RESUMEN
Metastasis stands as the primary contributor to mortality associated with tumors. Chemotherapy and immunotherapy are frequently utilized in the management of metastatic solid tumors. Nevertheless, these therapeutic modalities are linked to serious adverse effects and limited effectiveness in preventing metastasis. Here, we report a novel therapeutic strategy named starvation-immunotherapy, wherein an immune checkpoint inhibitor is combined with an ultra-long-acting L-asparaginase that is a fusion protein comprising L-asparaginase (ASNase) and an elastin-like polypeptide (ELP), termed ASNase-ELP. ASNase-ELP's thermosensitivity enables it to generate an in-situ depot following an intratumoral injection, yielding increased dose tolerance, improved pharmacokinetics, sustained release, optimized biodistribution, and augmented tumor retention compared to free ASNase. As a result, in murine models of oral cancer, melanoma, and cervical cancer, the antitumor efficacy of ASNase-ELP by selectively and sustainably depleting L-asparagine essential for tumor cell survival was substantially superior to that of ASNase or Cisplatin, a first-line anti-solid tumor medicine, without any observable adverse effects. Furthermore, the combination of ASNase-ELP and an immune checkpoint inhibitor was more effective than either therapy alone in impeding melanoma metastasis. Overall, the synergistic strategy of starvation-immunotherapy holds excellent promise in reshaping the therapeutic landscape of refractory metastatic tumors and offering a new alternative for next-generation oncology treatments.
Asunto(s)
Asparaginasa , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Animales , Asparaginasa/uso terapéutico , Asparaginasa/farmacología , Asparaginasa/química , Inmunoterapia/métodos , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Humanos , Línea Celular Tumoral , Sinergismo Farmacológico , Elastina/química , Elastina/metabolismo , Metástasis de la Neoplasia , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Distribución TisularRESUMEN
Purpose: L-asparaginase has been widely recognized as a critical component in the treatment of various types of lymphoproliferative disorders, since its introduction in 1960s. However, its use in some cases leads to allergic reactions rendering the continuation of treatment unfeasible. Thus, the development of L-asparaginase from alternative sources or the production of engineered enzymes have always been considered. This study aimed to produce and evaluate a novel enzyme designed based on the sequence of L-asparaginase from Escherichia coli bacteria with Y176F/S241C mutations. Methods: The Y176F/S241C mutant L-asparaginase was successfully expressed as the GST-fusion protein in E. coli, and then was subjected to affinity and size exclusion chromatography. The activity of the purified enzyme was determined based on the released ammonia as the result of substrate hydrolysis using Nessler's reagent. Chemical denaturation experiment in the presence of increasing concentration of guanidinium chloride was applied to determine the folding stability of the purified enzyme. Results: The mutant enzyme was purified with an efficiency of 77-fold but at a low recovery of 0.7%. The determined kinetic parameters Km, Vmax, kcat, specific activity and catalytic efficiency were 13.96 (mM), 2.218 (mM/min), 273.9 (min-1), 237.8 (IU/mg) and 19.62 (mM-1 min-1), respectively. Moreover, unfolding free energy determined by guanidinium chloride induced denaturation for mutated and commercial L-asparaginase enzymes were 8421 J/mol and 5274 J/mol, respectively. Conclusion: The mutant enzyme showed improved stability over the wild-type. Although the expression level and recovery were low, the mutant L-asparaginase demonstrated promising activity and stability, with potential clinical and industrial applications.
RESUMEN
Acute lymphoblastic leukemia (ALL) is a common malignancy in children, often treated with intensive chemotherapy regimens. Venous thromboembolism (VTE) poses a significant risk during ALL treatment, leading to suboptimal outcomes. Thromboprophylaxis is crucial in mitigating this risk, but its efficacy and safety remain uncertain. This systematic review and meta-analysis aimed to evaluate the effectiveness of thromboprophylaxis in reducing VTE incidence during ALL treatment, focusing on antithrombin, apixaban, and enoxaparin. A systematic literature search adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was performed. Randomized controlled trials (RCTs) investigating thromboprophylaxis in ALL were included. Data extraction and quality appraisal were performed independently by three authors. Meta-analysis was conducted using Review Manager software. Three RCTs met the inclusion criteria. Apixaban, enoxaparin, and antithrombin were assessed in these trials. Meta-analysis revealed significantly reduced odds of VTE with thromboprophylaxis compared to standard care (odds ratio (OR): 0.47, 95% confidence interval (CI) 0.29-0.75; relative risk (RR): 0.52, 95% CI 0.33-0.83). However, no significant difference in bleeding risk was observed (OR: 1.33, 95% CI 0.42-4.21; RR: 1.32, 95% CI 0.43-4.07). Heterogeneity among studies was moderate. This study showed that thromboprophylaxis with apixaban, enoxaparin, or antithrombin significantly reduces VTE incidence during ALL treatment. Despite some limitations, including heterogeneity and potential biases, these findings support the adoption of tailored thromboprophylaxis strategies to improve outcomes in ALL patients. Further research is warranted to optimize these approaches and address remaining uncertainties.
RESUMEN
L-asparaginase is a key drug in the treatment of acute lymphocytic leukemia/lymphoblastic lymphoma and is currently used in treatment regimens for a wide range of age groups, including children, adolescents, young adults, and older adults. Discontinuation of L-asparaginase leads to worse survival outcomes. Strategies such as appropriate prevention and management of asparaginase-specific adverse events such as hypersensitivity reactions and optimizing administration by therapeutic drug monitoring are important to ensure completion of all asparaginase doses planned in each regimen. Two new L-asparaginase preparations with different properties are now available in Japan, and attempts to leverage these properties for more effective and safe administration are attracting attention. This article reviews previous advances in therapy with L-asparaginase and outlines current and future challenges for maximizing the therapeutic efficacy of L-asparaginase.
Asunto(s)
Asparaginasa , Leucemia-Linfoma Linfoblástico de Células Precursoras , Asparaginasa/administración & dosificación , Asparaginasa/uso terapéutico , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéuticoRESUMEN
L-asparaginase (L-Asp) is an essential enzyme in the treatment of patients with Acute Lymphoblastic Leukemia (ALL), commonly associated with adverse events (AE). Knowing the pharmacokinetic and pharmacodynamic (PK/PD) parameters of L-Asp as well as its relationship with the development of AE is an important strategy in the search to improve the efficacy and safety of the treatment. Seventy-four children with ALL that were being treated with L-Asp, were included. One to three blood samples were randomly obtained from each patient, at times from 0 to 30 hours, until completing a total of 211 samples. The L-Asp activity and the Asparagine (Asp) concentration were quantified, in addition, the presence of anti-L-Asp antibodies (Anb) was determined. A population PK/PD model of L-Asp was developed to determine the association of covariates with PK/PD parameters. The presence of Anb was associated with the increase in L-Asp clearance (CL) and with the decrease of volume of distribution 1 (V1). On the other hand, female sex was significantly associated with the increase of V1, while the age from 1 to 6 years was significantly associated with the increase of V1. The presence of Anb as well as the female sex were related to the increase IC50 (concentration-needed to deplete-50% of Asp). Patients who presented Asp depletion before the first 24 hours after administration presented pancreatitis, this could be a risk marker. Significant results were found in this study, use of these results may contribute to the safe and effective use of L-Asp.
RESUMEN
l-Asparaginases catalyze the hydrolysis of l-asparagine to l-aspartic acid and ammonia. These enzymes have potential applications in therapeutics and food industry. Tk1656, a highly active and thermostable l-asparaginase from Thermococcus kodakarensis, has been proved effective in selective killing of acute lymphocytic leukemia cells and in reducing acrylamide formation in baked and fried foods. However, it displayed <5 % activity under physiological conditions compared to the optimal activity at 85 °C and pH 9.5. We have attempted engineering of this valuable enzyme to improve the characteristics required for therapeutic and industrial applications. Based on the literature and crystal structure of Tk1656, nine specific mutant variants were designed, produced in Escherichia coli, and the purified mutant enzymes were compared with the wild-type. One of the mutants, K299L, displayed >20 % increase in activity at 85 °C. H158S substitution resulted in >5 °C increase in the optimal temperature. Similarly, a mesophilic-like mutation L56D, resulted in >5-fold increase in activity at pH 7.0 and 37 °C compared to that of the wild-type enzyme. The substrate specificity of the mutant variants remained unchanged. These results demonstrate that L56D and K299L variants of Tk1656 are the potent enzymes for therapeutics and acrylamide mitigation applications, respectively.
RESUMEN
Asparagine synthetase (ASNS) catalyzes the biosynthesis of asparagine from aspartate and glutamine. Cells lacking ASNS, however, are auxotrophic for asparagine. Use of L-asparaginase to promote asparagine starvation in solid tumors with low ASNS levels, such as pancreatic ductal adenocarcinoma (PDAC), is a rationale treatment strategy. However, tumor cell resistance to L-asparaginase has limited its clinical utility. Our preclinical studies show that RAS/MAPK signaling circumvents L-asparaginase-induced tumor killing, but L-asparaginase and MEK inhibition potentiated tumor killing; suggesting that this combination may provide meaningful clinical benefit to patients with PDAC. This Phase I trial (NCT05034627) will evaluate the safety and tolerability of the MEK inhibitor, cobimetinib, in combination with pegylated L-asparaginase, L calaspargase pegol-mknl, in patients with locally-advanced or metastatic PDAC.
[Box: see text].
RESUMEN
L-asparaginase (ASNase, E.C. 3.5.1.1) catalyzes the deamination of L-asparagine to L-aspartic acid and ammonia and is widely used in medicine to treat acute lymphocytic leukemia. It also has significant applications in the food industry by inhibiting acrylamide formation. In this study, we characterized a thermostable ASNase from the hyper thermophilic strain, Pyrococcus yayanosii CH1. The recombinant enzyme (PyASNase) exhibited maximal activity at pH 8.0 and 85 °C. Moreover, PyASNase demonstrated promising thermostability across temperatures ranging from 70 to 95 °C. The kinetic parameters of PyASNase for L-asparagine were a Km of 6.3 mM, a kcat of 1989s-1, and a kcat/Km of 315.7 mM-1 s-1. Treating potato samples with 10 U/mL of PyASNase at 85 °C for merely 10 min reduced the acrylamide content in the final product by 82.5%, demonstrating a high efficiency and significant advantage of PyASNase in acrylamide inhibition.
Asunto(s)
Acrilamida , Asparaginasa , Estabilidad de Enzimas , Pyrococcus , Asparaginasa/química , Asparaginasa/metabolismo , Asparaginasa/genética , Acrilamida/química , Acrilamida/metabolismo , Pyrococcus/enzimología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , CalorRESUMEN
L-asparaginase is a commercial enzyme with a wide variety of applications. Asparaginase is known as an anti-cancer agent that is effective for the treatment of certain lymphomas and leukemias by growth inhibition of human cancer cells. Additionally, asparaginase is used in the food industry in a pretreatment process to decrease the accumulation of carcinogenic acrylamide. In this paper, different aspects of bacterial and fungal asparaginases such as mass, hydrophobicity and hydrophilicity of pseudo amino acid composition (PseAAC), physicochem-ical properties, and structural motifs were studied, and ROC curve statistical analysis was used for the comparison. The results showed that none of the physicochemical properties of fungal and bacterial asparaginase could not be differed, except molecular weight and sequence length. MEME Suite analysis demonstrated that there was a motif that was specific for bacterial asparaginases. However, analysis based on the concept of PseACC indicated a differentiation line between fungal and bacterial asparaginases. In conclusion, although there was not any specific demonstration to separate the bacterial and fungal asparaginases in the case of physicochemical properties, PseAAC analysis can be an appropriate and usable method to differentiate between them.
RESUMEN
A novel fluorometric method for the determination of L-asparaginase, an enzyme crucial in cancer therapy and food industry applications, is presented. This sensitive and selective approach utilizes L-asparagine and two pH-sensitive carbon dots (blue-N-CDs and red-N-CDs) as probes. The interaction between L-asparagine and L-asparaginase liberates ammonia, causing an increase in pH. This pH change simultaneously decreases the fluorescence of blue-N-CDs while enhancing the emission of red-N-CDs, enabling ratiometric detection of L-asparaginase. Comprehensive characterization of both carbon dots and investigation of their response mechanism towards L-asparaginase were conducted using ultraviolet-visible spectrophotometry, fluorescence spectroscopy, and transmission electron microscopy (TEM) imaging techniques. The designed approach demonstrates outstanding linearity (20 to 2000 U L-1) and a low detection limit (6.95 U L-1) for L-asparaginase quantification. Moreover, when tested to human serum samples, the detection system exhibits outstanding selectivity and high recovery rates (96.15% to 99.75%) with low standard deviation, underscoring its suitability for practical implementation in clinical diagnostics.
RESUMEN
This study presents a novel and selective method for the determination of l-asparagine in diverse potato varieties under various storage conditions. L-asparagine levels serve as a crucial indicator for acrylamide formation, a hazardous substance in processed potato products. The fluorometric method utilized blue-emitting CDs (B-CDs), orange-emitting CDs (O-CDs), and the enzyme L-asparaginase for ratiometric detection of L-asparagine. Upon enzymatic hydrolysis of L-asparagine by L-asparaginase, liberated ammonia induced a pH increase in the reaction medium. This pH shift enhanced the fluorescence of B-CDs while simultaneously decreasing that of O-CDs, enabling sensitive and selective L-asparagine quantification. Comprehensive characterization of the CDs was performed using various spectroscopic techniques and transmission electron microscopy. The method demonstrated excellent sensitivity (LOD = 0.31 µM) and a wide linear range (1.0-50.0 µM). When the method was applied to potato samples, high recovery values (98.00-100.33 %) with low relative standard deviations (RSDs) were achieved, confirming the accuracy and precision of the method. The approach was employed to determine L-asparagine levels in three potato varieties (Lady Rosetta, Spunta, and Nicola) under different storage temperatures and durations. This method provides a valuable tool for monitoring L-asparagine content in potatoes, potentially aiding in the mitigation of acrylamide formation during processing. The robust performance and simplicity of the proposed technique make it suitable for routine analysis in both research and industrial applications within the potato industry.
RESUMEN
In the present investigation, a novel thermophilic L-asparaginase (Asn_PA) from Pseudomonas aeruginosa CSPS4 was investigated to explore its structural insights at elevated temperatures. Sequence analysis of Asn_PA depicted three conserved motifs (VVILATGGTIAG, DGIVITHGTDTLEETAYFL, and, LRKQGVQIIRSSHVNAGGF), of them, two motifs exhibit catalytically-important residues i.e., T45 and T125. A homology modelling-based structure model for Asn_PA was generated with 4PGA as the top-matched template. The predicted structure was validated and energy was minimized. Molecular docking was carried out cantered at the active site for asparagine and glutamine as its substrate ligands. The enzyme-substrate interaction analysis showed binding affinities of - 4.8 and - 4.1 kcal/mol for asparagine and glutamine respectively. Molecular dynamics (MD) simulation studies showed a better stability of Asn_PA at temperatures of 60 °C, over 40, 50 and, 80 °C, making this enzyme a novel L-asparaginase from other mesophilic P. aeruginosa strain. The trajectory analysis showed that RMSD, Rg, and, SASA values correlate well with each other in the different tested temperatures during the MD analysis. Thus, the present findings encourage extensive characterization of the Asn_PA using laboratory experiments to understand the structural behavior of the active site loop in an open or closed state with and without the substrate molecules. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04072-w.
RESUMEN
L-asparaginase is a remarkable antineoplastic enzyme used in medicine for the treatment of acute lymphoblastic leukemia (ALL) as well as in food industries. In this work, the L-asparaginase-II gene from Salmonella paratyphi was codon-optimized, cloned, and expressed in E. coli as a His-tag fusion protein. Then, using a two-step chromatographic procedure it was purified to homogeneity as confirmed by SDS-PAGE, which also showed its monomeric molecular weight to be 37 kDa. This recombinant L-asparaginase II from Salmonella paratyphi (recSalA) was optimally active at pH 7.0 and 40 °C temperature. It was highly specific for L-asparagine as a substrate, while its glutaminase activity was low. The specific activity was found to be 197 U/mg and the kinetics elements Km, Vmax, and kcat were determined to be 21 mM, 28 µM/min, and 39.6 S-1, respectively. Thermal stability was assessed using a spectrofluorometer and showed Tm value of 45 °C. The in-vitro effects of recombinant asparaginase on three different human cancerous cell lines (MCF7, A549 and Hep-2) by MTT assay showed remarkable anti-proliferative activity. Moreover, recSalA exhibited significant morphological changes in cancer cells and IC50 values ranged from 28 to 45.5 µg/ml for tested cell lines. To investigate the binding mechanism of SalA, both substrates L-asparagine and l-glutamine were docked with the protein and the binding energy was calculated to be -4.2 kcal mol-1 and - 4.4 kcal mol-1, respectively. In summary, recSalA has significant efficacy as an anticancer agent with potential implications in oncology while its in-vivo validation needs further investigation.
Asunto(s)
Asparaginasa , Clonación Molecular , Escherichia coli , Proteínas Recombinantes , Asparaginasa/genética , Asparaginasa/química , Asparaginasa/farmacología , Asparaginasa/metabolismo , Asparaginasa/aislamiento & purificación , Humanos , Escherichia coli/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Concentración de Iones de Hidrógeno , Línea Celular Tumoral , Expresión Génica , Cinética , Estabilidad de Enzimas , Salmonella paratyphi A/genética , Salmonella paratyphi A/efectos de los fármacos , Temperatura , Proliferación Celular/efectos de los fármacosRESUMEN
Microbial enzymes are crucial catalysts in various industries due to their versatility and efficiency. The microbial enzymes market has recently expanded due to increased demand for many reasons. Among them are eco-friendly solutions, developing novel microbial strains with enhanced enzymes that perform under harsh conditions, providing sustainability, and raising awareness about the benefits of enzyme-based products. By 2030, the global enzyme market is expected to account for $525 billion, with a growth rate of 6.7 %. L-asparaginase and L-glutaminase are among the leading applied microbial enzymes in antitumor therapy, with a growing market share of 16.5 % and 9.5 %, respectively. The use of microbial enzymes has opened new opportunities to fight various tumors, including leukemia, lymphosarcoma, and breast cancer, which has increased their demand in the pharmaceutical and medicine sectors. Despite their promising applications, commercial use of microbial enzymes faces challenges such as short half-life, immunogenicity, toxicity, and other side effects. Therefore, this review explores the industrial production, purification, formulation, and commercial utilization of microbial enzymes, along with an overview of the global enzyme market. With ongoing discoveries of novel enzymes and their applications, enzyme technology offers promising avenues for cancer treatment and other therapeutic interventions.
Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Asparaginasa/uso terapéutico , Asparaginasa/química , Asparaginasa/metabolismo , Glutaminasa/metabolismo , Bacterias/enzimologíaRESUMEN
Glutaraldehyde is the conventionally used cross-linker for the activation and cross-linking of support matrices used in enzyme immobilization. However, the toxic nature of glutaraldehyde makes it unsafe for food applications, propelling the need for nontoxic cross-linkers. Genipin reacts with the primary and secondary amines generating a dark-blue colored pigment and is an attractive alternative to glutaraldehyde as a cross-linker for enzyme immobilization. Apart from its excellent cross-linking properties, genipin possesses added advantages over glutaraldehyde such as proven health benefits, biocompatibility, and biodegradability. The present study explores the application of chitosan beads cross-linked with the natural and nontoxic agent, genipin, for immobilizing l-asparaginase, aimed at its subsequent use in mitigating acrylamide formation in food products. The immobilized l-asparaginase exhibited improved functionalities such as stability, reusability, and reduction in acrylamide formation in deep-fried cassava chips. One of the limitations observed during application in the food process was the mechanical fragility of the chitosan beads during speedy stirring. This can be overcome by increasing the concentration and time of contact of the coagulant bath during the formation of chitosan beads. The drying of the enzyme-bound chitosan beads will also lead to shrinkage and prevent breakage during stirring. This study conclusively demonstrated the applicability of immobilizing l-asparaginase on genipin cross-linked chitosan beads in food-related processes.
Asunto(s)
Acrilamida , Asparaginasa , Quitosano , Reactivos de Enlaces Cruzados , Enzimas Inmovilizadas , Iridoides , Manihot , Asparaginasa/química , Quitosano/química , Iridoides/química , Acrilamida/química , Manihot/química , Reactivos de Enlaces Cruzados/química , Enzimas Inmovilizadas/química , Manipulación de Alimentos/métodosRESUMEN
Background: The Epstein-Barr virus-associated natural killer (NK) and T-cell lymphoma (EBV + NK/T cell lymphoma) is a severe illness mainly affecting children and young adults, often resulting in a poor prognosis. To date, there is no consensus on an established treatment strategy. This study aims to evaluate the efficacy and safety of the mSMILE (modified steroid, methotrexate, ifosfamide, L-asparaginase, and etoposide) chemotherapy regimen in treating EBV+ NK/T-cell lymphoma and to provide insights into potential treatment outcomes. Methods: In this study, we conducted a retrospective analysis of the clinical data and treatment outcomes for patients with EBV + NK/T cell lymphoma treated at Children's Hospital of Nanjing Medical University between July 2017 and January 2022. These patients received at least two cycles of the mSMILE chemotherapy, in which a single dose of pegaspargase was substituted for 7 doses of L-asparaginase per cycle. Results: Eight patients were included in the study: one with extranodal NK/T-cell lymphoma, one with primary nodal NK/T-cell lymphoma, and six with Systemic EBV+ NK/T cell lymphoma of childhood. The results showed that five patients achieved complete remission, two achieved partial remission, and one showed progressive disease, resulting in a complete remission rate of 62.5% and an overall response rate of 87.5%. The 3-year overall survival (OS) and event-free survival (EFS) rates were 87.5% and 75%, respectively. The most common adverse reactions associated with chemotherapy were hematologic toxicities of stages III to IV. Nonhematologic adverse reactions mainly included impaired liver function, infections, and oral mucositis, which were resolved with aggressive anti-infective therapy. Conclusions: Based on our clinical experience, the mSMILE appears to be a safe and effective treatment option for EBV + NK/T-cell lymphoma, meriting further investigation in late-phase clinical trials.
RESUMEN
L-asparaginases (ASP) and Doxorubicin (Dox) are both used in the treatment of leukemia, including in combination. We have attempted to investigate if their combination within the same targeted delivery vehicle can make such therapy more efficacious. We assembled a micellar system, where the inner hydrophobic core was loaded with Dox, while ASP would absorb at the surface due to electrostatic interactions. To make such absorption stronger, we conjugated the ASP with oligoamines, such as spermine, and the lipid components of the micelle-lipoic and oleic acids-with heparin. When loaded with Dox alone, the system yielded about a 10-fold improvement in cytotoxicity, as compared to free Dox. ASP alone showed about a 2.5-fold increase in cytotoxicity, so, assuming additivity of the effect, one could expect a 25-fold improvement when the two agents are applied in combination. But in reality, a combination of ASP + Dox loaded into the delivery system produced a synergy, with a whopping 50× improvement vs. free individual component. Pharmacokinetic studies have shown prolonged circulation of micellar formulations in the bloodstream as well as an increase in the effective concentration of Dox in micellar form and a reduction in Dox accumulation to the liver and heart (which reduces hepatotoxicity and cardiotoxicity). For the same reason, Dox's liposomal formulation has been in use in the treatment of multiple types of cancer, almost replacing the free drug. We believe that an opportunity to deliver a combination of two types of drugs to the same target cell may represent a further step towards improvement in the risk-benefit ratio in cancer treatment.
RESUMEN
L-asparaginase is an FDA-approved drug for treating blood cancer, but its inherent antigenicity and L-glutaminase activity are associated with hypersensitivity and organ toxicity. Extracellularly produced glutaminase-free L-asparaginase from human commensal bacteria may be a good alternative to reduce the side effects of therapeutic L-asparaginase. Here, we report the isolation and characterization of fourteen L-asparaginase-producing bacterial strains belonging to the genera Acinetobacter, Escherichia, Klebsiella, and Pseudomonas from human stool and saliva samples. To the best of our knowledge, this is the first report of L-asparaginase-producing human commensal bacterial strains isolated from healthy individuals. L-asparaginase produced by fecal and salivary isolates exhibited significantly higher activity (3.64 to 16.96 U/ml) toward L-asparagine than L-glutamine. Interestingly, L-asparaginase from fecal isolates, Escherichia coli strains 3F1 and 3F2 and salivary isolate Klebsiella pneumoniae 3S3, exhibited no L-glutaminase activity. These isolates were also sensitive to all tested antibiotics. Additionally, these three isolates demonstrated tolerance to pH 3.0 (≥ 88% survival) and 0.3% bile (≥ 95% survival), indicating their potential as probiotics. Among these isolates, L-asparaginase from the highest-producing K. pneumoniae 3S3 strain was found to be a homodimer, with native and subunit molecular weights of 110 kDa and 55 kDa, respectively. The purified enzyme can be further explored for its antitumor and immunomodulatory properties. Overall, future research can be expanded to include the use of a pool of human commensal bacteria as genuine and alternative sources of L-asparaginase for effective cancer treatments and cutting-edge next-generation probiotics.
RESUMEN
Aim: This multicenter retrospective study aimed to develop a novel prognostic system for extranodal natural killer/T-cell lymphoma (ENKTL) patients in the era of pegaspargase/L-asparaginase.Materials & methods: A total of 844 newly diagnosed ENKTL patients were included.Results: Multivariable analysis confirmed that Eastern Cooperative Oncology Group performance status, lactate dehydrogenase, Chinese Southwest Oncology Group and Asia Lymphoma Study Group ENKTL (CA) system, and albumin were independent prognostic factors. By rounding up the hazard ratios from four significant variables, a maximum of 7 points were assigned. The model of Huaihai Lymphoma Working Group-Natural killer/T-cell Lymphoma prognostic index (NPI) was identified with four risk groups and the 5-year overall survival was 88.2, 66.7, 54.3 and 30.5%, respectively.Conclusion: Huaihai Lymphoma Working Group-NPI provides a feasible stratification system for patients with ENKTL in the era of pegaspargase/L-asparaginase.
[Box: see text].
Asunto(s)
Asparaginasa , Linfoma Extranodal de Células NK-T , Polietilenglicoles , Humanos , Linfoma Extranodal de Células NK-T/tratamiento farmacológico , Linfoma Extranodal de Células NK-T/mortalidad , Linfoma Extranodal de Células NK-T/diagnóstico , Linfoma Extranodal de Células NK-T/patología , Asparaginasa/uso terapéutico , Femenino , Polietilenglicoles/uso terapéutico , Masculino , Persona de Mediana Edad , Pronóstico , Adulto , Estudios Retrospectivos , Adolescente , Anciano , Adulto Joven , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , NiñoRESUMEN
Cerebral venous sinus thrombosis (CVST) and hyperlipidemia are severe complications of L-Asparaginase (L-Asp) during the treatment of B-cell acute lymphoblastic leukemia (B-ALL). Herein, we reported a 9-year-old B-ALL boy who underwent abnormal hypertriglyceridemia and CVST presenting as seizures and disturbance of consciousness twice during the induction therapy. Fortunately, he survived treatment with anticoagulant and lipid-lowering therapy. No thrombophilia-related gene mutation was detected, but a heterozygous mutation in lipoprotein lipase (LPL) gene was identified. His neurological symptoms were managed with short-term anticoagulant therapy and long-term lipid-lowering therapy. This case illustrated the manifestation and potential pathogenesis of CVST and highlighted the essentiality of screening baseline lipid profile and dyslipidemia- and thrombophilia-related gene mutation.