes in dietary sodium and potassium content.


Asunto(s)
Túbulos Renales Distales/metabolismo , Canales de Potasio de Rectificación Interna/genética , Sistema Renina-Angiotensina/efectos de los fármacos , Aldosterona/sangre , Angiotensinas/sangre , Animales , Presión Sanguínea , Técnicas de Inactivación de Genes , Antagonistas de Receptores de Mineralocorticoides/farmacología , Potasio en la Dieta/administración & dosificación , Ratas Endogámicas Dahl , Sodio en la Dieta/administración & dosificación , Espironolactona/farmacología , Canal Kir5.1
14.
Am J Physiol Renal Physiol ; 315(4): F986-F996, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897283

RESUMEN

Kir4.1/5.1 heterotetramer participates in generating the negative cell membrane potential in distal convoluted tubule (DCT) and plays a critical role in determining the activity of Na-Cl cotransporter (NCC). Kir5.1 contains a phosphothreonine motif at its COOH terminus (AA249-252). Coimmunoprecipitation showed that Nedd4-2 was associated with Kir5.1 in HEK293 cells cotransfected with Kir5.1 or Kir4.1/Kir5.1. GST pull-down further confirmed the association between Nedd4-2 and Kir5.1. Ubiquitination assay showed that Nedd4-2 increased the ubiquitination of Kir4.1/Kir5.1 heterotetramer in the cells cotransfected with Kir4.1/Kir5.1, but it has no effect on Kir4.1 or Kir5.1 alone. Patch-clamp and Western blot also demonstrated that coexpression of Nedd4-2 but not Nedd4-1 decreased K currents and Kir4.1 expression in the cells cotransfected with Kir4.1 and Kir5.1. In contrast, Nedd4-2 fails to inhibit Kir4.1 in the absence of Kir5.1 or in the cells transfected with the inactivated form of Nedd4-2 (Nedd4-2C821A). Moreover, the mutation of TPVT motif in the COOH terminus of Kir5.1 largely abolished the association of Nedd4-2 with Kir5.1 and abolished the inhibitory effect of Nedd4-2 on K currents in HEK293 cells transfected with Kir4.1 and Kir5.1 mutant (Kir5.1T249A). Finally, the basolateral K conductance in the DCT and Kir4.1 expression is significantly increased in the kidney-specific Nedd4-2 knockout or in Kir5.1 knockout mice in comparison to their corresponding wild-type littermates. We conclude that Nedd4-2 binds to Kir5.1 at the phosphothreonine motif of the COOH terminus, and the association of Nedd4-2 with Kir5.1 facilitates the ubiquitination of Kir4.1, thereby regulating its plasma expression in the DCT.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Nefronas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Ubiquitinación , Animales , Transporte Iónico/fisiología , Túbulos Renales Distales/metabolismo , Potenciales de la Membrana/fisiología , Ratones Noqueados , Canal Kir5.1
15.
Kidney Int ; 93(4): 893-902, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29310825

RESUMEN

Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.


Asunto(s)
Túbulos Renales Distales/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio en la Dieta/metabolismo , Alcalosis/genética , Alcalosis/metabolismo , Alcalosis/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Homeostasis , Hidroclorotiazida/farmacología , Hipopotasemia/genética , Hipopotasemia/metabolismo , Hipopotasemia/fisiopatología , Túbulos Renales Distales/efectos de los fármacos , Túbulos Renales Distales/fisiopatología , Masculino , Potenciales de la Membrana , Ratones Noqueados , Natriuresis , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/genética , Eliminación Renal , Sodio/orina , Inhibidores de los Simportadores del Cloruro de Sodio/farmacología , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Canal Kir5.1
16.
Am J Physiol Renal Physiol ; 313(2): F254-F261, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28356287

RESUMEN

Our aim is to examine the role of PGF2α receptor (FP), a highly expressed prostaglandin receptor in the distal convoluted tubule (DCT) in regulating the basolateral 40-pS K channel. The single-channel studies demonstrated that PGF2α had a biphasic effect on the 40-pS K channel in the DCT-PGF2α stimulated at low concentrations (less than 500 nM), while at high concentrations (above 1 µM), it inhibited the 40-pS K channels. Moreover, neither 13,14-dihydro-15-keto-PGF2α (a metabolite of PGF2α) nor PGE2 was able to mimic the effect of PGF2α on the 40-pS K channel in the DCT. The inhibition of PKC had no significant effect on the 40-pS K channel; however, it abrogated the inhibitory effect of 5 µM PGF2α on the K channel. Moreover, stimulation of PKC inhibited the 40-pS K channel in the DCT, suggesting that PKC mediates the inhibitory effect of PGF2α on the 40-pS K channel. Conversely, the stimulatory effect of PGF2α on the 40-pS K channel was absent in the DCT treated with DPI, a NADPH oxidase (NOX) inhibitor. Also, adding 100 µM H2O2 mimicked the stimulatory effect of PGF2α and increased the 40-pS K channel activity in DCT. Moreover, the stimulatory effect of 500 nM PGF2α and H2O2 was not additive, suggesting the role of superoxide-related species in mediating the stimulatory effect of PGF2α on the 40-pS K channel. The inhibition of Src family tyrosine protein kinase (SFK) not only inhibited the 40-pS K channel in the DCT but also completely abolished the stimulatory effects of PGF2α and H2O2 on the 40-pS K channel. We conclude that PGF2α at low doses stimulates the basolateral 40-pS K channel by a NOX- and SFK-dependent mechanism, while at high concentrations, it inhibits the K channel by a PKC-dependent pathway.


Asunto(s)
Dinoprost/farmacología , Túbulos Renales Distales/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Receptores de Prostaglandina/agonistas , Animales , Relación Dosis-Respuesta a Droga , Femenino , Técnicas In Vitro , Túbulos Renales Distales/metabolismo , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Canales de Potasio/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Prostaglandina/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo
17.
Acta Physiol (Oxf) ; 219(1): 260-273, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27129733

RESUMEN

Epithelial K+ channels are essential for maintaining electrolyte and fluid homeostasis in the kidney. It is recognized that basolateral inward-rectifying K+ (Kir ) channels play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron and collecting duct. Monomeric Kir 4.1 (encoded by Kcnj10 gene) and heteromeric Kir 4.1/Kir 5.1 (Kir 4.1 together with Kir 5.1 (Kcnj16)) channels are abundantly expressed at the basolateral membranes of the distal convoluted tubule and the cortical collecting duct cells. Loss-of-function mutations in KCNJ10 cause EAST/SeSAME tubulopathy in humans associated with salt wasting, hypomagnesaemia, metabolic alkalosis and hypokalaemia. In contrast, mice lacking Kir 5.1 have severe renal phenotype that, apart from hypokalaemia, is the opposite of the phenotype seen in EAST/SeSAME syndrome. Experimental advances using genetic animal models provided critical insights into the physiological role of these channels in electrolyte homeostasis and the control of kidney function. Here, we discuss current knowledge about K+ channels at the basolateral membrane of the distal tubules with specific focus on the homomeric Kir 4.1 and heteromeric Kir 4.1/Kir 5.1 channels. Recently identified molecular mechanisms regulating expression and activity of these channels, such as cell acidification, dopamine, insulin and insulin-like growth factor-1, Src family protein tyrosine kinases, as well as the role of these channels in NCC-mediated transport in the distal convoluted tubules, are also described.


Asunto(s)
Regulación de la Expresión Génica , Túbulos Renales Distales/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Membrana Celular/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Nefronas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canal Kir5.1
18.
Biochim Biophys Acta ; 1852(11): 2554-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26319417

RESUMEN

The renal phenotype of EAST syndrome, a disease caused by the loss-of-function-mutations of Kcnj10 (Kir4.1), is a reminiscence of Gitelman's syndrome characterized by the defective function in the distal convoluted tubule (DCT). The aim of the present study is to test whether antidiuretic hormone (vasopressin)-induced stimulation of the Na(+)-activated 80-150pS K(+) channel is responsible for compensating the lost function of Kcnj10 in the thick ascending limb (TAL) of subjects with EAST syndrome. Immunostaining and western blot showed that the expression of aquaporin 2 (AQP2) was significantly higher in Kcnj10(-/-) mice than those of WT littermates, suggesting that the disruption of Kcnj10 stimulates vasopressin response in the kidney. The role of vasopressin in stimulating the basolateral K(+) conductance of the TAL was strongly indicated by the finding that the application of arginine-vasopressin (AVP) hyperpolarized the membrane in the TAL of Kcnj10(-/-) mice. Application of AVP significantly stimulated the 80-150pS K(+) channel in the TAL and this effect was blocked by tolvaptan (V2 receptor antagonist) or by inhibiting PKA. Moreover, the water restriction for 24h significantly increased the probability of finding the 80-150pS K(+) channel and the K(+) channel open probability in the TAL. The application of a membrane permeable cAMP analog also mimicked the effect of AVP and activated this K(+) channel, suggesting that cAMP-PKA pathway stimulates the 80-150pS K(+) channels. The role of the basolateral K(+) conductance in maintaining transcellular Cl(-) transport is further suggested by the finding that the inhibition of basolateral K(+) channels significantly diminished the AVP-induced stimulation of the basolateral 10pS Cl(-) channels. We conclude that vasopressin stimulates the 80-150pS K(+) channel in the TAL via a cAMP-dependent mechanism. The vasopressin-induced stimulation of K(+) channels is responsible for compensating lost function of Kcnj10 thereby rescuing the basolateral K(+) conductance which is essential for the transport function in the TAL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA