Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Leuk Lymphoma ; : 1-8, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178269

RESUMEN

Plasma cell neoplasms (PCN) have infrequently been reported in patients with myelodysplastic syndrome (MDS) and even more rarely in those with myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN). We report the clinicopathologic features of 26 patients with bone marrow myelodysplasia accompanied by PCN, including 21 patients with MDS and 5 with MDS/MPN. The clinicopathologic features of the MDS/MPN-PCN were compared to those of the MDS-PCN group and 68 cases of MDS/MPN without PCN, respectively. The MDS/MPN-PCN group was notable for increased reticulin fibrosis > grade 1 when compared to both the MDS/MPN (p = 0.007) and MDS-PCN (p = 0.02) groups. MDS/MPN-PCN was associated with worse overall survival when compared with MDS-PCN (p = 0.03) and but not with MDS/MPN. Notably, hemoglobin level <8 g/dl (p = 0.008), and IDH2 somatic mutation (p = 0.003) were independent predictors of poor overall survival in all patients with MDS/MPN. Analysis of larger cohorts is required to confirm these associations and provide an insight into the pathogenesis.

2.
Pharmaceutics ; 16(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931948

RESUMEN

Nanocapsules provide selective delivery and increase the bioavailability of bioactive compounds. In this study, we examined the anticancer and immunomodulatory potential of Fridericia chica (crajiru) extract encapsulated in nanocapsules targeting myeloid leukemias. Nanocapsules containing crajiru (nanocapsules-CRJ) were prepared via interfacial polymer deposition and solvent displacement. Size and polydispersity were measured by dynamic light scattering. Biological assays were performed on leukemia cell lines HL60 and K562 and on non-cancerous Vero cells and human PBMC. The anticancer activity was evaluated using cytotoxicity and clonogenic assays, while the immunomodulatory activity was evaluated by measuring the levels of pro- and anti-inflammatory cytokines in PBMC supernatants treated with concentrations of nanocapsules-CRJ. Nanocapsules-CRJ exhibited significant cytotoxic activity against HL60 and K562 cells at concentrations ranging from 0.75 to 50 µg/mL, with the greatest reductions in cell viability observed at 50 µg/mL (p < 0.001 for HL60; p < 0.01 for K562), while not affecting non-cancerous Vero cells and human PBMCs. At concentrations of 25 µg/mL and 50 µg/mL, nanocapsules-CRJ reduced the formation of HL60 and K562 colonies by more than 90% (p < 0.0001). Additionally, at a concentration of 12 µg/mL, nanocapsules-CRJ induced the production of the cytokines IL-6 (p = 0.0002), IL-10 (p = 0.0005), IL-12 (p = 0.001), and TNF-α (p = 0.005), indicating their immunomodulatory potential. These findings suggest that nanocapsules-CRJ hold promise as a potential therapeutic agent with both cytotoxic and immunomodulatory properties.

4.
Leuk Lymphoma ; : 1-11, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767239

RESUMEN

The present study aimed to investigate the real-world results of childhood acute lymphoblastic leukemia (cALL) cases in Fujian, China. The clinical data of 1414 patients with newly diagnosed cALL in Fujian were retrospectively analyzed. Patients were treated according to the Chinese Children Leukemia Group 2008 protocol (CCLG-ALL 2008 group) or Chinese Children's Cancer Group 2015 protocol (CCCG-ALL 2015 group). Cumulative incidence of treatment abandonment (TA) at 5 years was 4.2% ± 0.6% and significantly associated with treatment period and risk stratification. The 5-OS and EFS were significantly higher in the CCCG-ALL 2015 group than in the CCLG-ALL 2008 group. Patients treated with CCCG-ALL 2015 from Fujian Medical Union Hospital had a significantly higher 4-year OS and EFS than did those from the other four hospitals. Real-world TA of cALL greatly decreased, and its long-term survival significantly increased in Fujian, which may be related to optimizing programs, multi-center collaboration, and improving treatment compliance.

5.
J Cancer Res Clin Oncol ; 150(5): 231, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703241

RESUMEN

PURPOSE: Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS: We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS: BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION: Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.


Asunto(s)
Factores de Transcripción ARNTL , Resistencia a Antineoplásicos , Ferroptosis , Proteína HMGB1 , Leucemia Mieloide Aguda , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Ratones Desnudos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Pronóstico , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775157

RESUMEN

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eµ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfocitos T , Microambiente Tumoral , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Humanos , Animales , Ratones , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Proliferación Celular/efectos de los fármacos , Proteínas que Contienen Bromodominio , Proteínas
7.
J Clin Invest ; 134(12)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713535

RESUMEN

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.


Asunto(s)
Leucemia Mieloide Aguda , Mitocondrias , Mitofagia , Proteínas Quinasas , Factores de Empalme Serina-Arginina , Animales , Humanos , Ratones , Sustitución de Aminoácidos , Línea Celular Tumoral , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia/genética , Mutación Missense , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Empalme del ARN , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
8.
Front Oncol ; 14: 1371980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571499

RESUMEN

Introduction: Alterations of the NUP214 gene (9q34) are recurrent in acute leukemias. Rearrangements of chromosomal band 9q34 targeting this locus can be karyotypically distinct, for example t(6;9)(p22;q34)/DEK::NUP214, or cryptic, in which case no visible change of 9q34 is seen by chromosome banding. Methods: We examined 9 cases of acute leukemia with NUP214 rearrangement by array Comparative Genomic Hybridization (aCGH), reverse-transcription polymerase chain reaction (RT-PCR), and cycle sequencing/Sanger sequencing to detect which fusion genes had been generated. Results: The chimeras DEK::NUP214, SET::NUP214, and NUP214::ABL1 were found, only the first of which can be readily detected by karyotyping. Discussion: The identification of a specific NUP214 rearrangement is fundamental in the management of these patients, i.e., AMLs with DEK::NUP214 are classified as an adverse risk group and might be considered for allogenic transplant. Genome- and/or transcriptome-based next generation sequencing (NGS) techniques can be used to screen for these fusions, but we hereby present an alternative, step-wise procedure to detect these rearrangements.

9.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618957

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Humanos , Ratones , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Tirosina Quinasas , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Factor de Transcripción STAT5/genética
10.
Front Oncol ; 14: 1304690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38634051

RESUMEN

The main objective of the National Project for Research and Incidence of Childhood Leukemias is to reduce early mortality rates for these neoplasms in the vulnerable regions of Mexico. This project was conducted in the states of Oaxaca, Puebla, and Tlaxcala. A key strategy of the project is the implementation of an effective roadmap to ensure that leukemia patients are the target of maximum benefit of interdisciplinary collaboration between researchers, clinicians, surveyors, and laboratories. This strategy guarantees the comprehensive management of diagnosis and follow-up samples of pediatric patients with leukemia, centralizing, managing, and analyzing the information collected. Additionally, it allows for a precise diagnosis and monitoring of the disease through immunophenotype and measurable residual disease (MRD) studies, enhancing research and supporting informed clinical decisions for the first time in these regions through a population-based study. This initiative has significantly improved the diagnostic capacity of leukemia in girls, boys, and adolescents in the regions of Oaxaca, Puebla, and Tlaxcala, providing comprehensive, high-quality care with full coverage in the region. Likewise, it has strengthened collaboration between health institutions, researchers, and professionals in the sector, which contributes to reducing the impact of the disease on the community.

11.
Int J Hematol ; 120(1): 117-127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38687412

RESUMEN

Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL), mixed phenotypic acute leukemia (MPAL), and acute myeloid leukemia with minimal differentiation (AML-M0) all originate from immature hematopoietic progenitor cells and have a poor prognosis. We investigated the clinical characteristics of these immature leukemias in 17 children (ETP-ALL: 8, MPAL: 5, AML-M0: 4) at seven institutions. Clinical and laboratory findings were comparable across disease types. Eleven and six patients received ALL- and AML-oriented induction chemotherapy, with six and four achieving complete remission (CR), respectively. Five additional patients achieved CR after salvage with the other type of chemotherapy. Eight patients received hematopoietic cell transplantation (HCT) in first CR, and six survived without relapse. However, six of seven patients who did not receive HCT during first CR relapsed; all underwent HCT later, and only three survived. The 5-year event-free survival (EFS) and overall survival (OS) rate were 37% and 69%, respectively. Patients who achieved CR after induction chemotherapy and received HCT in first CR had favorable EFS and OS. Notably, all patients who received HCT in first CR survived 5 years after diagnosis. Appropriate induction chemotherapy and HCT in first CR could improve the outcome of immature leukemias.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Quimioterapia de Inducción , Humanos , Niño , Masculino , Preescolar , Femenino , Adolescente , Lactante , Inducción de Remisión , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidad , Tasa de Supervivencia , Pronóstico , Supervivencia sin Enfermedad , Estudios Retrospectivos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico
12.
JCI Insight ; 9(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38646934

RESUMEN

Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of undifferentiated myeloblasts, and agents that promote differentiation have been effective in this disease but are not curative. Dihydroorotate dehydrogenase inhibitors (DHODHi) have the ability to promote AML differentiation and target aberrant malignant myelopoiesis. We introduce HOSU-53, a DHODHi with significant monotherapy activity, which is further enhanced when combined with other standard-of-care therapeutics. We further discovered that DHODHi modulated surface expression of CD38 and CD47, prompting the evaluation of HOSU-53 combined with anti-CD38 and anti-CD47 therapies, where we identified a compelling curative potential in an aggressive AML model with CD47 targeting. Finally, we explored using plasma dihydroorotate (DHO) levels to monitor HOSU-53 safety and found that the level of DHO accumulation could predict HOSU-53 intolerability, suggesting the clinical use of plasma DHO to determine safe DHODHi doses. Collectively, our data support the clinical translation of HOSU-53 in AML, particularly to augment immune therapies. Potent DHODHi to date have been limited by their therapeutic index; however, we introduce pharmacodynamic monitoring to predict tolerability while preserving antitumor activity. We additionally suggest that DHODHi is effective at lower doses with select immune therapies, widening the therapeutic index.


Asunto(s)
Leucemia Mieloide Aguda , Pirimidinas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Humanos , Pirimidinas/uso terapéutico , Ratones , Animales , Dihidroorotato Deshidrogenasa , Inmunoterapia/métodos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
13.
J Clin Invest ; 134(9)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502193

RESUMEN

Chimeric antigen receptor (CAR) designs that incorporate pharmacologic control are desirable; however, designs suitable for clinical translation are needed. We designed a fully human, rapamycin-regulated drug product for targeting CD33+ tumors called dimerizaing agent-regulated immunoreceptor complex (DARIC33). T cell products demonstrated target-specific and rapamycin-dependent cytokine release, transcriptional responses, cytotoxicity, and in vivo antileukemic activity in the presence of as little as 1 nM rapamycin. Rapamycin withdrawal paused DARIC33-stimulated T cell effector functions, which were restored following reexposure to rapamycin, demonstrating reversible effector function control. While rapamycin-regulated DARIC33 T cells were highly sensitive to target antigen, CD34+ stem cell colony-forming capacity was not impacted. We benchmarked DARIC33 potency relative to CD19 CAR T cells to estimate a T cell dose for clinical testing. In addition, we integrated in vitro and preclinical in vivo drug concentration thresholds for off-on state transitions, as well as murine and human rapamycin pharmacokinetics, to estimate a clinically applicable rapamycin dosing schedule. A phase I DARIC33 trial has been initiated (PLAT-08, NCT05105152), with initial evidence of rapamycin-regulated T cell activation and antitumor impact. Our findings provide evidence that the DARIC platform exhibits sensitive regulation and potency needed for clinical application to other important immunotherapy targets.


Asunto(s)
Leucemia Mieloide Aguda , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Sirolimus , Linfocitos T , Animales , Femenino , Humanos , Masculino , Ratones , Inmunoterapia Adoptiva , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Receptores Quiméricos de Antígenos/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Sirolimus/farmacología , Sirolimus/administración & dosificación , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Mod Pathol ; 37(5): 100466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460674

RESUMEN

This manuscript represents a review of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia/lymphoblastic lymphoma), acute leukemias of ambiguous lineage, mixed-phenotype acute leukemias, myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangements, histiocytic and dendritic neoplasms, and genetic tumor syndromes of the 5th edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The diagnostic, clinicopathologic, cytogenetic, and molecular genetic features are discussed. The differences in comparison to the 4th revised edition of the World Health Organization classification of hematolymphoid neoplasms are highlighted.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Organización Mundial de la Salud , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/clasificación , Eosinofilia/patología , Eosinofilia/genética , Trastornos Histiocíticos Malignos/genética , Trastornos Histiocíticos Malignos/patología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/clasificación , Fenotipo
15.
Leuk Lymphoma ; 65(2): 209-218, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37921062

RESUMEN

A large-scale genomic analysis of patients with ASXL1-mutated myeloid disease has not been performed to date. We reviewed comprehensive genomic profiling results from 6043 adults to characterize clinicopathologic features and co-mutation patterns by ASXL1 mutation status. ASXL1 mutations occurred in 1414 patients (23%). Mutation co-occurrence testing revealed strong co-occurrence (p < 0.01) between mutations in ASXL1 and nine genes (SRSF2, U2AF1, RUNX1, SETBP1, EZH2, STAG2, CUX1, CSF3R, CBL). Further analysis of patients with these co-mutations yielded several novel findings. Co-mutation patterns supported that ASXL1/SF3B1 co-mutation may be biologically distinct from ASXL1/non-SF3B1 spliceosome co-mutation. In AML, ASXL1/SRSF2 co-mutated patients frequently harbored STAG2 mutations (42%), which were dependent on the presence of both ASXL1 and SRSF2 mutation (p < 0.05). STAG2 and SETBP1 mutations were also exclusive in ASXL1/SRSF2 co-mutated patients and associated with divergent chronic myeloid phenotypes. Our findings support that certain multi-mutant genotypes may be biologically relevant in ASXL1-mutated myeloid disease.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias , Adulto , Humanos , Trastornos Mieloproliferativos/genética , Empalmosomas/genética , Empalmosomas/patología , Factores de Transcripción/genética , Genómica , Mutación , Leucemia Mieloide Aguda/genética , Pronóstico , Proteínas Represoras/genética
17.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917239

RESUMEN

ASXL1 mutation frequently occurs in all forms of myeloid malignancies and is associated with aggressive disease and poor prognosis. ASXL1 recruits Polycomb repressive complex 2 (PRC2) to specific gene loci to repress transcription through trimethylation of histone H3 on lysine 27 (H3K27me3). ASXL1 alterations reduce H3K27me3 levels, which results in leukemogenic gene expression and the development of myeloid malignancies. Standard therapies for myeloid malignancies have limited efficacy when mutated ASXL1 is present. We discovered upregulation of lysine demethylase 6B (KDM6B), a demethylase for H3K27me3, in ASXL1-mutant leukemic cells, which further reduces H3K27me3 levels and facilitates myeloid transformation. Here, we demonstrated that heterozygous deletion of Kdm6b restored H3K27me3 levels and normalized dysregulated gene expression in Asxl1Y588XTg hematopoietic stem/progenitor cells (HSPCs). Furthermore, heterozygous deletion of Kdm6b decreased the HSPC pool, restored their self-renewal capacity, prevented biased myeloid differentiation, and abrogated progression to myeloid malignancies in Asxl1Y588XTg mice. Importantly, administration of GSK-J4, a KDM6B inhibitor, not only restored H3K27me3 levels but also reduced the disease burden in NSG mice xenografted with human ASXL1-mutant leukemic cells in vivo. This preclinical finding provides compelling evidence that targeting KDM6B may be a therapeutic strategy for myeloid malignancies with ASXL1 mutations.


Asunto(s)
Histonas , Neoplasias , Humanos , Ratones , Animales , Histonas/metabolismo , Lisina , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo
18.
Farm Hosp ; 48(1): T9-T15, 2024.
Artículo en Inglés, Español | MEDLINE | ID: mdl-37845105

RESUMEN

OBJECTIVE: The aim of this study was to perform an adjusted indirect treatment comparison, according to the cytogenetic profile, in terms of efficacy between different Bruton tyrosine kinase inhibitors used as first-line monotherapy for chronic lymphocytic leukemia. Safety outcomes considered of interest were also evaluated to establish whether these options can be considered equivalent therapeutic alternatives. METHOD: A literature search was conducted in Pubmed and Embase on November 10, 2022 for phase III clinical trials studying Bruton tyrosine kinase inhibitors in monotherapy in the first-line setting for chronic lymphocytic leukemia. Results were filtered according to whether the combination of bendamustine and rituximab was used as comparator and whether they had similar populations and follow-up times. Subgroup results were meta-analyzed according to mutational characteristics by classifying patients into high and low cytogenetic risk. An adjusted indirect comparison was developed using Bucher's method. Possible therapeutic equivalence was determined by applying the guide to equivalent therapeutic alternatives. RESULT: Of the 39 studies obtained in the review, 2 clinical trials were selected: 1 for zanubrutinib and 1 for ibrutinib. The remaining studies were not included because they did not meet the inclusion criteria. The results obtained in the adjusted indirect treatment comparison for both cytogenetic risk subgroups showed no statistically significant differences. The most relevant safety differences were atrial fibrillation, hypertension, and cardiovascular events in patients treated with ibrutinib and higher incidence of secondary cancers in patients treated with zanubrutinib. Applying the equivalent therapeutic alternatives guideline criteria, both treatments cannot be considered equivalent therapeutic alternatives. CONCLUSIONS: Assuming the uncertainty associated with the adjusted indirect comparison, zanubrutinib could be considered equivalent in efficacy to ibrutinib, however, the presence of differentiating safety features precludes assigning the 2 alternatives as equivalent therapeutic alternatives.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Adenina , Inhibidores de Proteínas Quinasas/efectos adversos
19.
Farm Hosp ; 48(1): 9-15, 2024.
Artículo en Inglés, Español | MEDLINE | ID: mdl-37612185

RESUMEN

OBJECTIVE: The aim of this study was to perform an adjusted indirect treatment comparison, according to the cytogenetic profile, in terms of efficacy between different Bruton tyrosine kinase inhibitors used as first-line monotherapy for chronic lymphocytic leukemia. Safety outcomes considered of interest were also evaluated to establish whether these options can be considered equivalent therapeutic alternatives. METHOD: A literature search was conducted in Pubmed and Embase on 10 November 2022 for phase III clinical trials studying Bruton's tyrosine kinase inhibitors in monotherapy in the first-line setting for CLL. Results were filtered according to whether the combination of bendamustine and rituximab was used as comparator and whether they had similar populations and follow-up times. Subgroup results were meta-analyzed according to mutational characteristics by classifying patients into high and low cytogenetic risk. An adjusted indirect comparison was developed using Bucher's method. Possible therapeutic equivalence was determined by applying the guide to equivalent therapeutic alternatives. RESULT: Of the 39 studies obtained in the review, two clinical trials were selected: one for zanubrutinib and one for ibrutinib. The remaining studies were not included because they did not meet the inclusion criteria. The results obtained in the adjusted indirect treatment comparison for both cytogenetic risk subgroups showed no statistically significant differences. The most relevant safety differences were auricular fibrillation, hypertension and cardiovascular events in patients treated with ibrutinib and higher incidence of secondary cancers in patients treated with zanubrutinib. Applying the ATE guideline criteria, both treatments cannot be considered equivalent therapeutic alternatives. CONCLUSIONS: Assuming the uncertainty associated with the adjusted indirect comparison, zanubrutinib could be considered equivalent in efficacy to ibrutinib, however, the presence of differentiating safety features precludes assigning the two alternatives as equivalent therapeutic alternatives.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Adenina , Inhibidores de Proteínas Quinasas/efectos adversos
20.
J Clin Invest ; 134(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38060328

RESUMEN

Acute myeloid leukemia (AML) presents a pressing medical need in that it is largely resistant to standard chemotherapy as well as modern therapeutics, such as targeted therapy and immunotherapy, including anti-programmed cell death protein (anti-PD) therapy. We demonstrate that programmed death-1 homolog (PD-1H), an immune coinhibitory molecule, is highly expressed in blasts from the bone marrow of AML patients, while normal myeloid cell subsets and T cells express PD-1H. In studies employing syngeneic and humanized AML mouse models, overexpression of PD-1H promoted the growth of AML cells, mainly by evading T cell-mediated immune responses. Importantly, ablation of AML cell-surface PD-1H by antibody blockade or genetic knockout significantly inhibited AML progression by promoting T cell activity. In addition, the genetic deletion of PD-1H from host normal myeloid cells inhibited AML progression, and the combination of PD-1H blockade with anti-PD therapy conferred a synergistic antileukemia effect. Our findings provide the basis for PD-1H as a potential therapeutic target for treating human AML.


Asunto(s)
Evasión Inmune , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Médula Ósea , Inmunidad Celular , Inmunoterapia , Leucemia Mieloide Aguda/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA