Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 21(8): 1642-1658, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154437

RESUMEN

Polyploidy confers a selective advantage under stress conditions; however, whether polyploidization mediates enhanced herbicide adaptation remains largely unknown. Tetraploid Leptochloa chinensis is a notorious weed in the rice ecosystem, causing severe yield loss in rice. In China, L. chinensis has only one sister species, the diploid L. panicea, whose damage is rarely reported. To gain insights into the effects of polyploidization on herbicide adaptation, we first assembled a high-quality genome of L. panicea and identified genome structure variations with L. chinensis. Moreover, we identified herbicide-resistance genes specifically expanded in L. chinensis, which may confer a greater herbicide adaptability in L. chinensis. Analysis of gene retention and loss showed that five herbicide target-site genes and several herbicide nontarget-site resistance gene families were retained during polyploidization. Notably, we identified three pairs of polyploidization-retained genes including LcABCC8, LcCYP76C1 and LcCYP76C4 that may enhance herbicide resistance. More importantly, we found that both copies of LcCYP76C4 were under herbicide selection during the spread of L. chinensis in China. Furthermore, we identified another gene potentially involved in herbicide resistance, LcCYP709B2, which is also retained during polyploidization and under selection. This study provides insights into the genomic basis of the enhanced herbicide adaptability of Leptochloa weeds during polyploidization and provides guidance for the precise and efficient control of polyploidy weeds.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Ecosistema , Malezas/genética , Poaceae/genética , Poliploidía , Genómica , Resistencia a los Herbicidas/genética
2.
Mol Plant ; 15(6): 1045-1058, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524410

RESUMEN

Chinese sprangletop (Leptochloa chinensis), belonging to the grass subfamily Chloridoideae, is one of the most notorious weeds in rice ecosystems. Here, we report a chromosome-scale reference genome assembly and a genomic variation map of the tetraploid L. chinensis. The L. chinensis genome is derived from two diploid progenitors that diverged ∼10.9 million years ago, and its two subgenomes display neither fractionation bias nor overall gene expression dominance. Comparative genomic analyses reveal substantial genome rearrangements in L. chinensis after its divergence from the common ancestor of Chloridoideae and, together with transcriptome profiling, demonstrate the important contribution of tetraploidization to the gene sources for the herbicide resistance of L. chinensis. Population genomic analyses of 89 accessions from China reveal that L. chinensis accessions collected from southern/southwestern provinces have substantially higher nucleotide diversity than those from the middle and lower reaches of the Yangtze River, suggesting that L. chinensis spread in China from the southern/southwestern provinces to the middle and lower reaches of the Yangtze River. During this spread, L. chinensis developed significantly increased herbicide resistance, accompanied by the selection of numerous genes involved in herbicide resistance. Taken together, our study generated valuable genomic resources for future fundamental research and agricultural management of L. chinensis, and provides significant new insights into the herbicide resistance as well as the origin and adaptive evolution of L. chinensis.


Asunto(s)
Herbicidas , Oryza , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Ecosistema , Genómica , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Oryza/genética , Oryza/metabolismo , Malezas/genética , Poaceae/genética , Poaceae/metabolismo , Tetraploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA