Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 996
Filtrar
1.
Talanta ; 277: 126338, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38823328

RESUMEN

In this study, a novel technique utilizing vortex-assisted dispersive liquid-liquid microextraction with magnetic deep eutectic solvents (MDESs) was established and coupled with HPLC-UV to analyze six primary aromatic amines (PAAs). A novel hydrophobic MDES prepared from trioctylphosphine oxide, octanol, and CoCl2 was used as the extractant, which could be dispersed uniformly during extraction, then floated onto the sample surface and re-aggregated into a single drop spontaneously after the extraction. The variables influencing the efficiency of the extraction process were investigated. When performing under the optimal extraction conditions, this method exhibited excellent linearity, low limits of detection (0.2-0.9 ng mL-1), and high precision (RSD ≤ 8.3 %). The enrichment factors ranged from 56 to 182. Satisfactory recoveries in the range of 91.6-109.2 % with RSDs < 7.1 % were obtained from three apple juices and three environmental water samples. The greenness and practicality of the developed method were assessed by AGREE, AGREEprep, and blue applicability grade index metric tools. Overall, the established procedure demonstrated its simplicity, speediness, environmental friendliness, and effectiveness in analyzing PAAs from aqueous matrices.

2.
Front Chem ; 12: 1383445, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919275

RESUMEN

The dispersive liquid-liquid microextraction (DLLME) is one of the most popular miniaturized extraction procedures. In this paper, the degree of dispersion and dispersion stability were studied with the aim to assess the correlations of these parameters with efficiency for the selected analytical application. The dependence between the degree of dispersion (cloudy state quality) and its stability obtained by various emulsification procedures, such as solvent-assisted emulsification (using various dispersive solvents) and mechanical emulsification (using auxiliary energies), is investigated and discussed. It was found out that the degree of dispersion depends on the type of emulsification procedure and decreases in the series: solvent-assisted (SA-) = ultrasound-assisted (UA-) > air-assisted (AA-) > vortex-assisted (VA-) emulsification. The emulsion stability depends on the degree of dispersion and there were 1810 and 2070 s for the most effective emulsification procedures, such us solvent-assisted and ultrasound-assisted emulsification, respectively. A comparison between the sensitivity of the analytical methods (using spectrophotometric determination of the anionic surfactants) and the degree of dispersion have been made. The sensitivity of the methods was ranked as follows: DLLME > UA-LLME > VA-LLME > AA-LLME.

3.
J Chromatogr A ; 1730: 465103, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38917679

RESUMEN

A rapid, straightforward, and sensitive approach to quantifying enantiomeric barbiturates in serum was developed by integrating ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) with large-volume sample stacking (LVSS) in capillary electrophoresis (CE). UA-DLLME was employed for sample preparation, and on-column preconcentration by using LVSS with polarity switching was implemented to enhance sensitivity. We thoroughly investigated and optimized various parameters influencing extraction and stacking to achieve optimal detection performance with the highest enrichment efficiencies. Under optimal extraction conditions (injection of a mixed solution containing 40 µL of CHCl3 and 200 µL of tetrahydrofuran into 1 mL of a sample solution at pH 10.0), LVSS was performed using 600 mM Tris-boric acid (pH 9.5) containing 35 mM hydroxypropyl-ß-cyclodextrin and sodium taurodeoxycholate hydrate. A voltage of 20 kV was applied and a preinjection water plug was loaded at a height of 25 cm for 10 s. Subsequently, the sample solution was injected at a height of 25 cm for 480 s, after which a voltage of -20 kV was applied and the sample stacking was initiated. The stacking process was completed when 95 % of the separation current was attained. Under optimized conditions, the contraction folds of the four barbiturate analytes (R, S-Secobarbital, R, S-pentobarbital) were improved by approximately 6400-fold, achieving detection limits of 0.1 ng/mL. The limits of quantification for all analyte enantiomers were 0.5-50 ng/mL, demonstrating good linearity (r > 0.997). Migration times exhibited a relative standard deviation of less than 1.7 %, whereas peak areas for the four analytes exhibited a deviation of 8.7 %. Finally, the established method was effectively applied to the analysis of human serum samples.

4.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893365

RESUMEN

The use of z-drugs has increased worldwide since its introduction. Although the prescribing patterns of hypnotics differ among countries, zolpidem is the most widely used z-drug in the world. Zolpidem may be involved in poisoning and deaths. A simple and fast HPLC-PDA method was developed and validated. Zolpidem and the internal standard chloramphenicol were extracted from plasma using a sonication-assisted dispersive liquid-liquid microextraction procedure. The method was validated including selectivity, linearity, precision, accuracy, and recovery. The calibration range (0.15-0.6 µg/mL) covers therapeutic and toxic levels of zolpidem in plasma. The limit of quantification was set at 0.15 µg/mL. Intra- and interday accuracy and precision values were lower than 15% at the concentration levels studied. Excellent recovery results were obtained for all concentrations. The proposed method was successfully applied to ten real postmortem plasma samples. In our series, multiple substances (alcohol and/or other drugs) were detected in most cases of death involving zolpidem. Our analytical method is suitable for routine toxicological analysis.


Asunto(s)
Microextracción en Fase Líquida , Zolpidem , Zolpidem/sangre , Humanos , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Sonicación/métodos , Reproducibilidad de los Resultados , Hipnóticos y Sedantes/sangre , Límite de Detección , Piridinas/sangre
5.
Anal Bioanal Chem ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842689

RESUMEN

A novel ferrofluid prepared from a hydrophobic deep eutectic solvent (DES) and Fe3O4@graphite composite materials was introduced as a green microextraction medium for the separation and enrichment of trace estrogens in real samples. It was found that the ferrofluid greatly improved the capacity and selectivity of target analytes, benefiting from the enrichment of both DES and Fe3O4@graphite composite materials. Using a combination of high-performance liquid chromatography-fluorescence detection (HPLC-FLD) and vortex-assisted liquid-liquid microextraction (VALLME), a new method was established for simultaneous rapid processing and accurate determination of three estrogens (estradiol [E2], estriol [E3], and ethinyl estradiol [EE2]) in environmental water and urine samples. Key parameters affecting the extraction efficiency were optimized using a single-factor approach and response surface methodology. Under optimal conditions, this method yielded a low limit of detection (1.01 ng L-1, 3.03 ng L-1, and 25.0 ng L-1 for EE2, E2, and E3, respectively), wide linear range (3-200,000 ng L-1), high enrichment factors (9.81-47.2), and satisfactory recovery (73.8-129.0%). Compared with traditional analytical techniques, this method avoids the use of volatile toxic organic extraction solvents and cumbersome phase separation operations.

6.
J Chromatogr A ; 1730: 465038, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38905945

RESUMEN

This study addresses the analysis of emerging contaminants, often using chromatographic techniques coupled to mass spectrometry. However, sample preparation is often required prior to instrumental analysis, and dispersive liquid-liquid microextraction (DLLME) is a viable strategy in this context. DLLME stands out for its ability to reduce sample and solvent volumes. Notably, dispersive liquid-liquid microextraction using magnetic ionic liquids (MILs) has gained relevance due to the incorporation of paramagnetic components in the chemical structure, thereby eliminating the centrifugation step. A pyrolizer was selected in this work to introduce sample onto the GC column, since the MIL is extremely viscous and incompatible with direct introduction through an autosampler. This study is the first to report the use of a DLLME/MIL technique for sample introduction through a pyrolizer in gas chromatography coupled to mass spectrometry (GC-MS). This approach enables the MIL to be compatible with gas chromatography systems, resulting in optimized analytical and instrument performance. The analysis of polybrominated diphenyl ether flame retardants (PBDEs) was focused on the PBDE congeners 28, 47, 99, 100, and 153 in sewage sludge samples. The [P6,6,6,14+]2[MnCl42-] MIL was thoroughly characterized using UV-Vis, Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, as well as thermal analysis. In the chromatographic method, a pyrolyzer was used in the sample introduction step (Py-GC-MS), and critical injection settings were optimized using multivariate approaches. Optimized conditions were achieved with a temperature of 220 °C, a pyrolysis time of 0.60 min, and an injection volume of 9.00 µL. DLLME optimization was performed through central compound planning (CCD), and optimized training conditions were achieved with 10.0 mg of MIL, 3.00 µL of acetonitrile (ACN) as dispersive solvent, extraction time of 60 s, and volume of a sample of 8.50 mL. Precision was observed to range from 0.11 % to 12.5 %, with limits of detection (LOD) of 44.4 µg L-1 for PBDE 28, 16.9 µg L-1 for PBDE 47 and PBDE 99, 33.0 µg L-1 for PBDE 100 and 375 µg L-1 for PBDE 153. PBDE 28 was identified and analyzed in the sludge sample at a concentration of 800 µg L-1. The use of MIL in dispersive liquid-liquid microextraction combined with pyrolysis gas chromatography-mass spectrometry enables identification and quantification of PBDEs in sewage sludge samples at concentrations down to the µg L-1 level.

7.
J Pharm Biomed Anal ; 248: 116319, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908235

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants of great concern due to their carcinogenicity and mutagenicity. Their determination in human serum, particularly in at-risk populations, is necessary but difficult because they are distributed over a wide range of polarity and are present at trace level. A new method combining salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction with solidification of floating organic drop (DLLME-SFO) adapted to a reduced volume of sample (100 µl) was developed to determine 24 PAHs in human serum. Some key parameters of DLLME-SFO (volume of extraction solvent, ratio of extraction/dispersive solvent volumes, and salt addition) were first studied by applying it to spiked pure water. For its application to serum, a sample treatment step involving SALLE was optimized in terms of nature and content of salts and applied upstream of DLLME-SFO. It was applied to the extraction of 24 regulated PAHs from spiked serum followed by an analysis by liquid chromatography coupled with UV and fluorescence detection. The extraction recoveries ranged from 48.2 and 116.0 % (relative standard deviations: 2.0-14.6 %, n=5-9), leading to limits of quantification of PAHs in human serum from 0.04 to 1.03 µg/L using fluorescence detection and from 10 to 40 µg/L using UV detection. This final method combining SALLE and DLLME-SFO showed numerous advantages such as no evaporation step, high efficiency and low solvent-consumption and will be useful for monitoring PAHs in low volumes of serum.

8.
Talanta ; 277: 126236, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38795590

RESUMEN

The dyeing and adulteration of traditional Chinese medicines (TCMs) are continuously updated. Valuable analytical methods for the daily inspection of illegal colorant additives in TCMs and the preparations are in demand. Two deep eutectic solvent (DES)-based vortex-assisted liquid-liquid microextraction (VA-LLME) and ultrasonic-assisted solid-liquid microextraction (UA-SLME) were developed for the sample pretreatment of ten water-soluble colorants and five water-insoluble colorants, respectively, followed by an HPLC-DAD detection. Fifteen colorants were analyzed at four detection wavelengths within 40 min of gradient elution. The optimal DES of VA-LLME and UA-SLME were screened from 23 homemade DESs. The factors affecting the extraction efficiency of VA-LLME and UA-SLME were optimized systematically. Under the optimal conditions, ten water-soluble colorants analyzed by DES-based VA-LLME-HPLC-DAD showed good linearity (R ≥ 0.9995) within the optimal linear range. The LODs and LOQs were 0.2-1.0 µg g-1 and 0. 5-5.0 µg g-1, respectively. The recoveries of spiked samples were 80.2%-104.7 %, with RSDs ≤ 4.39 %. Five water-insoluble colorants of Sudan I‒IV and Sudan 7B analyzed by DES-based UA-SLME-HPLC-DAD showed good linearity (R ≥ 0.9995) within the optimal linear range. The LODs and LOQs were 0.8-8.0 µg g-1 and 4.0-40.0 µg g-1, respectively. The recoveries of spiked samples were 94.2%-103.1 %, with RSDs ≤ 4.81 %. The proposed DES-based VA-LLME-HPLC-DAD was successfully applied to analyze six water-soluble yellow colorants in Cuscutae Semen, salted Cuscutae Semen, and four water-soluble red colorants in Schisandrae Chinensis Fructus. The proposed DES-based UA-SLME-HPLC-DAD was successfully applied to analyze five water-insoluble red colorants in Dieda pills. The study provides analytical method options for routine tests of water-soluble, water-insoluble, or both water-soluble/-insoluble illegal colorant additives in herbal medical materials and preparations by the relevant proposed DES-based sample pretreatment method or a combination of the two proposed DES-based methods.

9.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731560

RESUMEN

2, 6-diisopropylaniline (2, 6-DIPA) is a crucial non-intentionally organic additive that allows the assessment of the production processes, formulation qualities, and performance variations in biodegradable mulching film. Moreover, its release into the environment may have certain effects on human health. Hence, this study developed simultaneous heating hydrolysis-extraction and amine switchable hydrophilic solvent vortex-assisted homogeneous liquid-liquid microextraction for the gas chromatography-mass spectrometry analysis of the 2, 6-DIPA additive and its corresponding isocyanates in poly(butylene adipate-co-terephthalate) (PBAT) biodegradable agricultural mulching films. The heating hydrolysis-extraction conditions and factors influencing the efficiency of homogeneous liquid-liquid microextraction, such as the type and volume of amine, homogeneous-phase and phase separation transition pH, and extraction time were investigated and optimized. The optimum heating hydrolysis-extraction conditions were found to be a H2SO4 concentration of 2.5 M, heating temperature of 87.8 °C, and hydrolysis-extraction time of 3.0 h. As a switchable hydrophilic solvent, dipropylamine does not require a dispersant. Vortex assistance is helpful to speed up the extraction. Under the optimum experimental conditions, this method exhibits a better linearity (0.0144~7.200 µg mL-1 with R = 0.9986), low limit of detection and quantification (0.0033 µg g-1 and 0.0103 µg g-1), high extraction recovery (92.5~105.4%), desirable intra- and inter-day precision (relative standard deviation less than 4.1% and 4.7%), and high enrichment factor (90.9). Finally, this method was successfully applied to detect the content of the additive 2, 6-DIPA in PBAT biodegradable agricultural mulching films, thus facilitating production process monitoring or safety assessments.


Asunto(s)
Aminas , Compuestos de Anilina , Cromatografía de Gases y Espectrometría de Masas , Interacciones Hidrofóbicas e Hidrofílicas , Microextracción en Fase Líquida , Solventes , Microextracción en Fase Líquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Solventes/química , Aminas/química , Aminas/análisis , Compuestos de Anilina/química , Hidrólisis , Poliésteres/química
10.
J Chromatogr A ; 1727: 464999, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38788403

RESUMEN

A reliable and greener alternative to the usual extraction methods is reported for the determination of pesticide residues in soybeans. This novel approach combines the classical QuEChERS extraction method with a DLLME (dispersive liquid-liquid microextraction) step, utilizing a deep eutectic solvent (DES) - camphor: hexanoic acid (1:1 molar ratio) - as the microextraction solvent. This DES has never been employed in pesticide analysis by gas chromatography-mass spectrometry of complex matrices like soybeans. A Plackett-Burman screening design was employed to optimize sample preparation variables of QuEChERS (amount of sodium chloride and magnesium sulfate, and amount of PSA and C18 sorbents) and DLLME (pH of medium, amount of sodium chloride, and volume of microextraction solvent). This design allowed for a systematic evaluation of the impact of each parameter on the method's performance. The optimized method was evaluated using a certified reference material and commercial samples of soybeans. The method exhibited high accuracy and precision for most of the analytes under study, demonstrating its applicability for pesticide residue analysis in soybeans. To assess the greenness and practicality of the developed method, the Analytical Greenness (AGREE) and Blue Applicability Grade Index (BAGI) metric systems were employed, respectively. Overall, the proposed QuEChERS-DLLME method using a DES solvent is a reliable and greener alternative to conventional extraction methods for the determination of pesticide residues in soybeans. Its high performance, coupled with its environmental friendliness, makes it a promising tool for food safety analysis.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Glycine max , Microextracción en Fase Líquida , Residuos de Plaguicidas , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/aislamiento & purificación , Glycine max/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Líquida/métodos , Disolventes Eutécticos Profundos/química , Límite de Detección , Reproducibilidad de los Resultados
11.
Anal Bioanal Chem ; 416(15): 3533-3542, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691170

RESUMEN

The utilization of supramolecular deep eutectic solvent eddy-assisted liquid-liquid microextraction utilizing 2-hydroxypropyl ß-cyclodextrin (SUPRADES) has been identified as a successful method for pre-enriching Cu, Zn, and Mn in vegetable oil samples. Determination of each element was conducted by inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion of metal-enriched phases. Various parameters were examined, including the composition of SUPRADES species [2HP-ß-CD: DL-lactic acid], a cyclodextrin mass ratio of 20 wt%, a water bath temperature of 75 °C, an extractor volume of 800 µL, a dispersant volume of 50 µL, and an eddy current time of 5 min. Optimal conditions resulted in extraction rates of 99.6% for Cu, 105.2% for Zn, and 101.5% for Mn. The method exhibits a broad linear range spanning from 10 to 20,000 µg L-1, with determination coefficients exceeding 0.99 for all analytes. Enrichment coefficients of 24, 21, and 35 were observed. Limits of detection ranged from 0.89 to 1.30 µg L-1, while limits of quantification ranged from 3.23 to 4.29 µg L-1. The unique structural characteristics of the method enable the successful determination of trace elements in a variety of edible vegetable oils.


Asunto(s)
Aceites de Plantas , Solventes , Oligoelementos , Aceites de Plantas/química , Oligoelementos/análisis , Solventes/química , Microextracción en Fase Líquida/métodos , Límite de Detección , 2-Hidroxipropil-beta-Ciclodextrina/química , Contaminación de Alimentos/análisis , Metales/química , Metales/análisis
12.
Anal Chim Acta ; 1307: 342620, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719413

RESUMEN

BACKGROUND: Pharmacokinetic studies are pivotal in drug development, focusing on absorption, distribution, and excretion of active compounds. Effective sample preparation methods play a crucial role in these studies. Traditional techniques like protein precipitation and liquid-liquid extraction often involve toxic solvents and are time-consuming. Recently, deep eutectic solvent (DES) has emerged as an eco-friendly alternative due to its high efficiency, low cost, and low toxicity. This study introduces a novel sample pretreatment method using CO2-switchable DES in liquid-liquid microextraction (LLME) to enhance speed, accuracy, and sensitivity in complex biological samples analysis. RESULTS: A liquid-liquid microextraction sample pretreatment method based on switchable DES combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established for the analysis of urine and tissue samples. The method was optimized through systematic investigation of key parameters, including DES type, volume, molar ratio, pH, vortex time, gas purge time, and salt addition. The resulting procedure exhibited satisfying linearity (r2 ≥ 0.9958), good precision (RSD ≤6.01 %), desirable recovery (52.44%-98.12 %) and matrix effect (86.22%-119.30 %), and the accuracy and precision of stability were within the ±15 % limit. The proven methods were further applied to urinary excretion study and tissue distribution study of Nelumbinis plumula (NP) extract. The results indicated that the total cumulative excretion of liensinine, isoliensinine and neferine in urine within 240 h was 4.96 %, 0.66 % and 0.44 %, respectively. The tissue distribution study showed that alkaloids mainly distribute in liver, kidney, and spleen. SIGNIFICANCE: This research introduces a groundbreaking technique distinguished by its simplicity, speed, cost-effectiveness, and environmental friendliness. This approach, utilizing CO2-switchable DES as an extraction solvent for LLME, integrates deproteinization and removal of interfering molecules into a single step. This integration showcases its efficiency and convenience, demonstrating significant promise for various applications in the analysis of biological samples. Additionally, this study provides the first report on urinary excretion and tissue distribution of alkaloids from NP using a DES-LLME method. These findings offer valuable insights into the in vivo behavior of herbal medicine, enhancing understanding of pharmacological actions and facilitating clinical rational administration.


Asunto(s)
Dióxido de Carbono , Disolventes Eutécticos Profundos , Microextracción en Fase Líquida , Espectrometría de Masas en Tándem , Microextracción en Fase Líquida/métodos , Dióxido de Carbono/química , Disolventes Eutécticos Profundos/química , Animales , Distribución Tisular , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Masculino , Ratas , Ratas Sprague-Dawley
13.
Food Chem ; 453: 139660, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761738

RESUMEN

A novel dispersive solid-phase microextraction method based on a metal-organic framework (MIL-100(Fe)) combined with a dispersive liquid-liquid microextraction technique was proposed for the extraction and enrichment of four insecticides in beverages. The qualitative and quantitative analysis of these insecticides was conducted using HPLC-MS/MS. To optimize the extraction process, several parameters were investigated, and the main variables were optimized using CCD-based RSM. The developed method displayed a wide linear range of 1.000-1000 ng/L and R2 values >0.993 for all four calibration curves. The method demonstrated high sensitivity, with LODs and LOQs of 0.3-0.6 ng/L and 0.8-1.0 ng/L, respectively. In addition, the greenness of the proposed method was assessed using the Complex GAPI tool, and the results showed that the proposed method exhibits benefits, such as minimal usage of organic solvents and negligible matrix influence, making it a suitable method for the detection of insecticide residues in beverages.


Asunto(s)
Bebidas , Contaminación de Alimentos , Insecticidas , Microextracción en Fase Líquida , Residuos de Plaguicidas , Microextracción en Fase Sólida , Espectrometría de Masas en Tándem , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión , Insecticidas/análisis , Insecticidas/aislamiento & purificación , Insecticidas/química , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/aislamiento & purificación , Residuos de Plaguicidas/química , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis , Bebidas/análisis , Microextracción en Fase Sólida/métodos , Estructuras Metalorgánicas/química , Cromatografía Líquida con Espectrometría de Masas
14.
J Pharm Biomed Anal ; 246: 116236, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772203

RESUMEN

As the adulteration of dietary supplements with synthetic drugs remains a prevalent issue, the inclusion of anti-obesity agents may pose health risks, potentially leading to central nervous system or cardiovascular diseases. However, surveillance studies on the use of anti-obesity agents by the Chinese population are limited. This study aims to establish an efficient and rapid hair pretreatment method using dispersive liquid-liquid microextraction (DLLME) combined with high-speed grinding and develop a sensitive and accurate analytical method employing ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for detecting 13 potential anti-obesity agents in hair samples. Herein, hair samples were washed sequentially with 0.1% sodium dodecyl sulfate (SDS), water and acetone, and then ground at high speed using 1 mL of an extraction solution (internal standard solution-n-butanol-1.2 mol/L Na2HPO4, pH10.0, 100:400:500, v/v/v for procaterol; internal standard solution-ethyl acetate-1.2 mol/L Na2HPO4, pH8.0, 100:300:600, v/v/v for other 12 anti-obesity agents) while simultaneously performing DLLME. The developed method successfully detected 13 anti-obesity agents within 11 min, including bambuterol, clenbuterol, ractopamine, clorprenaline, formoterol, salbutamol, terbutaline, procaterol, phentermine, bupropion, sibutramine, desmethyl sibutramine, and N,N-didesmethyl sibutramine, which improved the screening efficiency. The calibration curves exhibited good linearity of 0.025-5 ng/mg, achieving correlation coefficients of r ≥ 0.99. The lower limits of quantification (LLOQs) for the analytes were 0.025 ng/mg, demonstrating acceptable levels of accuracy and precision. Recovery rates ranged between 73.30% and 107.47% across the three concentrations of 0.075, 0.375, and 3.75 ng/mg. The validated method was successfully applied to 369 real cases and detected six analytes, including bambuterol, salbutamol, terbutaline, sibutramine, desmethyl sibutramine, and N,N-didesmethyl sibutramine. This method offers several advantages, including simple pretreatment, high extraction efficiency, rapid extraction, solvent economy, and pollution mitigation, making it highly suitable for large-scale surveillance of usage of added anti-obesity agents.


Asunto(s)
Fármacos Antiobesidad , Cabello , Microextracción en Fase Líquida , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Fármacos Antiobesidad/análisis , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Cabello/química , Humanos , Límite de Detección , Reproducibilidad de los Resultados
15.
Artículo en Inglés | MEDLINE | ID: mdl-38669467

RESUMEN

In the present study, an efficacious, safe, inexpensive and eco-friendly microextraction was provided by deep eutectic solvents based on dispersive liquid-liquid microextraction (DLLME - DES) followed by GFAAS. A series of DESs were synthesised using l-menthol as hydrogen bond acceptor (HBA) and carboxylic acids with 4, 6, 8 and 10 carbon atoms as hydrogen bond donors (HBD). The synthesised DESs were used as extractants of arsenic ions. Under optimised conditions, good linearity with coefficient of determination (r2) 0.992 and an acceptable linear range of 0.3-100 µg kg-1 was obtained. The limit of detection was 0.1 µg kg-1 (S/N = 3) for arsenite (As(III)) ions, and a high enrichment factor (EF = 200) was obtained. The enhancement factor and extraction recovery (ER%) of the method were 340 and 60%, respectively. RSDs including inter- and intra-day ranged from 3.2% to 5.8% in three examined concentrations. After a specific digestion, the capability of the synthesised DES in the extraction of As(III) from rice was tested. Total inorganic arsenic was separated similarly after reduction of arsenate (As(V)) to As(III), and As(V) concentration was calculated by difference. Using a second digestion method, total arsenic concentration (sum of organic and inorganic arsenic) in the samples was determined.


Asunto(s)
Arsénico , Contaminación de Alimentos , Oryza , Oryza/química , Arsénico/análisis , Arsénico/química , Contaminación de Alimentos/análisis , Disolventes Eutécticos Profundos/química , Microextracción en Fase Líquida
16.
Environ Monit Assess ; 196(5): 485, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684572

RESUMEN

Herein, we aimed to develop a new environmentally friendly liquid-liquid microextraction (LLME) method based on hydrophobic deep eutectic solvent (hDES) synthesized using biodegradable dl-menthol and decanoic acid for the spectrophotometric determination of toxic basic fuchsin dye in environmental water samples. The parameters affecting the extraction efficiency such as pH, mole ratio, and volume of hDES (1:2) and type and volume of organic solvent, sample volume, times of vortex, ultrasonic bath and centrifuge, ionic strength, and matrix effect were investigated and optimized. Under optimal conditions, the calibration curve showed linearity in the range of 7.4-167 µg L-1 with a coefficient of determination of 0.9994. The limit of detection, intra-day and inter-day precision, and recovery values were 2.25 µg L-1, 2.46% and 4.45%, and 105 ± 3%, respectively. The preconcentration and enrichment factors were found to be 30 and 61.5, respectively. The proposed hDES-LLME methodology was successfully applied to the environmental water samples to detect toxic BF dye (95-105%). Finally, the ecological impact of the suggested method was evaluated using the analytical eco-scale (PPS:88), complementary green analytical procedure indexe (ComplexGAPI), and the Analytical GREEnness tool (0.63). The assessment results showed that the presented analytical method can be regarded as a green LLME approach for the determination of the BF in water.


Asunto(s)
Microextracción en Fase Líquida , Mentol , Contaminantes Químicos del Agua , Microextracción en Fase Líquida/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Mentol/química , Disolventes Eutécticos Profundos/química , Interacciones Hidrofóbicas e Hidrofílicas , Tecnología Química Verde/métodos , Colorantes/química , Monitoreo del Ambiente/métodos
17.
Food Chem ; 450: 139298, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615532

RESUMEN

A convenient, efficient, and green dispersive liquid-liquid microextraction based on the in situ formation of solidified supramolecular solvents combined with high performance liquid chromatography was developed for the determination of four phenylurea herbicides in liquid samples, including monuron, monolinuron, isoproturon, and chlortoluron. Herein, a novel supramolecular solvent was prepared by the in situ reaction of [P4448]Br and NH4PF6, which had the advantages of low melting point, high density, and good dispersibility. In addition, the microscopic morphology and physical properties of supramolecular solvent were characterized, and the extraction conditions were optimized. The results showed that the analytes had good linearity (R2 > 0.9998) within the linear range. The limits of detection and quantification for the four phenylurea herbicides were in the range of 0.13-0.19 µg L-1 and 0.45-0.65 µg L-1, respectively. The prepared supramolecular solvent is suitable for the efficient extraction of phenylurea herbicides in water, fruit juice, and milk.


Asunto(s)
Jugos de Frutas y Vegetales , Herbicidas , Microextracción en Fase Líquida , Leche , Compuestos de Fenilurea , Solventes , Microextracción en Fase Líquida/métodos , Herbicidas/química , Herbicidas/aislamiento & purificación , Herbicidas/análisis , Leche/química , Compuestos de Fenilurea/aislamiento & purificación , Compuestos de Fenilurea/química , Compuestos de Fenilurea/análisis , Jugos de Frutas y Vegetales/análisis , Solventes/química , Animales , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis
18.
Food Chem X ; 22: 101302, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38559443

RESUMEN

Glyoxal, methylglyoxal, and diacetyl are toxic α-dicarbonyl compounds found in heat-processed foods, including edible oils. Dispersive liquid-liquid microextraction was combined with gas chromatography mass spectrometry to determine the glyoxal, methylglyoxal, and diacetyl contents in sesame oil. Chloroform and methanol were selected as the optimal extraction and dispersive solvents, respectively. The maximum derivatization efficiency was obtained using 500 µg of the derivatization agent, o-phenylenediamine. The derivatization of glyoxal was completed in 1 h, whereas those of methylglyoxal and diacetyl were completed immediately. The optimized method was validated, and was found to exhibit a good linearity, recovery, intraday repeatability, and interday reproducibility. The α-dicarbonyl compound concentrations in the oils were dependent on the roasting temperature. The sesame oil concentrates contained 0-175.4, 0-990.5, and 0-220.9 ng g-1 of glyoxal, methylglyoxal, and diacetyl, respectively. For the perilla oils, the respective concentrations were 0-96.4, 0-410.8, and 0-197.5 ng g-1.

19.
J Chromatogr A ; 1722: 464852, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581974

RESUMEN

Xiangdan Injection are commonly used traditional Chinese medicine formulations for the clinical treatment of cardiovascular diseases. However, the trace components of Dalbergia odorifera in Xiangdan Injection pose a challenge for evaluating its quality due to the difficulty of detection. This study proposes a technology combining dispersive liquid-liquid microextraction and back-extraction (DLLME-BE) along with Bar-Form-Diagram (BFD) to address this issue. The proposed combination method involves vortex-mixing tetradecane, which has a lower density than water, with the sample solution to facilitate the transfer of the target components. Subsequently, a new vortex-assisted liquid-liquid extraction step is performed to enrich the components of Dalbergia odorifera in acetonitrile. The sample analysis was performed on HPLC-DAD, and a clear overview of the chemical composition was obtained by integrating spectral and chromatographic information using BFD. The combination of BFD and CRITIC-TOPSIS strategies was used to optimize the process parameters of DLLME-BE. The determined optimal sample pre-treatment process parameters were as follows: 200 µL extraction solvent, 60 s extraction time, 50 µL back-extraction solvent, and 90 s back-extraction time. Based on the above strategy, a total of 29 trace components, including trans-nerolidol, were detected in the Xiangdan Injection. This combination technology provides valuable guidance for the enrichment analysis of trace components in traditional Chinese medicines.


Asunto(s)
Dalbergia , Medicamentos Herbarios Chinos , Microextracción en Fase Líquida , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Dalbergia/química , Límite de Detección , Acetonitrilos/química , Reproducibilidad de los Resultados
20.
Talanta ; 274: 126038, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579419

RESUMEN

Herein, a High-Throughput Semi-automated Emulsive Liquid-Liquid Microextraction (HTSA-ELLME) method was developed to detect Succinate Dehydrogenase Inhibitor (SDHI) fungicides in food samples via UHPLC-MS/MS. The Oil-in-Water (O/W) emulsion comprising a hydrophobic extractant and water was dilutable with the aqueous sample solution. Upon injecting the primary emulsion into the sample solution, a secondary O/W emulsion was formed, allowing SDHI fungicides to be extracted. Subsequently, a NaCl-saturated solution was injected in the secondary O/W emulsion as a demulsifier to rapidly separate the extractant, eliminating the need for centrifugation. A 12-channel electronic micropipette was used to achieve a high-throughput semi-automation of the novel sample pretreatment. The linear range was 0.003-0.3 µg L-1 with R2 > 0.998. The limit of detection was 0.001 µg L-1. The HTSA-ELLME method successfully detected SDHI fungicides in water, juice, and alcoholic beverage samples, with recoveries and relative standard deviations of 82.6-106.9% and 0.8-5.8%, respectively. Unlike previously reported liquid-liquid microextraction approaches, the HTSA-ELLME method is the first to be both high-throughput and semi-automated and may aid in designing pesticide pretreatment processes in food samples.


Asunto(s)
Bebidas Alcohólicas , Jugos de Frutas y Vegetales , Fungicidas Industriales , Microextracción en Fase Líquida , Espectrometría de Masas en Tándem , Microextracción en Fase Líquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Fungicidas Industriales/análisis , Jugos de Frutas y Vegetales/análisis , Bebidas Alcohólicas/análisis , Emulsiones/química , Agua/química , Contaminación de Alimentos/análisis , Automatización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA