Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biochem Biophys Res Commun ; 692: 149337, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070277

RESUMEN

BACKGROUND: Kinesin family member 14 (KIF14) overexpression has been linked to tumor progression and metastasis in different malignancies, but its precise molecular mechanism in bladder cancer (BLCA) remains unclear. METHODS: The expression of KIF14 in BLCA and its relationship with clinical outcomes were assessed. Functional investigations on KIF14 were conducted using CCK-8, Transwell experiment, colony formation, scratch motility assays, and flow cytometry. We examined the downstream route of KIF14 and identified its upstream regulatory factor through luciferase reporter experiments and bioinformatics tools. RESULTS: Our findings demonstrated that increased KIF14 expression was associated with poor survival prognosis in BLCA patients. Deletion of KIF14 affected cell cycle progression, induced apoptosis, and inhibited cell growth, migration, and invasion. GSEA analysis revealed a strong association between KIF14 expression and the PI3K/AKT signaling pathway. Further research showed that KIF14 deletion decreased the levels of p-PI3K, p-AKT, FOXM1, and CCNB1. We also found that has-miR-152-3p (miR-152) suppressed BLCA cell growth by post-transcriptionally regulating KIF14 expression. CONCLUSIONS: Our findings suggest that targeting KIF14 could alter the PI3K/AKT and FOXM1-CCNB1 axis, leading to growth inhibition, cell cycle arrest, and induction of apoptosis in BLCA cells. Additionally, miR-152 directly regulates KIF14 expression at the post-transcriptional level. Overall, KIF14 represents a promising therapeutic target for BLCA clinical therapy.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Familia , Regulación Neoplásica de la Expresión Génica , Cinesinas/genética , Cinesinas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
2.
Front Cell Dev Biol ; 11: 1249174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033864

RESUMEN

Objective: Circular RNAs (circRNAs) have been shown to participate in various cancers via sponging miRNAs (microRNAs). However, their role in lung adenocarcinoma (LUAD) remains elusive. Methods: The transcriptome data and corresponding clinical information of lung adenocarcinoma samples were extracted from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed genes (DEgenes) were identified and further used to constructed a circRNA-associated competing endogenous RNA (ceRNA) network. Real-Time qPCR analysis was conducted to examine gene expression at transcriptional level. The regulatory mechanisms of circRNA-miRNA-gene were validated by dual-luciferase reporter array and RNA pull-down assay. Cell growth, migration and invasion were evaluated by CCK-8 assay, colony formation assay and transwell assay, respectively. Results: Based on public microarray data, we systematically constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs and 49 DEgenes. Among the ceRNA network, we found that circ-0002727 was a key regulatory and was further confirmed to be upregulated in LUAD cancer cells. Subsequently, we found that silencing of circ-0002727 significantly suppressed the LUAD cell proliferation, migration and invasion in vitro. Mechanistically, we showed that circ-0002727 could competitively bind miR-144-3p to enhance the KIF14 expression in LUAD cells. Rescue assays indicated that circ-0002727 could regulate LUAD cell proliferation through modulating miR-144-3p/KIF14 pathway. Besides, KIF14 expression level was positively correlated with TNM stage and metastasis, and patients with high KIF14 expression suffered poor prognosis. Conclusion: Taken together, our study revealed that circ-0002727 could act as a ceRNA to regulate LUAD progression via modulating miR-144-3p/KIF14 pathway, providing a potential therapeutic target for LUAD.

3.
Arch Biochem Biophys ; 737: 109551, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822388

RESUMEN

Docetaxel is a first-line chemotherapy drug for castration-resistant prostate cancer (CRPC); yet, some CRPC patients develop docetaxel drug resistance. Cabazitaxel is approved in the post-docetaxel treatment setting. However, recent studies suggested cross-resistance between the development of drug resistance and current treatments. In this study, we used docetaxel-resistant cell lines DU145/DTX50 and PC-3/DTX30 to measure the responses to cabazitaxel. Our findings demonstrated that docetaxel resistance could lead to cross-resistance to cabazitaxel. After docetaxel-resistant cells were treated with cabazitaxel, transcriptome analysis was performed, and the results were analyzed in combination with survival analysis and correlation analysis with Gleason score to screen the cross-resistance genes. The continuously increased expression of kinesin family member 14 (KIF14) was identified as the main cause of cross-resistance to cabazitaxel in docetaxel-resistant cells. Silencing the expression of KIF14 could restore the sensitivity of resistant PCa cells to docetaxel and cabazitaxel, attenuate proliferation and promote apoptosis of the resistant PCa cells. Notably, the depressed expression of KIF14 inhibited the phosphorylation of Akt located downstream. In summary, KIF14 mediates the cross-resistance between docetaxel and cabazitaxel, and targeting KIF14 could be an effective measurement for reversing docetaxel or cabazitaxel chemotherapy failure or enhancing the anti-tumor effects of docetaxel or cabazitaxel.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Docetaxel , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Fosforilación , Resistencia a Antineoplásicos/genética , Antineoplásicos/farmacología , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/uso terapéutico , Cinesinas/metabolismo
4.
Appl Biochem Biotechnol ; 195(3): 1723-1735, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36367621

RESUMEN

Colon cancer (CC) is a common and lethal cancer to be further elucidated. Accumulating studies elaborated the crucial role of miRNAs differentially expressed in cancer cell growth. In the present study, differentially expressed miRNAs related to CC were screened by the bioinformatics methods on the strength of TCGA database. Highly expressed miR-17-3p was proved to notably influence CC cell proliferative, migratory, invasion, and apoptotic levels. By using TargetScan and miRTarBase databases, phospholipase C delta 1 (PLCD1) was predicted as a target downstream of miR-17-3p, and their binding site was predicted. Through TCGA database, low expression of PLCD1 and its significant negative correlation with miR-17-3p were identified in CC. Dual-luciferase reporter gene analysis ascertained the targeting relationship between miR-17-3p and PLCD1. Cell Counting Kit-8, colony formation, and transwell assays were introduced to detect CC cell malignant progression. Flow cytometry was applied to detect CC cell apoptosis. As result revealed, miR-17-3p was markedly highly expressed, and PLCD1, the target of miR-17-3p, was remarkably lowly expressed in CC cells. Forced expression of miR-17-3p facilitated CC cell proliferation, migration, invasion, and suppressed apoptosis. Biological roles of upregulating miR-17-3p in the colon cancer cells were markedly weakened by over-expressing PLCD1 simultaneously. MiR-17-3p regulated CC cell malignant progression, as well as apoptosis by targeting PLCD1. Moreover, KIF14 was extensively considered as an involved tumor-promoting gene that could be affected by miR-17-3p/PLCD1 axis based on BioGRID analysis and CO-IP assay. Concludingly, this study exhibited that miR-17-3p facilitated CC progression by PLCD1 downregulation.


Asunto(s)
Neoplasias del Colon , MicroARNs , Humanos , Fosfolipasa C delta/genética , Fosfolipasa C delta/metabolismo , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Neoplasias del Colon/genética , Fenotipo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo
5.
Aging (Albany NY) ; 14(19): 8013-8031, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36227151

RESUMEN

Kinesin family member 14 (KIF14) is potentially oncogenic and acts as a chromokinesin via binding to microtubules and chromatin during the bipolar spindle formation. KIF14 overexpression is a significant prognostic biomarker in various cancers. However, the expression, prognosis, mechanism, and tumor immune regulation of KIF14 in lung adenocarcinoma (LUAD) remain obscure. Our results demonstrated that KIF14 was upregulated in a variety of cancers, including LUAD. High-expression of KIF14 in LUAD was associated with pathological tumor stage, N stage and unfavorable prognosis. Both univariate and multivariate Cox regression results demonstrated that KIF14 was a significant independent risk factor influencing the prognosis of LUAD patients. The most promising upstream ncRNA-associated pathway of KIF14 in LUAD was determined to be GSEC/TYMSOS-hsa-miR-101-3p axis according to the starBase and The Cancer Genome Atlas databases. Furthermore, upregulation of KIF14 in LUAD was positively correlated with tumor mutation burden, microsatellite instability, immune checkpoint-related gene expression, immune cell biomarkers, and tumor immune cell infiltration. This study reveals that ncRNAs-mediated overexpression of KIF14 is associated with tumor immune infiltration and unfavorable prognosis in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Cinesinas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Adenocarcinoma del Pulmón/patología , Pronóstico , Biomarcadores de Tumor/metabolismo , Cromatina , Proteínas Oncogénicas/genética
6.
Oncol Lett ; 23(5): 156, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35836481

RESUMEN

Kinesin family member 14 (KIF14) is not only involved in numerous essential biological activities, such as cytokinesis and myelination, but also regulates several malignant behaviors and progression of cancer. However, its role in gastrointestinal cancer is rarely reported. Therefore, the present study aimed to investigate the association of KIF14 expression with disease-free survival (DFS) and overall survival (OS) times in patients with gastrointestinal cancer. A total of 101 patients with gastrointestinal cancer (36 patients with gastric cancer and 65 patients with colorectal cancer) were retrospectively reviewed, and their cancer samples were collected to detect the protein and mRNA expression levels of KIF14 using immunohistochemistry and reverse transcription-quantitative PCR, respectively. KIF14 protein expression was increased in cancer tissues compared with adjacent tissues (all P<0.001). The protein expression levels of KIF14 were positively associated with T stage (P<0.001), distant metastases (P=0.007) and TNM stage (P<0.001), while KIF14 mRNA expression was positively associated with T stage (P<0.001), lymph node metastasis (P=0.004), distant metastases (P=0.001) and TNM stage (P<0.001). High protein and mRNA expression levels of KIF14 were associated with worse DFS (P<0.001) and OS (P=0.016) times. In addition, high KIF14 protein expression independently predicted unfavorable DFS times (P=0.007). Subgroup analysis revealed that in patients with gastric cancer, KIF14 expression was associated with DFS and OS times, while in patients with colorectal cancer, KIF14 expression was only associated with DFS time, but not with OS time. In conclusion, KIF14 expression was not only associated with advanced pathological differentiation and TNM stage but was also associated with poor survival time in patients with gastrointestinal cancer. These results indicate the potential of KIF14 as a biomarker for gastrointestinal cancer prognosis.

7.
World J Surg Oncol ; 20(1): 125, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439960

RESUMEN

BACKGROUND: Cervical cancer is a kind of malignant gynecological tumor. The first choice for treating cervical cancer is still a combination of surgery and chemoradiotherapy, but the 5-year survival rate remains poor. Therefore, researchers are trying to find new ways to diagnose and treat cervical cancer early. METHODS: The expression level of KIF14 in cells and tissues was determined via qRT-PCR. The ability of the cells to proliferate, migrate, and invade was examined using CCK-8 assay kits, colony formation assays, and Transwell chambers. The expression levels of Cyclin D1, Cyclin B1, p21, and p27 were also detected using western blot assays. RESULTS: The results suggested that p27 is a key regulatory factor in the KIF14-mediated regulation of the cell cycle. In addition, KIF14 knockdown promotes malignancy in cervical cancer cells by inhibiting p27 degradation, resulting in cell cycle arrest. CONCLUSIONS: KIF14 is an oncogene in cervical cancer, and knocking down KIF14 causes cell cycle arrest by inhibiting p27 degradation, thus affecting cell viability, proliferation, and migration. These results provide a potential therapeutic target for cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Ciclo Celular , Puntos de Control del Ciclo Celular , Supervivencia Celular , Cuello del Útero/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Humanos , Cinesinas/genética , Proteínas Oncogénicas , Neoplasias del Cuello Uterino/patología
8.
Bioengineered ; 13(2): 4610-4620, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35156510

RESUMEN

Exosomes participate in the progression and angiogenesis of esophageal squamous cell carcinoma (ESCC). This study aimed to explore the effect and mechanism of exosomes-derived miR-154-5p on the progression and angiogenesis of ESCC. The exosomes with the diameter of 40-270 nm were successfully isolated from ESCC cells by ultracentrifugation. They were then assessed by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blotting. Kinesin family member 14 (KIF14) was upregulated, while miR-154-5p was downregulated in ESCC as examined by Quantitative Real-time PCR (qRT-PCR). Exosomes-derived miR-154-5p from ESCC cells was found to attenuate the cellular migration, invasion, and angiogenesis of ESCC using Cell Counting Kit-8 (CCK-8), wound healing assay, transwell migration assay, and tumor formation assays. Moreover, KIF14 was proven to be a direct downstream target gene of miR-154-5p in ESCC cells using luciferase assay. In conclusion, our study identified that exosomes-derived miR-154-5p attenuates ESCC progression and angiogenesis by targeting KIF14 in vitro, which might provide a novel approach for the diagnosis and treatment of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Cinesinas/genética , MicroARNs/genética , Neovascularización Patológica/genética , Proteínas Oncogénicas/genética , Biomarcadores de Tumor/genética , Progresión de la Enfermedad , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Exosomas/química , Exosomas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Bioengineered ; 12(1): 7656-7665, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605738

RESUMEN

Esophageal squamous cell carcinoma (ESCC), a major form of esophageal cancer, is a serious threat to human health. This study was conducted to investigate the pathogenesis of ESCC and find effective therapies to improve it. Protein expression of transfected plasmids was detected by RT-qPCR and western blot. Co-immunoprecipitation assay was performed to verify the binding of LETM1 and KIF14. CCK-8, wound healing and transwell assays were used to assess the proliferation, invasion and migration of ESCC cells. Finally, the angiogenesis was assessed using tubule formation assay. The co-immunoprecipitation results showed that LETM1 could bind to KIF14. The cytological and protein results demonstrated that interference with LETM1 caused downregulation of KIF14 expression, which led to inhibition of proliferation, invasion, migration and angiogenesis in ESCC cells. Taken together, interfering with LETM1 to downregulate KIF14 may become a new target for ESCC treatment.


Asunto(s)
Proteínas de Unión al Calcio/genética , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Cinesinas/genética , Proteínas de la Membrana/genética , Proteínas Oncogénicas/genética , Proteínas de Unión al Calcio/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Patológica/genética , Proteínas Oncogénicas/metabolismo
10.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575892

RESUMEN

Genomic instability (GIN) has an important contribution to the pathology of colorectal cancer (CRC). Therefore, we selected mitosis and cytokinesis kinesins, KIF11 and KIF14, as factors of potential clinical and functional value in CRC, as their aberrant expression has been suspected to underlie GIN. We examined the expression and the prognostic and biological significance of KIF11 and KIF14 in CRC via in-house immunohistochemistry on tissue microarrays, public mRNA expression datasets, as well as bioinformatics tools. We found that KIF11 and KIF14 expression, at both the protein and mRNA level, was markedly altered in cancer tissues compared to respective controls, which was reflected in the clinical outcome of CRC patients. Specifically, we provide the first evidence that KIF11 protein and mRNA, KIF14 mRNA, as well as both proteins together, can significantly discriminate between CRC patients with better and worse overall survival independently of other relevant clinical risk factors. The negative prognostic factors for OS were high KIF11 protein, high KIF11 protein + low KIF14 protein, low KIF11 mRNA and low KIF14 mRNA. Functional enrichment analysis revealed that the gene sets related to the cell cycle, DNA replication, DNA repair and recombination, among others, were positively associated with KIF11 or KIF14 expression in CRC tissues. In TCGA cohort, the positive correlations between several measures related to GIN and the expression of KIFs were also demonstrated. In conclusion, our results suggest that CRC patients can be stratified into distinct risk categories by biological and molecular determinants, such as KIF11 and KIF14 expression and, mechanistically, this is likely attributable to their role in maintaining genome integrity.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Cinesinas/genética , Proteínas Oncogénicas/genética , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Inestabilidad Genómica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Cinesinas/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Oncogénicas/metabolismo , Pronóstico , Modelos de Riesgos Proporcionales
11.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208606

RESUMEN

Available biomarkers for pancreatic adenocarcinoma (PAC) are inadequate to guide individual patient prognosis or therapy. Therefore, herein we aimed to verify the hypothesis that differences in the expression of KIF11 and KIF14, i.e., molecular motor proteins being primarily implicated in cell division events could account for the differences in the clinical outcome of PAC patients. In-house immunohistochemistry was used to evaluate the protein expressions of KIF11 and KIF14 in PAC, whereas RNA-seq datasets providing transcript expression data were obtained from public sources. IHC and mRNA results were correlated with clinicopathological features and overall survival (OS). Furthermore, the genes co-expressed with KIF11 or KIF14 were predicted and functionally annotated. In our series, malignant ducts displayed more intense but less abundant KIF11 staining than normal-appearing ducts. The former was also true for KIF14, whereas the prevalence of positive staining was similar in tumor and normal adjacent tissues. Based on categorical immunoreactive scores, we found KIF11 and KIF14 to be frequently downregulated or upregulated in PAC cases, respectively, and those with elevated levels of either protein, or both together, were associated with better prognosis. Specifically, we provide the first evidence that KIF11 or KIF14 proteins can robustly discriminate between patients with better and worse OS, independently of other relevant clinical risk factors. In turn, mRNA levels of KIF11 and KIF14 were markedly elevated in tumor tissues compared to normal tissues, and this coincided with adverse prognosis, even after adjusting for multiple confounders. Tumors with low predicted KIF11 or KIF14 expression were seen to have enrichment for circadian clock, whereas those with high levels were enriched for the genomic instability-related gene set. KIF11 and KIF14 were strongly correlated with one another, and CEP55, ASPM, and GAMT were identified as the main hub genes. Importantly, the combined expression of these five genes emerged as the most powerful independent prognostic indicator associated with poor survival outcome compared to classical clinicopathological factors and any marker alone. In conclusion, our study identifies novel prognostic biomarkers for PAC, which await validation.

12.
Curr Eye Res ; 46(2): 232-238, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32757684

RESUMEN

Purpose: This work aimed to investigate the influences of microRNA-340 (miR-340) on proliferation and apoptosis of retinoblastoma (RB) cells and explore its regulatory mechanism. MATERIALS AND METHODS: miR-340 mimic and inhibitor were applied for up-regulating or inhibiting the expression of miR-340 in RB cell lines. Then, CCK-8 and AnnexinV-FITC/PI staining were used to measure cell proliferation and apoptosis, respectively. After that, luciferase assay was performed to affirm the direct targets of miR-340. Furthermore, qRT-PCR and western blotting assay were carried out to detect the levels of miR-340 and KIF14. RESULTS: Our results indicated that the miR-340 was lowly expressed in RB cell lines, and up-regulation of miR-340 can decrease the proliferation and induce the apoptosis of RB cells. Moreover, we verified that miR-340 controls KIF14 expression, either directly or through a subsequent molecular cascade, and inversely related to its expression. The results obtained from the rescue assays presented that over-expression of KIF14 reversed the miR-340-mediated inhibition on malignant phenotype of RB cells. CONCLUSIONS: Overall, we proved that miR-340 can decrease the proliferation and increase the apoptosis of RB cells, and its function in RB cells was at least partially achieved via down-regulation of KIF14, prompting that miR-340 was expected to supply a new direction for clinical therapy of RB in the future.


Asunto(s)
Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Cinesinas/genética , MicroARNs/genética , Proteínas Oncogénicas/genética , Neoplasias de la Retina/genética , Retinoblastoma/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Cinesinas/biosíntesis , MicroARNs/biosíntesis , Proteínas Oncogénicas/biosíntesis , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Retinoblastoma/metabolismo , Retinoblastoma/patología
13.
Braz. j. med. biol. res ; 54(11): e11363, 2021. graf
Artículo en Inglés | LILACS | ID: biblio-1339445

RESUMEN

Cervical cancer (CC) is the most common malignant tumor in females. Although persistent high-risk human papillomavirus (HPV) infection is a leading factor that causes CC, few women with HPV infection develop CC. Therefore, many mechanisms remain to be explored, such as aberrant expression of oncogenes and tumor suppressor genes. To identify promising prognostic factors and interpret the relevant mechanisms of CC, the RNA sequencing profile of CC was downloaded from the Cancer Genome Atlas and the Gene Expression Omnibus databases. The GSE63514 dataset was analyzed, and differentially expressed genes (DEGs) were obtained by weighted coexpression network analysis and the edgeR package in R. Fifty-three shared genes were mainly enriched in nuclear chromosome segregation and DNA replication signaling pathways. Through a protein-protein interaction network and prognosis analysis, the kinesin family member 14 (KIF14) hub gene was extracted from the set of 53 shared genes, which was overexpressed and associated with poor overall survival (OS) and disease-free survival (DFS) of CC patients. Mechanistically, gene set enrichment analysis showed that KIF14 was mainly enriched in the glycolysis/gluconeogenesis signaling pathway and DNA replication signaling pathway, especially in the cell cycle signaling pathway. RT-PCR and the Human Protein Atlas database confirmed that these genes were significantly increased in CC samples. Therefore, our findings indicated the biological function of KIF14 in cervical cancer and provided new ideas for CC diagnosis and therapies.


Asunto(s)
Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Infecciones por Papillomavirus , Regulación Neoplásica de la Expresión Génica , Ciclo Celular/genética , Cinesinas/genética , Proteínas Oncogénicas , Supervivencia sin Enfermedad , Biología Computacional , Mapas de Interacción de Proteínas
14.
Cancer Manag Res ; 12: 13241-13257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33380832

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common human malignant tumors. The prognosis of HCC patients is still unsatisfying. In this study, we performed the integrated bioinformatics analysis to identify potential biomarkers and biological pathways in HCC. METHODS: Gene expression profiles were obtained from the Gene Expression Omnibus database (GSE55048, GSE55758, and GSE56545) for the screening of the common differentially expressed genes (DEGs) between HCC tissues and matched non-tumor tissues. DEGs were subjected to Gene Ontology, KEGG pathway, and Reactome pathway analysis. The hub genes were identified by using protein-protein interaction (PPI) network analysis. The hub genes in HCC were further subjected to overall survival analysis of HCC patients. The hub genes were further validated by in vitro functional assays. RESULTS: A total of 544 common differentially expressed genes were screened from three datasets. Gene Ontology, KEGG and Reactome analysis results showed that DEGs are significantly associated with the biological process of cell cycle, cell division, and DNA replication. PPI network analysis identified 20 hub genes from the DEGs. These hub genes except CENPE were all significantly up-regulated in the HCC tissues when compared to non-tumor tissues. The Kaplan-Meier survival analysis results showed that the high expression of the 20 hub genes was associated with shorter survival of the HCC patients. Further validation studies showed that knockdown of KIF14 and KIF23 both suppressed the proliferative potential, increased the caspase-3/-7 activity, up-regulated Bax expression, and promoted the invasive and migratory abilities in the HCC cells. In addition, knockdown of KIF14 and KIF23 enhanced chemosensitivity to cisplatin and sorafenib in the HCC cells. Finally, the high expression of KIF14 and KIF23 was associated with shorter progression-free survival, recurrence-free survival, and disease-specific survival of patients with HCC. CONCLUSION: In conclusion, the present study performed the integrated bioinformatics analysis and showed that KIF14 and KIF23 silence attenuated cell proliferation, invasion, and migration, and promoted chemosensitivity of HCC cells. KIF14 and KIF23 may serve as potential biomarkers for predicting the worse prognosis of patients with HCC.

15.
Curr Biol ; 30(17): 3342-3351.e5, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32649913

RESUMEN

In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.


Asunto(s)
Citocinesis , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Oncogénicas/metabolismo , Huso Acromático/fisiología , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Cinesinas/química , Cinesinas/genética , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Unión Proteica
16.
Onco Targets Ther ; 13: 2235-2246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214824

RESUMEN

BACKGROUND: Mounting evidence has reported that microRNA-154-5p (miR-154-5p) is involved in the development of multiple cancers, but its function in nasopharyngeal carcinoma (NPC) remains not well investigated. METHODS: Real-time quantitative PCR (qRT-PCR) was used to detect miR-154-5p expression in NPC tissues and cells. CCK8, colony formation, wound healing and transwell assays were performed to assess cell proliferation, migration and invasion. Dual-luciferase reporter assays and Western blots were performed to confirm the target gene of miR-154-5p. Rescue experiments were conducted to explore the influence of target gene KIF14 on the functions of miR-154-5p. Xenograft tumor model was conducted to detect the effect of miR-154-5p in vivo. RESULTS: qRT-PCR results revealed that the expression of miR-154-5p was down-regulated in NPC tissues and cell lines compared to normal nasopharyngeal tissues and cell line. Overexpression of miR-154-5p inhibited cell migration and invasion. However, miR-154-5p had no influence on the proliferation of NPC cells. MiR-154-5p overexpression suppressed xenograft tumor metastasis in vivo. Dual-luciferase reporter analysis identified KIF14 as a target gene of miR-154-5p. Rescue experiments showed that knockdown of KIF14 reversed the effect of inhibiting miR-154-5p expression on NPC cell migration and invasion. CONCLUSION: Taken together, miR-154-5p suppresses tumor migration and invasion by targeting KIF14 in NPC. The newly identified miR-154-5p/KIF14 interaction offers further insights into the progression of NPC, which may represent a novel target for NPC diagnosis and treatment.

17.
J Exp Clin Cancer Res ; 38(1): 486, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823805

RESUMEN

BACKGROUND: Gliomas are common life-threatening cancers, mainly due to their aggressive nature and frequent invasiveness and long non-coding RNAs (lncRNAs) are emerging as promising molecular targets. Therefore, we explored the regulatory mechanisms underlying the putative involvement of the lncRNA PAX-interacting protein 1- antisense RNA1/ETS proto-oncogene 1/kinesin family member 14 (PAXIP1-AS1/ETS1/KIF14) axis in glioma cell invasion and angiogenesis. METHODS: Firstly, we identified differentially expressed lncRNA PAXIP1-AS1 as associated with glioma based on bioinformatic data. Then, validation experiments were conducted to confirm a high expression level of lncRNA PAXIP1-AS1 in glioma tissues and cells, accompanied by upregulated KIF14. We further examined the binding between lncRNA PAXIP1-AS1, KIF14 promoter activity, and transcription factor ETS1. Next, overexpression vectors and shRNAs were delivered to alter the expression of lncRNA PAXIP1-AS1, KIF14, and ETS1 to analyze their effects on glioma progression in vivo and in vitro. RESULTS: LncRNA PAXIP1-AS1 was mainly distributed in the nucleus of glioma cells. LncRNA PAXIP1-AS1 could upregulate the KIF14 promoter activity by recruiting transcription factor ETS1. Overexpression of lncRNA PAXIP1-AS1 enhanced migration, invasion, and angiogenesis of human umbilical vein endothelial cells in glioma by recruiting the transcription factor ETS1 to upregulate the expression of KIF14, which was further confirmed by accelerated tumor growth in nude mice. CONCLUSIONS: The key findings of this study highlighted the potential of the lncRNA PAXIP1-AS1/ETS1/KIF14 axis as a therapeutic target for glioma treatment, due to its role in controlling the migration and invasion of glioma cells and its angiogenesis.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Cinesinas/genética , Proteínas Oncogénicas/genética , Proteína Proto-Oncogénica c-ets-1/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Núcleo Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Invasividad Neoplásica , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Proto-Oncogenes Mas
18.
Cancer Cell Int ; 19: 144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139021

RESUMEN

BACKGROUND: Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) is an H3K27me3 demethylase, a permissive mark associated with active gene transcription. UTX has been linked to various human cancers. Colorectal cancer (CRC) ranks 3rd among the most common cancers worldwide. However, the role of UTX in colorectal cancer has rarely been reported. METHODS: RT-qPCR, immunoblotting assays (WB), and immunohistochemistry staining were conducted to explore the UTX expression levels in CRC tissues and surrounding normal tissues. CCK-8 assays, colony formation assays, and flow cytometry were also used to determine the potential role of UTX in CRC cell proliferation in vitro. A cell line-derived xenograft model was performed to determine on the role of UTX in HCT116 cell proliferation in vivo. The protein expression levels of UTX, KIF14, AKT, and GAPDH were examined by WB. RESULTS: Compared with surrounding normal tissues, UTX was upregulated in CRC tissues. Knockdown of UTX significantly inhibited proliferation and caused G0/G1 cell cycle arrest in CRC cell lines, and overexpression of UTX significantly promoted proliferation in CRC cells. Furthermore, knockdown of UTX significantly inhibited tumour growth in vivo. In addition, knockdown of UTX decreased the expression of KIF14 and pAKT and increased the expression of P21. CONCLUSIONS: Our findings indicate that knockdown of UTX inhibits CRC cell proliferation and causes G0/G1 cell cycle arrest through downregulating expression of KIF 14 and pAKT. Thus, UTX may serve as a novel biomarker in CRC.

19.
Biochim Biophys Acta Mol Basis Dis ; 1865(1): 181-192, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30404039

RESUMEN

The kinesin family member 14 (KIF14) is a potential oncogene and is involved in the metastasis of various cancers. Nevertheless, its function in gastric cancer (GC) remains poorly defined. The expression of KIF14 was examined in GC cell lines and a clinical cohort of GC specimens by qPCR, western blotting and immunohistochemistry (IHC) staining. The relationship between KIF14 expression and the clinicopathological features was analyzed. The effect of KIF14 on cell proliferation, colony formation, invasion and migration were investigated in vitro and in vivo. The expression of KIF14 was significantly increased in the GC tissues and cell lines. High KIF14 expression was associated with tumor stage, tumor-node-metastasis (TNM) stage and metastasis. KIF14 was an independent prognostic factor for the overall survival of GC, and a higher expression of KIF14 predicted a poorer survival. KIF14 silencing resulted in attenuated proliferation, invasion and migration in human gastric cancer cells, whereas KIF14 ectopic expression facilitated these biological abilities. Notably, the depressed expression of KIF14 inhibited Akt phosphorylation, while overexpressed KIF14 augmented Akt phosphorylation. Additionally, there was a significant correlation between the expression of KIF14 and p­Akt in GC tissues. Importantly, the proliferation, invasion and migration of the GC cells, which was promoted by KIF14 overexpression, was abolished by the Akt inhibitor MK-2206, while Akt overexpression greatly rescued the effects induced by KIF14 knockdown. Our findings are the first to demonstrate that KIF14 is overexpressed in GC, is correlated with poor prognosis and plays a crucial role in the progression and metastasis of GC.


Asunto(s)
Progresión de la Enfermedad , Cinesinas/metabolismo , Metástasis de la Neoplasia , Proteínas Oncogénicas/metabolismo , Neoplasias Gástricas/metabolismo , Adulto , Anciano , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células Epiteliales , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Xenoinjertos , Humanos , Cinesinas/genética , Masculino , Persona de Mediana Edad , Proteínas Oncogénicas/genética , Pronóstico , Células Madre , Neoplasias Gástricas/genética
20.
Oncotarget ; 8(28): 45459-45469, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28525372

RESUMEN

Prostate cancer (PCa) is the second leading cause of death from cancer in men. The mechanism underlying tumorigenesis and development of PCa is largely unknown. Here, we identified Kinesin family member 14 (KIF14) as a novel candidate oncogene in PCa. We found that KIF14 was overexpressed in multiple PCa cell lines and primary PCa tissues. Knockdown of KIF14 in DU145 and PC3 prostate cancer cells suppressed cell proliferation, induced cell cycle arrest and apoptosis. Transcriptome analysis by RNA-sequencing demonstrated that KIF4 suppression led to transcriptional changes of genes involved in p53 and TGF-beta signaling pathway. In addition, upregulated expression of GADD45A, GADD45B, p21, PIDD and Shisa5, which contribute to growth arrest and apoptosis induction, and downregulated CCNB1 that promotes cell cycle progression were confirmed by quantitative real-time PCR after KIF4 knockdown. We further found that KIF14 protein level was positively correlated with T stage and Gleason Score. Patients with higher KIF14 expression had shorter overall survival time than those with lower KIF14 expression. Thus, our data indicate that KIF14 could act as a potential oncogene that contributes to tumor progression and poor prognosis in PCa, which may represent a novel and useful prognostic biomarker for PCa.


Asunto(s)
Expresión Génica , Cinesinas/genética , Proteínas Oncogénicas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Adulto , Anciano , Apoptosis/genética , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular , Biología Computacional/métodos , Progresión de la Enfermedad , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Oncogenes , Pronóstico , Neoplasias de la Próstata/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA